Vacuum Dynamics as an Alternative Method for Detection of Bimodal Milk Ejection in Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Vacuum and Milk Flow Recordings
2.3. Nonlactating Quarter and Teat Tissue Condition
2.4. Sample Size Calculation
2.5. Descriptive Statistics
2.6. Comparison of VaDia and Lactocorder Devices
2.7. Bimodality, Let Down Time, and Milking Characteristics
2.8. Bimodality, Let Down Time, and Teat Tissue Condition
3. Results
3.1. Study Population
3.2. Comparison of VaDia and Lactocorder Devices
3.3. Bimodality, Let Down Time, and Milking Characteristics
3.4. Bimodality, Let Down Time, and Teat Tissue Condition
4. Discussion
4.1. Comparison of VaDia and Lactocorder Devices
4.2. Bimodality, Let Down Time, and Milking Characteristics
4.3. Bimodality, Let Down Time, and Teat Tissue Condition
4.4. Study Limitations, Practical Application, and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sandrucci, A.; Tamburini, A.; Bava, L.; Zucali, M. Factors affecting milk flow traits in dairy cows: Results of a field study. J. Dairy Sci. 2007, 90, 1159–1167. [Google Scholar] [CrossRef]
- Tančin, V.; Ipema, B.; Hogewerf, P.; Mačuhová, J. Sources of variation in milk flow characteristics at udder and quarter levels. J. Dairy Sci. 2006, 89, 978–988. [Google Scholar] [CrossRef]
- Bruckmaier, R.M.; Blum, J.W. Oxytocin release and milk removal in ruminants. J. Dairy Sci. 1998, 81, 939–949. [Google Scholar] [CrossRef]
- Rasmussen, M.D. Overmilking and Teat Condition. In Proceedings of the 43rd National Mastitis Council Annual Meeting, Colombus, OH, USA, 1–4 February 2004; pp. 169–175. [Google Scholar]
- Wallace, J.A.; Schukken, Y.H.; Welcome, F. Measuring stimulation’s effect with milk flow curves. In Proceedings of the 42nd National Mastitis Council Annual Meeting, Fort Worth, TX, USA, 26–29 January 2003; pp. 86–97. [Google Scholar]
- Schukken, Y.H.; Petersson, L.G.; Nydam, D.V.; Baker, D.E.; Team, F. Using milk flow curves to evaluate milking procedures and milk equipment. In Proceedings of the 44th National Mastitis Council Annual Meeting, Orlando, FL, USA, 16–19 January 2005; pp. 139–146. [Google Scholar]
- Bruckmaier, R.M.; Blum, J.W. Simultaneous recording of oxytocin release, milk ejection and milk flow during milking of dairy cows with and without prestimulation. J. Dairy Res. 1996, 63, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Erskine, R.J.; Norby, B.; Neuder, L.M.; Thomson, R.S. Decreased milk yield is associated with delayed milk ejection. J. Dairy Sci. 2019, 102, 6477–6484. [Google Scholar] [CrossRef]
- Moore-Foster, R.; Norby, B.; Schewe, R.L.; Thomson, R.; Bartlett, P.C.; Erskine, R.J. Herd-level variables associated with premilking stimulation time in Michigan dairy herds. J. Dairy Sci. 2019, 102, 2544–2550. [Google Scholar] [CrossRef] [PubMed]
- Bruckmaier, R.M. Normal and disturbed milk ejection in dairy cows. Domest. Anim. Endocrinol. 2005, 29, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Zecconi, A.; Frosi, S.; Cipolla, M.; Gusmara, C. Effects of chronic mastitis and its treatment with ketoprofen on the milk ejection curve. J. Dairy Res. 2018, 85, 50–52. [Google Scholar] [CrossRef] [PubMed]
- Tamburini, A.; Bava, L.; Piccinini, R.; Zecconi, A.; Zucali, M.; Sandrucci, A. Milk emission and udder health status in primiparous dairy cows during lactation. J. Dairy Res. 2010, 77, 13–19. [Google Scholar] [CrossRef]
- Gray, K.A.; Vacirca, F.; Bagnato, A.; Samore, A.B.; Rossoni, A.; Maltecca, C. Genetic evaluations for measures of the milk-flow curve in the Italian Brown Swiss population. J. Dairy Sci. 2011, 94, 960–970. [Google Scholar] [CrossRef]
- Samoré, A.B.; Román-Ponce, S.I.; Vacirca, F.; Frigo, E.; Canavesi, F.; Bagnato, A.; Maltecca, C. Bimodality and the genetics of milk flow traits in the Italian Holstein-Friesian breed. J. Dairy Sci. 2011, 94, 4081–4089. [Google Scholar] [CrossRef]
- Borkhus, M.; Rønningen, O. Factors affecting mouthpiece chamber vacuum in machine milking. J. Dairy Res. 2003, 70, 283–288. [Google Scholar] [CrossRef]
- Bade, R.D.; Reinemann, D.J.; Zucali, M.; Ruegg, P.L.; Thompson, P.D. Interactions of vacuum, b-phase duration, and liner compression on milk flow rates in dairy cows. J. Dairy Sci. 2009, 92, 913–921. [Google Scholar] [CrossRef] [Green Version]
- Nørstebø, H.; Rachah, A.; Dalen, G.; Rønningen, O.; Whist, A.C.; Reksen, O. Milk-flow data collected routinely in an automatic milking system: An alternative to milking-time testing in the management of teat-end condition? Acta Vet. Scand. 2018, 60, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nørstebø, H.; Rachah, A.; Dalen, G.; Østerås, O.; Whist, A.C.; Nødtvedt, A.; Reksen, O. Large-scale cross-sectional study of relationships between somatic cell count and milking-time test results in different milking systems. Prev. Vet. Med. 2019, 165, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Moore-Foster, R.; Norby, B.; Schewe, R.L.; Thomson, R.; Bartlett, P.C.; Erskine, R.J. Short communication: Herd-level variables associated with overmilking in Michigan dairy herds. J. Dairy Sci. 2019, 102, 8400–8404. [Google Scholar] [CrossRef]
- Moore-Foster, R.; Norby, B.; Schewe, R.L.; Thomson, R.; Bartlett, P.C.; Erskine, R.J. Herd-level variables associated with delayed milk ejection in Michigan dairy herds. J. Dairy Sci. 2019, 102, 696–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malmo, J.; Mein, G. A new tool for milking-time investigations: Using the VaDia and interpreting results. In Proceedings of the Countdown Symposium, Melbourne, Australia, 6 October 2015. [Google Scholar]
- Watters, R.D.; Bruckmaier, R.M.; Crawford, H.M.; Schuring, N.; Schukken, Y.H.; Galton, D.M. The effect of manual and mechanical stimulation on oxytocin release and milking characteristics in Holstein cows milked 3 times daily. J. Dairy Sci. 2015, 98, 1721–1729. [Google Scholar] [CrossRef] [Green Version]
- Wieland, M.; Virkler, P.D.; Weld, A.; Melvin, J.M.; Wettstein, M.R.; Oswald, M.F.; Geary, C.M.; Watters, R.D.; Lynch, R.; Nydam, D.V. The effect of 2 different premilking stimulation regimens, with and without manual forestripping, on teat tissue condition and milking performance in Holstein dairy cows milked 3 times daily. J. Dairy Sci. 2020, 103, 9548–9560. [Google Scholar] [CrossRef]
- Hamann, J.; Mein, G.A. Measurement of machine-induced changes in thickness of the bovine teat. J. Dairy Res. 1990, 57, 495–505. [Google Scholar] [CrossRef]
- Neijenhuis, F.; Klungel, G.H.; Hogeveen, H. Recovery of cow teats after milking as determined by ultrasonographic scanning. J. Dairy Sci. 2001, 84, 2599–2606. [Google Scholar] [CrossRef]
- Paulrud, C.O.; Clausen, S.; Andersen, P.E.; Rasmussen, M.D. Infrared thermography and ultrasonography to indirectly monitor the influence of liner type and overmilking on teat tissue recovery. Acta Vet. Scand. 2005, 46, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Zecconi, A.; Bronzo, V.; Piccinini, R.; Moroni, P.; Ruffo, G. Field study on the relationship between teat thickness changes and intramammary infections. J. Dairy Res. 1996, 63, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Hillerton, J.E.; Pankey, J.W.; Pankey, P. Effect of over-milking on teat condition. J. Dairy Res. 2002, 69, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Penry, J.F.; Upton, J.; Leonardi, S.; Thompson, P.D.; Reinemann, D.J. A method for assessing teatcup liner performance during the peak milk flow period. J. Dairy Sci. 2018, 101, 649–660. [Google Scholar] [CrossRef] [Green Version]
- NMC. Procedures for Evaluating Vacuum Levels and Air Flow in Milking Systems; National Mastitis Council: Verona, WI, USA, 2012. [Google Scholar]
- Hillerton, J.E.; Ohnstad, I.; Baines, J.R.; Leach, K.A. Changes in cow teat tissue created by two types of milking cluster. J. Dairy Res. 2000, 67, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Gamer, M.; Lemon, J.; Singh, I.F.P. irr: Various Coefficients of Interrater Reliability and Agreement. 2019. Available online: https://CRAN.R-project.org/package=irr (accessed on 26 February 2021).
- R Core Team. R: A Language and Environment for Statistical Computing. 2021. Available online: https://www.R-project.org/ (accessed on 26 February 2021).
- Signorell, A.; Alfons, A. DescTools: Tools for Descriptive Statistics. R Package Version. 2020. Available online: https://cran.r-project.org/package=DescTools (accessed on 26 February 2021).
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Dohoo, I.; Martin, W.; Stryhn, H. Screening and diagnostic tests. In Veterinary Epidemiologic Research, 2nd ed.; AVC Inc.: Charlottetown, PE, Canada, 2009; pp. 91–134. [Google Scholar]
- Royster, E.; Godden, S.; Goulart, D.; Dahlke, A.; Rapnicki, P.; Timmerman, J. Evaluation of the Minnesota Easy Culture System II Bi-Plate and Tri-Plate for identification of common mastitis pathogens in milk. J. Dairy Sci. 2014, 97, 3648–3659. [Google Scholar] [CrossRef]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lenth, R. emmeans: Estimated Marginal Means, Aka Least-Squares Means. R Package Version 1.5.2-1. 2020. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 26 February 2021).
- Wieland, M.; Nydam, D.V.; Älveby, N.; Wood, P.; Virkler, P.D. Short communication: Teat-end shape and udder-level milking characteristics and their associations with machine milking-induced changes in teat tissue condition. J. Dairy Sci. 2018, 101, 11447–11454. [Google Scholar] [CrossRef] [Green Version]
- Dodenhoff, J.; Sprengel, D.; Duda, J.; Dempfle, L. Potential use of parameters of the milk flow curve for genetic evaluation of milkability. In Proceedings of the International Workshop on EU Concerted Action on Genetic Improvement of Functional Traits in Cattle, Wageningen, The Netherlands, 7–9 November 1999; pp. 131–141. [Google Scholar]
- Wieland, M.; Nydam, D.V.; Virkler, P.D. A longitudinal field study investigating the association between teat-end shape and two minute milk yield, milking unit-on time, and time in low flow rate. Livest. Sci. 2017, 205, 88–97. [Google Scholar] [CrossRef]
- Holst, G.E.; Adrion, F.; Umstätter, C.; Bruckmaier, R.M. Type of teat cup liner and cluster ventilation affect vacuum conditions in the liner and milking performance in dairy cows. J. Dairy Sci. 2021, 104, 4775–4786. [Google Scholar] [CrossRef]
- Wieland, M.; Nydam, D.V.; Heuwieser, W.; Morrill, K.M.; Ferlito, L.; Watters, R.D.; Virkler, P.D. A randomized trial to study the effect of automatic cluster remover settings on milking performance, teat condition, and udder health. J. Dairy Sci. 2020, 103, 3668–3682. [Google Scholar] [CrossRef] [PubMed]
- Weiss, D.; Bruckmaier, R.M. Optimization of individual prestimulation in dairy cows. J. Dairy Sci. 2005, 88, 137–147. [Google Scholar] [CrossRef]
- Watters, R.D.; Schuring, N.; Erb, H.N.; Schukken, Y.H.; Galton, D.M. The effect of premilking udder preparation on Holstein cows milked 3 times daily. J. Dairy Sci. 2012, 95, 1170–1176. [Google Scholar] [CrossRef]
- Reneau, J.K.; Chastain, J.P. Premilking cow prep: Adapting to your system. In Proceedings of the National Mastitis Council Regional Meeting Proceedings, Harrisburg, PA, USA, 24 August 1995; pp. 46–63. [Google Scholar]
- Durst, P.T.; Chojnacki, R. How Is Variability in Your Farm’s Milking Procedure Affecting Milk Flow? Available online: https://www.canr.msu.edu/news/how_is_variability_in_your_farms_milking_procedure_affecting_milk_flow (accessed on 3 May 2021).
- Wieland, M.; Nydam, D.V. You have to go slow to go fast when milking cows. Hoard’s Dairym. 2017, 20, 747. [Google Scholar]
- Bruckmaier, R.M.; Hilger, M. Milk ejection in dairy cows at different degrees of udder filling. J. Dairy Res. 2001, 68, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Wieland, M.; Melvin, J.M.; Nydam, D.V.; Virkler, P.D. A longitudinal prospective cohort study investigating the association of premilking stimulation and teat-end shape on milking characteristics and teat tissue condition in dairy cows. BMC Vet. Res. 2019, 15, 58. [Google Scholar] [CrossRef] [Green Version]
Item | Farm 1 | Farm 2 | Farm 3 | Farm 4 | Farm 5 |
---|---|---|---|---|---|
Parlor type | 2 × 16 stall parallel | 2 × 18 stall parallel | 2 × 20 stall parallel | 100 stall rotary | 2 × 18 stall parallel |
Vacuum pump capacity (kW) | 11.2 | 11.2 | 11.2 | 22.4 | 11.2 |
Milkline vacuum (kPa) 1 | 45.0 | 43.0 | 41.7 | 44.0 | 44.0 |
Milkline diameter (cm) | 7.6 | 7.6 | 7.6 | 10.1 | 7.6 |
Milking liner shape | triangular | multi-sided concave | triangular | round | triangular |
Milking liner short milk tube diameter (mm) | 10 | 12 | 11 | 12 | 10 |
Cluster ventilation 2 | MPC + claw | claw | SMT + claw | claw | MPC + claw |
Average claw vacuum 3 (kPa) | 41.7 | 38.9 | 40.6 (42.3) | 37.6 | 42.0 (41.7) |
Pulsation rate 4 (cyles/min) | 62 | 60 | 60 | 60 | 66 (64) |
Pulsation ratio 4 | 65:35 | 65:35 | 65:35 | 65:35 | 66:34 |
Pulsation phases 4 | |||||
a-phase (ms) | 113 | 112 | 104 (110) | 150 (169) | 97 (164) |
b-phase (ms) | 510 | 531 | 553 (551) | 493 (476) | 503 (449) |
c-phase (ms) | 82 | 101 | 79 (78) | 122 (127) | 79 (81) |
d-phase (ms) | 260 | 253 | 264 (263) | 235 (228) | 229 (239) |
Automatic cluster remover settings (kg/min) | 1.1 | 1.6 | 1.1 | 1.5 | 1.2 |
Dip contact time 5 (s) | 91 | 105 | 105 (111) | 26 (36) | 83 (77) |
Stimulation time 6 (s) | 3 | 3 | 3 | 6 | 5 |
Preparation lag time 7 (s) | 102 | 100 | 118 (125) | 57 (78) | 127 (124) |
Item | Farm 1 | Farm 2 | Farm 3 | Farm 4 | Farm 5 | Total |
---|---|---|---|---|---|---|
n | 30 | 34 | 48 | 67 | 62 | 241 |
Parity (n, %) | ||||||
1st | 22 (73) | 4 (12) | 16 (33) | 25 (37) | 37 (60) | 104 (43) |
2nd | 4 (13) | 12 (35) | 20 (42) | 22 (33) | 17 (27) | 75 (31) |
≥3rd | 4 (13) | 18 (53) | 12 (25) | 20 (30) | 8 (13) | 62 (26) |
Stage of lactation (DIM) | 145 ± 94 | 150 ± 83 | 150 ± 115 | 151 ± 99 | 142 ± 91 | 148 ± 97 |
lnSCC 1 | 3.4 ± 1.2 | 3.7 ± 1.0 | 4.3 ± 1.4 | 4.0 ± 1.2 | 3.9 ± 1.3 | 3.9 ± 1.3 |
Milk yield 2 (kg) | 14.6 ± 4.4 | 15.5 ± 4.9 | 14.8 ± 4.4 | 13.8 ± 4.0 | 15.2 ± 3.3 | 14.7 ± 4.1 |
Machine on time 3 (s) | 272 ± 109 | 288 ± 81 | 319 ± 92 | 228 ± 46 | 266 ± 74 | 270 ± 84 |
Let down time 3 (s) | 34 ± 19 | 28 ± 23 | 38 ± 22 | 31 ± 19 | 27 ± 18 | 32 ± 20 |
Overmilking 3 (s) | 63 ± 75 | 47 ± 39 | 68 ± 45 | 32 ± 23 | 42 ± 33 | 48 ± 44 |
ACVF 4 (kPa) | 35.7 ± 2.6 | 32.9 ± 2.3 | 36.8 ± 5.7 | 34.0 ± 2.4 | 36.2 ± 2.4 | 35.2 ± 3.6 |
MPCV 5 (kPa) | 13.5 ± 7.9 | 16.9 ± 9.5 | 18.2 ± 8.5 | 14.5 ± 7.4 | 17.4 ± 8.6 | 16.3 ± 8.4 |
BIMVA 6 (n, %) | 7 (23) | 7 (21) | 14 (29) | 19 (28) | 5 (8) | 52 (22) |
BIMLA 7 (n, %) | 10 (33) | 8 (24) | 15 (31) | 17 (25) | 7 (11) | 57 (24) |
STC 8 (n, %) | 15 (50) | 12 (35) | 30 (63) | 38 (57) | 32 (52) | 127 (53) |
VaDia | Lactocorder | Total | |
---|---|---|---|
Bimodality Present | Bimodality Absent | ||
Bimodality present | 37 | 15 | 52 |
Bimodality absent | 20 | 169 | 189 |
Total | 57 | 184 | 241 |
Item | BIMVA | BIMLA | ||
---|---|---|---|---|
Present | Absent | Present | Absent | |
Milk yield (kg) | 13.8 ± 3.6 a | 15.0 ± 4.2 a | 13.3 ± 4.2 a | 15.1 ± 4.0 b |
Machine on time (s) | 256 ± 63 a | 274 ± 88 a | 254 ± 87 a | 275 ± 82 a |
Let down time (s) | 59 ± 19 a | 24 ± 13 b | 50 ± 24 a | 26 ± 15 b |
Overmilking period (s) | 48 ± 34 a | 48 ± 46 a | 46 ± 49 a | 49 ± 42 a |
ACVF (kPa) | 35.1 ± 2.6 a | 35.2 ± 3.9 a | 35.7 ± 2.7 a | 35.1 ± 3.8 a |
MPCV (kPa) | 13.4 ± 7.1 a | 17.0 ± 8.6 b | 14.4 ± 7.6 a | 16.8 ± 8.6 a |
STC (n, %) | 27/52 (51.9) a | 100/189 (52.9) a | 27/57 (47.4) a | 100/184 (54.4) a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wieland, M.; Geary, C.M.; Gioia, G.; Case, K.L.; Moroni, P.; Sipka, A. Vacuum Dynamics as an Alternative Method for Detection of Bimodal Milk Ejection in Dairy Cows. Animals 2021, 11, 1860. https://doi.org/10.3390/ani11071860
Wieland M, Geary CM, Gioia G, Case KL, Moroni P, Sipka A. Vacuum Dynamics as an Alternative Method for Detection of Bimodal Milk Ejection in Dairy Cows. Animals. 2021; 11(7):1860. https://doi.org/10.3390/ani11071860
Chicago/Turabian StyleWieland, Matthias, Christina Marie Geary, Gloria Gioia, Kerry Lynn Case, Paolo Moroni, and Anja Sipka. 2021. "Vacuum Dynamics as an Alternative Method for Detection of Bimodal Milk Ejection in Dairy Cows" Animals 11, no. 7: 1860. https://doi.org/10.3390/ani11071860
APA StyleWieland, M., Geary, C. M., Gioia, G., Case, K. L., Moroni, P., & Sipka, A. (2021). Vacuum Dynamics as an Alternative Method for Detection of Bimodal Milk Ejection in Dairy Cows. Animals, 11(7), 1860. https://doi.org/10.3390/ani11071860