An Overview on the Potential Hazards of Pyrethroid Insecticides in Fish, with Special Emphasis on Cypermethrin Toxicity
Abstract
:Simple Summary
Abstract
1. Introduction
2. Detrimental and Toxic Effects of Pesticides in Fish: A General Overview
2.1. Behavioral Changes
2.2. Reproductive Disorders and Malformations
2.3. Histopathological Alterations
2.4. Haemato-Biochemical Alterations
2.5. Neurotoxicity
2.6. Endocrine Disruption
2.7. Effects on Proximate Body Composition
2.8. Oxidative Stress Injury
2.9. Genotoxicity
2.10. Immunotoxicity
3. Pyrethroid Insecticides
3.1. Classification and Types of Pyrethroids
3.2. Modes of Action of Pyrethroids
3.3. Biotransformation and Acute Lethality of Pyrethroids to Fish
3.4. Cypermethrin as a Pyrethroid Model
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jabeen, F.; Chaudhry, A.S.; Manzoor, S.; Shaheen, T. Examining pyrethroids, carbamates and neonicotenoids in fish, water and sediments from the Indus River for potential health risks. Environ. Monit. Assess. 2015, 187, 29. [Google Scholar] [CrossRef] [PubMed]
- Ullah, S.; Zorriehzahra, M.J. Ecotoxicology: A review of pesticides induced toxicity in fish. Adv. Anim. Vet. Sci. 2015, 3, 40–57. [Google Scholar] [CrossRef]
- Albano, M.; Panarello, G.; Di Paola, D.; D’Angelo, G.; Granata, A.; Savoca, S.; Capillo, G. The mauve stinger Pelagia noctiluca (Cnidaria, Scyphozoa) plastics contamination, the Strait of Messina case. Int. J. Environ. Stud. 2021, 1–6. [Google Scholar] [CrossRef]
- Stehle, S.; Schulz, R. Agricultural insecticides threaten surface waters at the global scale. Proc. Natl. Acad. Sci. USA 2015, 112, 5750–5755. [Google Scholar] [CrossRef] [Green Version]
- Albano, M.; Panarello, G.; Di Paola, D.; Capparucci, F.; Crupi, R.; Gugliandolo, E.; Spanò, N.; Capillo, G.; Savoca, S. The Influence of Polystyrene Microspheres Abundance on Development and Feeding Behavior of Artemia salina (Linnaeus, 1758). Appl. Sci. 2021, 11, 3352. [Google Scholar] [CrossRef]
- Naiel, M.A.E.; Shehata, A.M.; Negm, S.S.; Abd El-Hack, M.E.; Amer, M.S.; Khafaga, A.F.; Bin-Jumah, M.; Allam, A.A. The new aspects of using some safe feed additives on alleviated imidacloprid toxicity in farmed fish: A review. Rev. Aquac. 2020, 12, 2250–2267. [Google Scholar] [CrossRef]
- Naiel, M.A.E.; Ismael, N.E.M.; Abd El-hameed, S.A.A.; Amer, M.S. The antioxidative and immunity roles of chitosan nanoparticle and vitamin C-supplemented diets against imidacloprid toxicity on Oreochromis niloticus. Aquaculture 2020, 523, 735219. [Google Scholar] [CrossRef]
- Liu, W.-X.; Wang, Y.; He, W.; Qin, N.; Kong, X.-Z.; He, Q.-S.; Yang, B.; Yang, C.; Jiang, Y.-J.; Jorgensen, S.E.; et al. Aquatic biota as potential biological indicators of the contamination, bioaccumulation and health risks caused by organochlorine pesticides in a large, shallow Chinese lake (Lake Chaohu). Ecol. Indic. 2016, 60, 335–345. [Google Scholar] [CrossRef]
- Marigoudar, S.R.; Ahmed, R.N.; David, M. Ultrastructural responses and oxidative stress induced by cypermethrin in the liver of Labeo rohita. Chem. Ecol. 2013, 29, 296–308. [Google Scholar] [CrossRef]
- Abd El-hameed, S.A.A.; Negm, S.S.; Ismael, N.E.M.; Naiel, M.A.E.; Soliman, M.M.; Shukry, M.; Abdel-Latif, H.M.R. Effects of Activated Charcoal on Growth, Immunity, Oxidative Stress Markers, and Physiological Responses of Nile Tilapia Exposed to Sub-Lethal Imidacloprid Toxicity. Animals 2021, 11, 1357. [Google Scholar] [CrossRef]
- Ismael, N.E.M.; Abd El-hameed, S.A.A.; Salama, A.M.; Naiel, M.A.E.; Abdel-Latif, H.M.R. The effects of dietary clinoptilolite and chitosan nanoparticles on growth, body composition, haemato-biochemical parameters, immune responses, and antioxidative status of Nile tilapia exposed to imidacloprid. Environ. Sci. Pollut. Res. 2021. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Abdel-Tawwab, M.; Abdel-Latif, H.M.R. Lycopene reduces the impacts of aquatic environmental pollutants and physical stressors in fish. Rev. Aquac. 2020, 12, 2511–2526. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; El-Salam Metwally, A.; Elkomy, A.H.; Gewaily, M.S.; Abdo, S.E.; Abdel-Razek, M.A.S.; Soliman, A.A.; Amer, A.A.; Abdel-Razik, N.I.; Abdel-Latif, H.M.R.; et al. The impact of menthol essential oil against inflammation, immunosuppression, and histopathological alterations induced by chlorpyrifos in Nile tilapia. Fish Shellfish Immunol. 2020, 102, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Özkara, A.; Akyıl, D.; Konuk, M. Pesticides, environmental pollution, and health. In Environmental Health Risk-Hazardous Factors to Living Species; IntechOpen: London, UK, 2016. [Google Scholar]
- Fetoui, H.; Makni, M.; Mouldi Garoui, E.; Zeghal, N. Toxic effects of lambda-cyhalothrin, a synthetic pyrethroid pesticide, on the rat kidney: Involvement of oxidative stress and protective role of ascorbic acid. Exp. Toxicol. Pathol. 2010, 62, 593–599. [Google Scholar] [CrossRef]
- Hua, J.; Relyea, R. Chemical cocktails in aquatic systems: Pesticide effects on the response and recovery of 20 animal taxa. Environ. Pollut. 2014, 189, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Molina-Ruiz, J.M.; Cieslik, E.; Cieslik, I.; Walkowska, I. Determination of pesticide residues in fish tissues by modified QuEChERS method and dual-d-SPE clean-up coupled to gas chromatography–mass spectrometry. Environ. Sci. Pollut. Res. 2015, 22, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Mondal, K.; Haque, S. Review on Effect of the Type II Synthetic Pyrethroid Pesticides in Freshwater Fishes. Environ. Ecol. 2019, 37, 80–88. [Google Scholar]
- Bálint, T.; Ferenczy, J.; Kátai, F.; Kiss, I.; Kráczer, L.; Kufcsák, O.; Láng, G.; Polyhos, C.; Szabó, I.; Szegletes, T.; et al. Similarities and Differences between the Massive Eel (Anguilla anguilla L.) Devastations That Occurred in Lake Balaton in 1991 and 1995. Ecotoxicol. Environ. Saf. 1997, 37, 17–23. [Google Scholar] [CrossRef]
- Aydın, R.; Köprücü, K.; Dörücü, M.; Köprücü, S.Ş.; Pala, M. Acute Toxicity of Synthetic Pyrethroid Cypermethrin on the Common Carp (Cyprinus carpio L.) Embryos and Larvae. Aquac. Int. 2005, 13, 451–458. [Google Scholar] [CrossRef]
- Gautam, P.; Gupta, A. Toxicity of cypermethrin to the juveniles of freshwater fish Poecilia reticulata (Peters) in relation to selected environmental variables. Indian J. Nat. Prod. Resour. 2008, 7, 314–319. [Google Scholar]
- Yang, Y.; Ma, H.; Zhou, J.; Liu, J.; Liu, W. Joint toxicity of permethrin and cypermethrin at sublethal concentrations to the embryo-larval zebrafish. Chemosphere 2014, 96, 146–154. [Google Scholar] [CrossRef]
- Richterova, Z.; Machova, J.; Stara, A.; Tumova, J.; Velisek, J.; Sevcikova, M.; Svobodova, Z. Effects of a cypermethrin-based pesticide on early life stages of common carp (Cyprinus carpio L.). Vet. Med. 2015, 60, 423–431. [Google Scholar] [CrossRef] [Green Version]
- Kuivila, K.M.; Hladik, M.L.; Ingersoll, C.G.; Kemble, N.E.; Moran, P.W.; Calhoun, D.L.; Nowell, L.H.; Gilliom, R.J. Occurrence and Potential Sources of Pyrethroid Insecticides in Stream Sediments from Seven U.S. Metropolitan Areas. Environ. Sci. Technol. 2012, 46, 4297–4303. [Google Scholar] [CrossRef]
- Alonso, M.B.; Feo, M.L.; Corcellas, C.; Vidal, L.G.; Bertozzi, C.P.; Marigo, J.; Secchi, E.R.; Bassoi, M.; Azevedo, A.F.; Dorneles, P.R.; et al. Pyrethroids: A new threat to marine mammals? Environ. Int. 2012, 47, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Stara, A.; Pagano, M.; Capillo, G.; Fabrello, J.; Sandova, M.; Albano, M.; Zuskova, E.; Velisek, J.; Matozzo, V.; Faggio, C. Acute effects of neonicotinoid insecticides on Mytilus galloprovincialis: A case study with the active compound thiacloprid and the commercial formulation calypso 480 SC. Ecotoxicol. Environ. Saf. 2020, 203, 110980. [Google Scholar] [CrossRef] [PubMed]
- Coats, J.R.; Symonik, D.M.; Bradbury, S.P.; Dyer, S.D.; Timson, L.K.; Atchison, G.J. Toxicology of synthetic pyrethroids in aquatic organisms: An overview. Environ. Toxicol. Chem. 1989, 8, 671–679. [Google Scholar] [CrossRef]
- Muenstermann, S.; Rinkanya, F.G.R.; Tome, N.R. Tick control in small ruminants with a Cypermethrin ‘pour-on’ in Kenya. Trop. Pest Manag. 1988, 34, 399–401. [Google Scholar] [CrossRef]
- Paravani, E.V.; Simoniello, M.F.; Poletta, G.L.; Casco, V.H. Cypermethrin induction of DNA damage and oxidative stress in zebrafish gill cells. Ecotoxicol. Environ. Saf. 2019, 173, 1–7. [Google Scholar] [CrossRef]
- Paravani, E.V.; Simoniello, M.F.; Poletta, G.L.; Zolessi, F.R.; Casco, V.H. Cypermethrin: Oxidative stress and genotoxicity in retinal cells of the adult zebrafish. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2018, 826, 25–32. [Google Scholar] [CrossRef]
- Dawar, F.U.; Zuberi, A.; Azizullah, A.; Khan Khattak, M.N. Effects of cypermethrin on survival, morphological and biochemical aspects of rohu (Labeo rohita) during early development. Chemosphere 2016, 144, 697–705. [Google Scholar] [CrossRef]
- Soltanian, S.; Fereidouni, M.S. Immunotoxic responses of chronic exposure to cypermethrin in common carp. Fish Physiol. Biochem. 2017, 43, 1645–1655. [Google Scholar] [CrossRef] [PubMed]
- Khafaga, A.F.; Naiel, M.A.E.; Dawood, M.A.O.; Abdel-Latif, H.M.R. Dietary Origanum vulgare essential oil attenuates cypermethrin-induced biochemical changes, oxidative stress, histopathological alterations, apoptosis, and reduces DNA damage in Common carp (Cyprinus carpio). Aquat. Toxicol. 2020, 228, 105624. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Jindal, R. Assessment of cypermethrin induced hepatic toxicity in Catla catla: A multiple biomarker approach. Environ. Res. 2020, 184, 109359. [Google Scholar] [CrossRef] [PubMed]
- Jindal, R.; Sharma, R. Neurotoxic responses in brain of Catla catla exposed to cypermethrin: A semiquantitative multibiomarker evaluation. Ecol. Indic. 2019, 106, 105485. [Google Scholar] [CrossRef]
- El Euony, O.I.; Elblehi, S.S.; Abdel-Latif, H.M.; Abdel-Daim, M.M.; El-Sayed, Y.S. Modulatory role of dietary Thymus vulgaris essential oil and Bacillus subtilis against thiamethoxam-induced hepatorenal damage, oxidative stress, and immunotoxicity in African catfish (Clarias garipenus). Environ. Sci. Pollut. Res. 2020, 27, 23108–23128. [Google Scholar] [CrossRef]
- Sabra, F.S.; Mehana, E.-S.E.-D. Pesticides toxicity in fish with particular reference to insecticides. Asian J. Agric. Food Sci. 2015, 3, 40–60. [Google Scholar]
- Pavlov, D.; Kasumyan, A. Patterns and mechanisms of schooling behavior in fish: A review. J. Ichthyol. 2000, 40, S163. [Google Scholar]
- Luschi, P. Long-distance animal migrations in the oceanic environment: Orientation and navigation correlates. Int. Sch. Res. Not. 2013, 2013, 631839. [Google Scholar] [CrossRef]
- Ullah, S.; Hasan, Z.; Zuberi, A.; Younus, N.; Rauf, S. Comparative Study on Body Composition of Two Chinese Carps, Common Carp (Cyprinus carpio) and Silver Carp (Hypophthalmichthys molitrix). Glob. Vet. 2014, 13, 867–876. [Google Scholar]
- Tang, Z.-H.; Huang, Q.; Wu, H.; Kuang, L.; Fu, S.-J. The behavioral response of prey fish to predators: The role of predator size. PeerJ 2017, 5, e3222. [Google Scholar] [CrossRef]
- Wang, H.; Meng, Z.; Liu, F.; Zhou, L.; Su, M.; Meng, Y.; Zhang, S.; Liao, X.; Cao, Z.; Lu, H. Characterization of boscalid-induced oxidative stress and neurodevelopmental toxicity in zebrafish embryos. Chemosphere 2020, 238, 124753. [Google Scholar] [CrossRef]
- Jaensson, A.; Scott, A.P.; Moore, A.; Kylin, H.; Olsén, K.H. Effects of a pyrethroid pesticide on endocrine responses to female odours and reproductive behaviour in male parr of brown trout (Salmo trutta L.). Aquat. Toxicol. 2007, 81, 1–9. [Google Scholar] [CrossRef]
- Brander, S.M.; He, G.; Smalling, K.L.; Denison, M.S.; Cherr, G.N. The in vivo estrogenic and in vitro anti-estrogenic activity of permethrin and bifenthrin. Environ. Toxicol. Chem. 2012, 31, 2848–2855. [Google Scholar] [CrossRef]
- Wu, Y.; Li, W.; Yuan, M.; Liu, X. The synthetic pyrethroid deltamethrin impairs zebrafish (Danio rerio) swim bladder development. Sci. Total Environ. 2020, 701, 134870. [Google Scholar] [CrossRef]
- Deka, S.; Mahanta, R. A study on the effect of organophosphorus pesticide malathion on hepato-renal and reproductive organs of Heteropneustes fossilis (Bloch). Science 2012, 1, 1–13. [Google Scholar]
- David, M.; Kartheek, R. Biochemical changes in liver of freshwater fish Cyprinus carpio exposed to sublethal concentration of sodium cyanide. Indo Am. J. Pharm. Res. 2014, 4, 3669–3675. [Google Scholar]
- Mohammed, A.; Farag, M.; El-Hakim, A.; Elhady, W. Sources and Toxicological impacts of Surface Water Pollution on Fish in Egypt. Zagazig Vet. J. 2019, 47, 103–119. [Google Scholar] [CrossRef]
- Banaee, M.; Mirvaghefi, A.; Amiri, B.M.; Rafiee, G.; Nematdost, B. Hematological and histopathological effects of diazinon poisoning in common carp (Cyprinus carpio). J. Fish. 2011, 64, Pe1–Pe12. [Google Scholar]
- Mastan, S.; Shaffi, S. Sub-lethal Effect of Pesticides on the Distribution of Glutaminases in the Brain of Labeo rohita (Ham.). Int. J. Toxicol. 2010, 7, 1–6. [Google Scholar]
- Thenmozhi, C.; Vignesh, V.; Thirumurugan, R.; Arun, S. Impacts of malathion on mortality and biochemical changes of freshwater fish Labeo rohita. J. Environ. Health Sci. Eng. (IJEHSE) 2011, 8, 387–394. [Google Scholar]
- Sharbidre, A.A.; Metkari, V.; ka Patode, P. Effect of Diazinon on Acetylcholinesterase Activity and Lipid. Res. J. Environ. Toxicol. 2011, 5, 152–161. [Google Scholar]
- Marigoudar, S.R.; Ahmed, R.N.; David, M. Cypermethrin induced: In vivo inhibition of the acetylcholinesterase activity in functionally different tissues of the freshwater teleost, Labeo rohita (Hamilton). Toxicol. Environ. Chem. 2009, 91, 1175–1182. [Google Scholar] [CrossRef]
- Bibi, N.; Zuberi, A.; Naeem, M.; Ullah, I.; Sarwar, H.; Atika, B. Evaluation of acute toxicity of karate and its sub-lethal effects on protein and acetylcholinestrase activity in Cyprinus carpio. Int. J. Agric. Biol. 2014, 16, 731–737. [Google Scholar]
- Joseph, B.; Raj, S.J. Impact of pesticide toxicity on selected biomarkers in fishes. Int. J. Zool. Res. 2011, 7, 212. [Google Scholar] [CrossRef] [Green Version]
- Brodeur, J.C.; Sassone, A.; Hermida, G.N.; Codugnello, N. Environmentally-relevant concentrations of atrazine induce non-monotonic acceleration of developmental rate and increased size at metamorphosis in Rhinella arenarum tadpoles. Ecotoxicol. Environ. Saf. 2013, 92, 10–17. [Google Scholar] [CrossRef]
- Çavaş, T.; Könen, S. Detection of cytogenetic and DNA damage in peripheral erythrocytes of goldfish (Carassius auratus) exposed to a glyphosate formulation using the micronucleus test and the comet assay. Mutagenesis 2007, 22, 263–268. [Google Scholar] [CrossRef] [Green Version]
- Dogan, D.; Can, C. Hematological, biochemical, and behavioral responses of Oncorhynchus mykiss to dimethoate. Fish Physiol. Biochem. 2011, 37, 951–958. [Google Scholar] [CrossRef]
- Dey, C.; Saha, S. A comparative study on the acute toxicity bioassay of dimethoate and lambda-cyhalothrin and effects on thyroid hormones of freshwater teleost fish Labeo rohita (Hamilton). Int. J. Environ. Res. 2014, 8, 1085–1092. [Google Scholar]
- Forsgren, K.L.; Riar, N.; Schlenk, D. The effects of the pyrethroid insecticide, bifenthrin, on steroid hormone levels and gonadal development of steelhead (Oncorhynchus mykiss) under hypersaline conditions. Gen. Comp. Endocrinol. 2013, 186, 101–107. [Google Scholar] [CrossRef]
- Tu, W.; Xu, C.; Lu, B.; Lin, C.; Wu, Y.; Liu, W. Acute exposure to synthetic pyrethroids causes bioconcentration and disruption of the hypothalamus–pituitary–thyroid axis in zebrafish embryos. Sci. Total Environ. 2016, 542, 876–885. [Google Scholar] [CrossRef]
- Lakshmanan, S.; Rajendran, A.; Sivasubramaniyan, C. Impact of dichlorvos on tissue glycogen and protein content in freshwater fingerlings, Oreochromis mossambicus (Peters). Int. J. Res. Environ. Sci. Technol. 2013, 3, 19–25. [Google Scholar]
- Muthukumaravel, K.; Sivakumar, B.; Kumarasamy, P.; Govindarajan, M. Studies on the toxicity of pesticide monocrotophos on the biochemical constituents of the freshwater fish Labeo rohita. Int. J. Curr. Biochem. Biotechnol. 2013, 2, 20–26. [Google Scholar]
- Banaee, M.; Sureda, A.; Mirvaghefi, A.R.; Ahmadi, K. Effects of diazinon on biochemical parameters of blood in rainbow trout (Oncorhynchus mykiss). Pestic. Biochem. Physiol. 2011, 99, 1–6. [Google Scholar] [CrossRef]
- Narra, M.R. Single and cartel effect of pesticides on biochemical and haematological status of Clarias batrachus: A long-term monitoring. Chemosphere 2016, 144, 966–974. [Google Scholar] [CrossRef]
- Abdel-Latif, H.M.R.; Dawood, M.A.O.; Menanteau-Ledouble, S.; El-Matbouli, M. The nature and consequences of co-infections in tilapia: A review. J. Fish Dis. 2020, 43, 651–664. [Google Scholar] [CrossRef]
- Murugan, S.S.; Karuppasamy, R.; Poongodi, K.; Puvaneswari, S. Bioaccumulation pattern of zinc in freshwater fish Channa punctatus (Bloch.) after chronic exposure. Turk. J. Fish. Aquat. Sci. 2008, 8, 55–59. [Google Scholar]
- Vázquez, P.P.; Mughari, A.R.; Galera, M.M. Solid-phase microextraction (SPME) for the determination of pyrethroids in cucumber and watermelon using liquid chromatography combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection. Anal. Chim. Acta 2008, 607, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Anadón, A.; Martínez-Larrañaga, M.R.; Martínez, M.A. Use and abuse of pyrethrins and synthetic pyrethroids in veterinary medicine. Vet. J. 2009, 182, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Soderlund, D.M. Molecular mechanisms of pyrethroid insecticide neurotoxicity: Recent advances. Arch. Toxicol. 2012, 86, 165–181. [Google Scholar] [CrossRef] [Green Version]
- Costa, L.G. Chapter 9—The neurotoxicity of organochlorine and pyrethroid pesticides. In Handbook of Clinical Neurology; Lotti, M., Bleecker, M.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 131, pp. 135–148. [Google Scholar]
- Yáñez, L.; Ortiz-Pérez, D.; Batres, L.E.; Borja-Aburto, V.c.H.; Díaz-Barriga, F. Levels of Dichlorodiphenyltrichloroethane and Deltamethrin in Humans and Environmental Samples in Malarious Areas of Mexico. Environ. Res. 2002, 88, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Barbini, D.A.; Vanni, F.; Girolimetti, S.; Dommarco, R. Development of an analytical method for the determination of the residues of four pyrethroids in meat by GC–ECD and confirmation by GC–MS. Anal. Bioanal. Chem. 2007, 389, 1791–1798. [Google Scholar] [CrossRef] [PubMed]
- Salako, A.F.; Amaeze, N.H.; Shobajo, H.M.; Osuala, F.I. Comparative acute toxicity of three pyrethroids (Deltamethrin, cypermethrin and lambda-cyhalothrin) on guppy fish (Poecilia reticulata peters, 1859). Sci. Afr. 2020, 9, e00504. [Google Scholar] [CrossRef]
- Bradberry, S.M.; Cage, S.A.; Proudfoot, A.T.; Vale, J.A. Poisoning due to Pyrethroids. Toxicol. Rev. 2005, 24, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Nasuti, C.; Cantalamessa, F.; Falcioni, G.; Gabbianelli, R. Different effects of Type I and Type II pyrethroids on erythrocyte plasma membrane properties and enzymatic activity in rats. Toxicology 2003, 191, 233–244. [Google Scholar] [CrossRef]
- Wakeling, E.N.; Neal, A.P.; Atchison, W.D. Pyrethroids and their effects on ion channels. In Pesticides—Advances in Chemical and Botanical Pesticides; InTech: Rijeka, Croatia, 2012; pp. 39–66. [Google Scholar]
- Boiteux, C.; Allen, T.W. Chapter Six—Understanding Sodium Channel Function and Modulation Using Atomistic Simulations of Bacterial Channel Structures. In Current Topics in Membranes; French, R.J., Noskov, S.Y., Eds.; Academic Press: Cambridge, MA, USA, 2016; Volume 78, pp. 145–182. [Google Scholar]
- Kumar, S.; Thomas, A.; Pillai, M.K.K. Deltamethrin: Promising mosquito control agent against adult stage of Aedes aegypti L. Asian Pac. J. Trop. Med. 2011, 4, 430–435. [Google Scholar] [CrossRef] [Green Version]
- Chrustek, A.; Hołyńska-Iwan, I.; Dziembowska, I.; Bogusiewicz, J.; Wróblewski, M.; Cwynar, A.; Olszewska-Słonina, D. Current research on the safety of pyrethroids used as insecticides. Medicina 2018, 54, 61. [Google Scholar] [CrossRef] [Green Version]
- Naumann, K. Synthetic Pyrethroid Insecticides: Structures and Properties; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Tiwari, S.; Tiwari, R.; Singh, A. Impact of Cypermethrin on Fingerlings of Common Edible Carp (Labeo rohita). Sci. World J. 2012, 2012, 291395. [Google Scholar] [CrossRef] [Green Version]
- WHO. Toxicological Evaluation of Certain Veterinary Drug Residues in Food; World Health Organization: Geneva, Switzerland, 2006; Volume 57. [Google Scholar]
- Habeeba, U.; David, M. Studies on acute and behavioural toxicity of lambda-cyhalothrin on fresh water fish, Cyprinus carpio. Int. J. Toxicol. Appl. Pharmacol. 2016, 6, 1–6. [Google Scholar]
- Maund, S.J.; Hamer, M.J.; Warinton, J.S.; Kedwards, T.J. Aquatic ecotoxicology of the pyrethroid insecticide lambda-cyhalothrin: Considerations for higher-tier aquatic risk assessment. Pestic. Sci. 1998, 54, 408–417. [Google Scholar] [CrossRef]
- Lutnicka, H.; Kozińska, A. Pyrethroids as a predisposing factor in fish diseases. Ochr. Środ. Zasobów Nat. 2009, 41, 285–292. [Google Scholar]
- Lidova, J.; Stara, A.; Kouba, A.; Velisek, J. The effects of cypermethrin on oxidative stress and antioxidant biomarkers in marbled crayfish (Procambarus fallax f. virginalis). Neuroendocrinol. Lett. 2016, 37, 53–59. [Google Scholar]
- Cárcamo, J.G.; Aguilar, M.N.; Carreño, C.F.; Vera, T.; Arias-Darraz, L.; Figueroa, J.E.; Romero, A.P.; Alvarez, M.; Yañez, A.J. Consecutive emamectin benzoate and deltamethrin treatments affect the expressions and activities of detoxification enzymes in the rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2017, 191, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lv, L.; Yu, Y.; Yang, G.; Xu, Z.; Wang, Q.; Cai, L. Single and joint toxic effects of five selected pesticides on the early life stages of zebrafish (Danio rerio). Chemosphere 2017, 170, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Novak, A.E.; Taylor, A.D.; Pineda, R.H.; Lasda, E.L.; Wright, M.A.; Ribera, A.B. Embryonic and larval expression of zebrafish voltage-gated sodium channel α-subunit genes. Dev. Dyn. 2006, 235, 1962–1973. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xiong, L.; Liu, X.; Xie, T.; Wang, K.; Huang, X.; Feng, Z. Subacute toxicity of cypermethrin to carp. J. Agro-Environ. Sci. 2006, 25, 200–203. [Google Scholar]
- Wang, Z.-W. Regulation of Synaptic Transmission by Presynaptic CaMKII and BK Channels. Mol. Neurobiol. 2008, 38, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Field, L.M.; Emyr Davies, T.G.; O’Reilly, A.O.; Williamson, M.S.; Wallace, B.A. Voltage-gated sodium channels as targets for pyrethroid insecticides. Eur. Biophys. J. 2017, 46, 675–679. [Google Scholar] [CrossRef] [Green Version]
- DeMicco, A.; Cooper, K.R.; Richardson, J.R.; White, L.A. Developmental neurotoxicity of pyrethroid insecticides in zebrafish embryos. Toxicol. Sci. 2010, 113, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Bradbury, S.P.; Coats, J.R. Comparative Toxicology of the Pyrethroid Insecticides. In Reviews of Environmental Contamination and Toxicology; Ware, G.W., Ed.; Springer: New York, NY, USA, 1989; pp. 133–177. [Google Scholar]
- Richterova, Z.; Svobodová, Z. Pyrethroids influence on fish. Slov. Vet. Res. 2012, 49, 63–72. [Google Scholar]
- Soderlund, D.M. State-dependent modification of voltage-gated sodium channels by pyrethroids. Pestic. Biochem. Physiol. 2010, 97, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Breckenridge, C.B.; Holden, L.; Sturgess, N.; Weiner, M.; Sheets, L.; Sargent, D.; Soderlund, D.M.; Choi, J.-S.; Symington, S.; Clark, J.M.; et al. Evidence for a separate mechanism of toxicity for the Type I and the Type II pyrethroid insecticides. NeuroToxicology 2009, 30, S17–S31. [Google Scholar] [CrossRef]
- Neal, A.P.; Yuan, Y.; Atchison, W.D. Allethrin differentially modulates voltage-gated calcium channel subtypes in rat PC12 cells. Toxicol. Sci. 2010, 116, 604–613. [Google Scholar] [CrossRef]
- Prusty, A.K.; Meena, D.K.; Mohapatra, S.; Panikkar, P.; Das, P.; Gupta, S.K.; Behera, B.K. Synthetic pyrethroids (Type II) and freshwater fish culture: Perils and mitigations. Int. Aquat. Res. 2015, 7, 163–191. [Google Scholar] [CrossRef] [Green Version]
- Moore, A.; Waring, C.P. The effects of a synthetic pyrethroid pesticide on some aspects of reproduction in Atlantic salmon (Salmo salar L.). Aquat. Toxicol. 2001, 52, 1–12. [Google Scholar] [CrossRef]
- Günde, E.G.; Yerli, S.V. A comparative study on the acute toxicity of cyfluthrin and tetramethrin on carp (Cyprinus carpio L. 1758). J. Black Sea/Mediterr. Environ. 2011, 17, 260–268. [Google Scholar]
- Bille, L.; Binato, G.; Gabrieli, C.; Manfrin, A.; Pascoli, F.; Pretto, T.; Toffan, A.; Dalla Pozza, M.; Angeletti, R.; Arcangeli, G. First report of a fish kill episode caused by pyrethroids in Italian freshwater. Forensic Sci. Int. 2017, 281, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Nebbia, C. Pyrethroids are not the most appropriate remedy for tackling fleasand ticks in cats, and may be dangerous for fish too. Vet. J. 2009, 182, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Wheelock, C.E.; Shan, G.; Ottea, J. Overview of carboxylesterases and their role in the metabolism of insecticides. J. Pestic. Sci. 2005, 30, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Dangi, J.; Gupta, A.K. Short-term toxicity of cypermethrin-EC25 to males and females of a freshwater fish, Poecilia reticulata for selected levels of hardness and pH of water. Res. Environ. Life Sci. 2012, 5, 87–90. [Google Scholar]
- Velisek, J.; Wlasow, T.; Gomulka, P.; Svobodova, Z.; Dobsikova, R.; Novotny, L.; Dudzik, M. Effects of cypermethrin on rainbow trout (Oncorhynchus mykiss). Vet. Med. 2006, 51, 469. [Google Scholar] [CrossRef] [Green Version]
- Gadhave, P.; Brar, R.; Banga, H.; Dhawan, A. Studies on acute toxicity of synthetic pyrethroid λ-cyhalothrin on freshwater fish Labeo rohita. Vet. World 2014, 7, 7–9. [Google Scholar] [CrossRef] [Green Version]
- Golow, A.; Godzi, T. Acute toxicity of deltamethrin and dieldrin to Oreochromis niloticus (Lin). Bull. Environ. Contam. Toxicol. 1994, 52, 351–354. [Google Scholar] [CrossRef]
- Boateng, J.O.; Nunoo, F.; Dankwa, H.; Ocran, M. Acute toxic effects of deltamethrin on tilapia, Oreochromis niloticus (Linnaeus, 1758). West Afr. J. Appl. Ecol. 2006, 9, 1–5. [Google Scholar] [CrossRef]
- Carriquiriborde, P.; Díaz, J.; Mugni, H.; Bonetto, C.; Ronco, A.E. Impact of cypermethrin on stream fish populations under field-use in biotech-soybean production. Chemosphere 2007, 68, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Dutta, J. Effect of cypermethrin on the growth of ciliate protozoan Paramecium caudatum. Toxicol. Int. 2015, 22, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, R.L.; Hodgson, E.W.; Knodel, J.J.; Varenhorst, A.J.; Potter, B.D. Management of insecticide-resistant soybean aphids in the Upper Midwest of the United States. J. Integr. Pest Manag. 2018, 9, 23. [Google Scholar] [CrossRef]
- Bekele, D. Review on insecticidal and repellent activity of plant products for malaria mosquito control. Biomed Res Rev. 2018, 2, 1–7. [Google Scholar] [CrossRef]
- Boxshall, G.A.; Defaye, D. Global diversity of copepods (Crustacea: Copepoda) in freshwater. In Freshwater Animal Diversity Assessment; Springer: Berlin/Heidelberg, Germany, 2007; pp. 195–207. [Google Scholar]
- Selamoglu, Z. Cypermethrin as Synthetic Pyrethroid and Environmental Threatening. SF J. Environ. Stud. 2018, 1, 2. [Google Scholar]
- Corcellas, C.; Eljarrat, E.; Barceló, D. First report of pyrethroid bioaccumulation in wild river fish: A case study in Iberian river basins (Spain). Environ. Int. 2015, 75, 110–116. [Google Scholar] [CrossRef]
- Afolabi, O.K.; Aderibigbe, F.A.; Folarin, D.T.; Arinola, A.; Wusu, A.D. Oxidative stress and inflammation following sub-lethal oral exposure of cypermethrin in rats: Mitigating potential of epicatechin. Heliyon 2019, 5, e02274. [Google Scholar] [CrossRef] [Green Version]
- Laabs, V.; Amelung, W.; Pinto, A.A.; Wantzen, M.; da Silva, C.J.; Zech, W. Pesticides in Surface Water, Sediment, and Rainfall of the Northeastern Pantanal Basin, Brazil. J. Environ. Qual. 2002, 31, 1636–1648. [Google Scholar] [CrossRef]
- Saha, S.; Kaviraj, A. Effects of cypermethrin on some biochemical parameters and its amelioration through dietary supplementation of ascorbic acid in freshwater catfish Heteropneustes fossilis. Chemosphere 2009, 74, 1254–1259. [Google Scholar] [CrossRef] [PubMed]
- Kaviraj, A.; Gupta, A. Biomarkers of Type II Synthetic Pyrethroid Pesticides in Freshwater Fish. Biomed Res. Int. 2014, 2014, 928063. [Google Scholar] [CrossRef]
- Suvetha, L.; Ramesh, M.; Saravanan, M. Influence of cypermethrin toxicity on ionic regulation and gill Na+/K+-ATPase activity of a freshwater teleost fish Cyprinus carpio. Environ. Toxicol. Pharmacol. 2010, 29, 44–49. [Google Scholar] [CrossRef]
- de Moraes, F.D.; Venturini, F.P.; Rossi, P.A.; Avilez, I.M.; da Silva de Souza, N.E.; Moraes, G. Assessment of biomarkers in the neotropical fish Brycon amazonicus exposed to cypermethrin-based insecticide. Ecotoxicology 2018, 27, 188–197. [Google Scholar] [CrossRef]
- Babu Velmurugan, E.I.C.; Senthilkumaar, P.; Uysal, E.; Satar, A. Hematological parameters of freshwater fish Anabas testudineus after sublethal exposure to cypermethrin. Environ. Pollut. Prot. 2016, 1, 32–39. [Google Scholar] [CrossRef]
- Das, B.K.; Mukherjee, S.C. Toxicity of cypermethrin in Labeo rohita fingerlings: Biochemical, enzymatic and haematological consequences. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2003, 134, 109–121. [Google Scholar] [CrossRef]
- Parma, M.; Loteste, A.; Campana, M.; Bacchetta, C. Changes of hematological parameters in Prochilodus lineatus (Pisces, Prochilodontidae) exposed to sublethal concentration of cypermethrin. J. Environ. Biol. 2007, 28, 147–149. [Google Scholar] [PubMed]
- Begum, G. Enzymes as Biomarkers of Cypermethrin Toxicity: Response of Clarias batrachus Tissues ATPase and Glycogen Phosphorylase as a Function of Exposure and Recovery at Sublethal Level. Toxicol. Mech. Methods 2009, 19, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Sarikaya, R. Investigation of acute toxicity of alpha-cypermethrin on adult Nile tilapia (Oreochromis niloticus L.). Turk. J. Fish. Aquat. Sci. 2009, 9, 85–89. [Google Scholar]
- Shi, X.; Gu, A.; Ji, G.; Li, Y.; Di, J.; Jin, J.; Hu, F.; Long, Y.; Xia, Y.; Lu, C.; et al. Developmental toxicity of cypermethrin in embryo-larval stages of zebrafish. Chemosphere 2011, 85, 1010–1016. [Google Scholar] [CrossRef] [PubMed]
- Ansari, R.A.; Rahman, S.; Kaur, M.; Anjum, S.; Raisuddin, S. In vivo cytogenetic and oxidative stress-inducing effects of cypermethrin in freshwater fish, Channa punctata Bloch. Ecotoxicol. Environ. Saf. 2011, 74, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Zheng, S.; Pu, Y.; Shu, L.; Sun, L.; Liu, W.; Fu, Z. Cypermethrin has the potential to induce hepatic oxidative stress, DNA damage and apoptosis in adult zebrafish (Danio rerio). Chemosphere 2011, 82, 398–404. [Google Scholar] [CrossRef]
- Vijayakumar, A.; Thirnavukkarasu, N.; Jayachandran, K.; Susiladevi, M. Attenuating properties of atropine against the cypermethrin toxicity in the oxidative stress in the fresh water fish Labeo rohita (Hamilton). Int. J. Mod. Res. Rev. 2016, 4, 1088–1093. [Google Scholar]
- Andem, A.; Ibor, O.; Joseph, A.; Eyo, V.; Edet, A. Toxicological evaluation and histopathological changes of synthetic pyrethroid pesticide (Cypermethrin) exposed to African Clariid mud Cat fish (Clarias gariepinus) fingerlings. J. Toxicol. Pharmacol. Res. 2016, 8, 360–367. [Google Scholar]
- Korkmaz, N.; Cengiz, E.I.; Unlu, E.; Uysal, E.; Yanar, M. Cypermethrin-induced histopathological and biochemical changes in Nile tilapia (Oreochromis niloticus), and the protective and recuperative effect of ascorbic acid. Environ. Toxicol. Pharmacol. 2009, 28, 198–205. [Google Scholar] [CrossRef]
- Xu, C.; Li, X.; Jin, M.; Sun, X.; Niu, L.; Lin, C.; Liu, W. Early life exposure of zebrafish (Danio rerio) to synthetic pyrethroids and their metabolites: A comparison of phenotypic and behavioral indicators and gene expression involved in the HPT axis and innate immune system. Environ. Sci. Pollut. Res. 2018, 25, 12992–13003. [Google Scholar] [CrossRef]
- El Megid, A.A.; Abd Al Fatah, M.E.; El Asely, A.; El Senosi, Y.; Moustafa, M.M.A.; Dawood, M.A.O. Impact of pyrethroids and organochlorine pesticides residue on IGF-1 and CYP1A genes expression and muscle protein patterns of cultured Mugil capito. Ecotoxicol. Environ. Saf. 2020, 188, 109876. [Google Scholar] [CrossRef]
- Eni, G.; Ibor, O.R.; Andem, A.B.; Oku, E.E.; Chukwuka, A.V.; Adeogun, A.O.; Arukwe, A. Biochemical and endocrine-disrupting effects in Clarias gariepinus exposed to the synthetic pyrethroids, cypermethrin and deltamethrin. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2019, 225, 108584. [Google Scholar] [CrossRef]
- Brander, S.M.; Jeffries, K.M.; Cole, B.J.; DeCourten, B.M.; White, J.W.; Hasenbein, S.; Fangue, N.A.; Connon, R.E. Transcriptomic changes underlie altered egg protein production and reduced fecundity in an estuarine model fish exposed to bifenthrin. Aquat. Toxicol. 2016, 174, 247–260. [Google Scholar] [CrossRef]
- Vieira, C.E.D.; dos Reis Martinez, C.B. The pyrethroid λ-cyhalothrin induces biochemical, genotoxic, and physiological alterations in the teleost Prochilodus lineatus. Chemosphere 2018, 210, 958–967. [Google Scholar] [CrossRef]
- Kumari, P.; Paul, D.K. Bioremedial effect of turmeric (Curcuma longa) on haematological and biochemical parameters against fenvalerate induced toxicity in air-breathing fish Clarias batrachus. Int. J. Aquac. Fish. Sci. 2020, 6, 056–060. [Google Scholar]
- Zimmer, E.I.; Preuss, T.G.; Norman, S.; Minten, B.; Ducrot, V. Modelling effects of time-variable exposure to the pyrethroid beta-cyfluthrin on rainbow trout early life stages. Environ. Sci. Eur. 2018, 30, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawood, M.A.O.; Abdo, S.E.; Gewaily, M.S.; Moustafa, E.M.; SaadAllah, M.S.; AbdEl-kader, M.F.; Hamouda, A.H.; Omar, A.A.; Alwakeel, R.A. The influence of dietary β-glucan on immune, transcriptomic, inflammatory and histopathology disorders caused by deltamethrin toxicity in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2020, 98, 301–311. [Google Scholar] [CrossRef]
- Strungaru, S.-A.; Plavan, G.; Ciobica, A.; Nicoara, M.; Robea, M.A.; Solcan, C.; Petrovici, A. Toxicity and chronic effects of deltamethrin exposure on zebrafish (Danio rerio) as a reference model for freshwater fish community. Ecotoxicol. Environ. Saf. 2019, 171, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, H.; Ren, Z.; Cui, Z. The toxic effects of deltamethrin on Danio rerio: The correlation among behavior response, physiological damage and AChE. RSC Adv. 2016, 6, 109826–109833. [Google Scholar] [CrossRef]
- Naik, V.R.; David, M. Impact of deltamethrin toxicity on the changes in behavioural aspects of a freshwater fish, Cirrhinus mrigala. Int. J. Fish. Aquat. Stud. 2018, 6, 273–277. [Google Scholar]
- Singh, S.; Tiwari, R.K.; Pandey, R.S. Evaluation of acute toxicity of triazophos and deltamethrin and their inhibitory effect on AChE activity in Channa punctatus. Toxicol. Rep. 2018, 5, 85–89. [Google Scholar] [CrossRef]
- Borges, A.; Scotti, L.V.; Siqueira, D.R.; Zanini, R.; Amaral, F.d.; Jurinitz, D.F.; Wassermann, G.F. Changes in hematological and serum biochemical values in jundiá Rhamdia quelen due to sub-lethal toxicity of cypermethrin. Chemosphere 2007, 69, 920–926. [Google Scholar] [CrossRef]
Pyrethroids | Exposure Doses | Exposure | Fish Species | Toxic Effects | References |
---|---|---|---|---|---|
Bifenthrin (BF) λ-cyhalothrin (λ-CH) | 1, 3, and 10 μg/L | 72 h | Zebrafish (Danio rerio) embryos | Alterations in T4 and T3 levels (disruption of endocrine thyroid system) | [61] |
Esfenvalerate | 0.02, 0.2, 2 mg/L | 96 h | Zebrafish (Danio rerio) | Acceleration hatching time exposed to 2 mg/L Behavioral changes correlated with impaired dopamine signaling | [42] |
Permethrin (PM) β-cypermethrin (β-CP) | 0.025, 0.125, and 0.750 μM | 24 h | Zebrafish (Danio rerio) | Developmental toxicities, abnormal vascular development, changed locomotor activities, and thyroid disruption | [135] |
Meothrin, Lambdacyhalothrin, Permethrin, Fenpropathrin, Esfenvalerate | 0.0023–5.232, 0.00008–0.3465, 0.0015–0.0038, 0.0–0.0098 and 0.0053–0.2888 min–max values | -- | Mugil capito | ↑ serum creatinine and urea ↑ hepatic GSH and MDA | [136] |
Deltamethrin (DLM) | CYP at 0.07, 0.014, 0.028, 0.056 μg/L | 7, 14, 21 and 28 d | African catfish (Clarias gariepinus) | Negative effects on reproductive, biochemical, and physiological health of the exposed fish | [137] |
Bifenthrin | 0.5, 5, and 50 ng/L | 14 and 21 d | Menidia beryllina | Hinder with metabolic processes and endocrine signals ↓ reproductive performance | [138] |
λ-cyhalothrin | 5, 50, 250, and 500 ng/L | 96 h | Prochilodus lineatus | Oxidative stress, osmoregulatory disorders, and DNA damage | [139] |
Fenvalerate EC 20% | 0.92 ppm | 96 h | Walking catfish (Clarias batrachus) | Significant damage at the hematological and biochemical levels | [140] |
Beta-cyfluthrin | 32, 48, 72, 180, and 450 ng/L | 14 d | Rainbow trout (Oncorhynchus mykiss) | Impairment of feeding behavior (reduced food intake) At higher concentrations, the constant exposure led to death | [141] |
Deltamethrin | 15 μg/L | 30 d | Nile tilapia (Oreochromis niloticus) | ↑ CORT and GLU levels Downregulation CAT, GPX, IL-1β and IL-8 gene expressions Damage in histological structure of gills, intestine, spleen, and liver | [142] |
Deltamethrin | 0.25, 0.5, 1, and 2 μg /L | 15 d | Zebrafish (Danio rerio) | Effects on aggressive behavior and swimming performances (highly neurotoxic compound) | [143] |
Deltamethrin | 5.2 μg /L | 48 h | Zebrafish (Danio rerio) | Caused significant damage to the gills and liver | [144] |
Deltamethrin | 3 ul/L to 9 ul/L | 15 d | Cirrhinus mrigala | Erratic swimming, hyper excitability, restlessness, difficulty in breathing, loss of equilibrium and gathering around the ventilation filter | [145] |
Deltamethrin | 7.33 μg/L | 96 h | Channa punctatus | Inhibited AChE activity in brain, muscle, and gills | [146] |
Deltamethrin | 20 and 40 μg/L | 24–96 h | Zebrafish (Danio rerio) embryos | Failed swim bladder inflation | [42] |
Exposure Doses | Exposure Period | Fish Species | Toxic Effects | References |
---|---|---|---|---|
25, 50, 75, 100, and 125 ppm | 96 h | African catfish (Clarias gariepinus) | Erratic movement, erosion, and hemorrhages of secondary gill lamellae Hyperplastic hepatic cells necrosis of hepatic cells in the liver tissues. | Andem et al. [133] |
1.25, 2.5 µg/L | 96 h | Nile tilapia (Oreochromis niloticus) | ↓ hepatic glycogen ↓ the activities of ALP, AChE, and CAT in liver ↑ of plasma GLU level and activities of hepatic ACP, AST, and ALT | Kaviraj and Gupta [121] |
14–28 d | Anemia | |||
90 d | Long-term exposure reduced the growth and deposition of protein and lipid in the body of fish | |||
0.22 and 0.44 µg/l | 20 d | Nile tilapia (Oreochromis niloticus) | Histopathological alterations in gills Haemato-biochemical changes | Korkmaz et al. [134] |
5.99 μg/L | 96 h | Nile tilapia (Oreochromis niloticus) | Behavioral changes | Sarikaya [128] |
0.186 ppm | 35 d | Common carp (Cyprinus carpio) | ↓ ion levels (Na+, K+ and Cl−) in blood ↓ gill Na+/K+-ATPase activity | Suvetha et al. [122] |
0.4134 μg/L | 30 d | Common carp (Cyprinus carpio) | Genotoxicity (=↑ DNA fragmentation) Histopathological alterations and apoptotic changes Hepatorenal injury | Khafaga et al. [33] |
0.042, 0.085, and 0.17 μg/L | 21 d | Common carp (Cyprinus carpio) | Immunotoxicity (=↓ LYZ activity and PA) ↑ Mortalities after challenge with Aeromonas hydrophila | Soltanian and Fereidouni [32] |
20% of LC50 | 96 h | Brycon amazonicus | ↑ liver and gill LPO 62 and 100%, respectively. ↑ SOD and CAT activities in the liver ↑ Plasma Na+, Cl− and GLU concentrations ↑ HCT, Hb and RBCs Hypertrophy and proliferation of chloride cells, blood vessels dilation, aneurysms, and hemorrhage of the lamella | de Moraes et al. [123] |
0.015, 0.030, 0.045 µg /L | 21 d | Anabas testudineus | ↓ RBCs, Hb, HCT levels and thrombocyte (platelet) counts ↓ WBCs counts with the increase of CYP concentrations after 14th and 21st d | Babu Velmurugan et al. [124] |
30 µg/L | 5 d | Rohu (Labeo rohita) | ↑ SOD, CAT and LPO in gills, liver, and kidney | Vijayakumar et al. [132] |
1/10 and 1/50 of 96 h LC50 (The 96 h LC50 = 0.139 ppm) | 45 d | Rohu (Labeo rohita) | Haemato-biochemical alterations | Das et al. [125] |
0.124 and 0.41 µg/L | 45 d | Catla (Catla catla) | Neurotoxicity (=↓ AChE activity in brain) | Jindal and Sharma [35] |
0.21 and 0.41 μg/L | 45 d | Catla (Catla catla) | ↑ MDA and GSH content (oxidative stress) Hepatic histopathological alterations | Sharma and Jindal [34] |
0.6 μg/L | 9 d | Zebrafish (Danio rerio) | Genotoxicity of retinal cells Oxidative stress damage of retinal cells ↑ SOD and CAT activities ↑ Sod and Cat mRNA levels | Paravani et al. [30] |
0.6 µg/L | 9 d | Zebrafish (Danio rerio) | Genotoxicity of gill cells Oxidative stress damage of gill cells | Paravani et al. [29] |
1 and 3 µg /L | 4 or 8 d | Zebrafish (Danio rerio) | Hepatic oxidative stress DNA damage and apoptosis | Jin et al. [131] |
0, 25, 50, 100, 200, and 400 µg/ L | 96 h | Zebrafish (Danio rerio) embryos | Developmental toxicity | Shi et al. [129] |
0.3 and 0.5 µg /L | 4 h | Heteropneustes fossilis | ↑ plasma GLU level ↓ in the level of liver glycogen ↓ ACP and ALP activities of liver ↓ ascorbic acid levels of blood, liver, and kidney | Saha and Kaviraj [120] |
0.4, 0.8 and 1.2 µg/L | 48 and 72 h | Channa punctata | Oxidative stress and genotoxicity in fish erythrocytes | Ansari et al. [130] |
0.08 and 0.265 ppm | 2, 4 or 8 d | Rhamdia quelen | Haemato-biochemical alterations | Borges et al. [147] |
0.07 mg/L | 10 d | Clarias batrachus | Inhibition in the activities of total Mg+2, and Na+-K+ATPase enzyme and glycogen content A significant induction in the levels of glycogen phosphorylase | Begum [127] |
0.3 and 0.6 µg/L | 2, 5 and 8 d | Prochilodus lineatus | ↓ RBCs, Hb, HTC and MCHC values ↑ MCV and MCH values | Parma et al. [126] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farag, M.R.; Alagawany, M.; Bilal, R.M.; Gewida, A.G.A.; Dhama, K.; Abdel-Latif, H.M.R.; Amer, M.S.; Rivero-Perez, N.; Zaragoza-Bastida, A.; Binnaser, Y.S.; et al. An Overview on the Potential Hazards of Pyrethroid Insecticides in Fish, with Special Emphasis on Cypermethrin Toxicity. Animals 2021, 11, 1880. https://doi.org/10.3390/ani11071880
Farag MR, Alagawany M, Bilal RM, Gewida AGA, Dhama K, Abdel-Latif HMR, Amer MS, Rivero-Perez N, Zaragoza-Bastida A, Binnaser YS, et al. An Overview on the Potential Hazards of Pyrethroid Insecticides in Fish, with Special Emphasis on Cypermethrin Toxicity. Animals. 2021; 11(7):1880. https://doi.org/10.3390/ani11071880
Chicago/Turabian StyleFarag, Mayada R., Mahmoud Alagawany, Rana M. Bilal, Ahmed G. A. Gewida, Kuldeep Dhama, Hany M. R. Abdel-Latif, Mahmoud S. Amer, Nallely Rivero-Perez, Adrian Zaragoza-Bastida, Yaser S. Binnaser, and et al. 2021. "An Overview on the Potential Hazards of Pyrethroid Insecticides in Fish, with Special Emphasis on Cypermethrin Toxicity" Animals 11, no. 7: 1880. https://doi.org/10.3390/ani11071880
APA StyleFarag, M. R., Alagawany, M., Bilal, R. M., Gewida, A. G. A., Dhama, K., Abdel-Latif, H. M. R., Amer, M. S., Rivero-Perez, N., Zaragoza-Bastida, A., Binnaser, Y. S., Batiha, G. E. -S., & Naiel, M. A. E. (2021). An Overview on the Potential Hazards of Pyrethroid Insecticides in Fish, with Special Emphasis on Cypermethrin Toxicity. Animals, 11(7), 1880. https://doi.org/10.3390/ani11071880