Comparison of the Effect of High-Intensity Laser Therapy (HILT) on Skin Surface Temperature and Vein Diameter in Pigmented and Non-Pigmented Skin in Healthy Racehorses
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Study Design
2.2. Thermography
2.3. Ultrasound Examination
2.4. High-Intensity Laser Therapy
2.5. Statistical Analysis
3. Results
Skin Surface Temperature and Vein Diameter
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chow, R.T.; Johnson, M.I.; Lopes-Martins, R.A.B.; Bjorda, J.M. Efficacy of low-level laser therapy in the management of neck pain. A systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet 2009, 374, 1897–1908. [Google Scholar] [CrossRef]
- Zati, A.; Valent, A. Physical therapy: New technologies in rehabilitation medicine (translated to English). Edizioni Minerva Med. 2006, 2006, 162–185. [Google Scholar]
- Santamato, A.; Solfrizzi, V.; Panza, F.; Tondi, G.; Frisardi, V.; Leggin, B.G.; Ranieri, M.; Fiore, P. Short-term effects of high-intensity laser therapy versus ultrasound therapy in the treatment of people with subacromial impingement syndrome: A randomized clinical trial. Phys. Ther. 2009, 89, 643–652. [Google Scholar] [CrossRef]
- Roberts, D.B.; Kruse, R.J.; Stoll, S.F. The effectiveness of therapeutic class 4 (10W) laser treatment of epicondylitis. Lasers Surg. Med. 2013, 45, 311–317. [Google Scholar] [CrossRef]
- Larkin, K.A.; Martin, J.S.; Zeanah, E.H.; True, J.M.; Braith, R.W.; Borsa, P.A. Limb blood flow after class 4 laser therapy. J. Athl. Train. 2012, 47, 178–183. [Google Scholar] [CrossRef]
- Alayat, M.S.M.; Atya, A.; Ali, M.M.E.; Shosha, T.M. Long-term effect of high-intensity laser therapy in the treatment of patients with chronic low back pain: A randomized blinded placebo-controlled trial. Lasers Med. Sci. 2013, 29, 1065–1073. [Google Scholar] [CrossRef]
- Zielińska, P.; Nicpoń, J.; Kiełbowicz, Z.; Soroko, M.; Dudek, K.; Zaborski, D. Effects of High Intensity Laser Therapy in the Treatment of Tendon and Ligament Injuries in Performance Horses. Animals 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pluim, M.; Martens, A.; Vanderperren, K.; Sarrazin, S.; Koene, M.; Luciani, A.; Van Weeren, P.; Delesalle, C. Short- and long term follow-up of 150 sports horses diagnosed with tendinopathy or desmopathy by ultrasonographic examination and treated with high-power laser therapy. Res. Vet. Sci. 2018, 119, 232–238. [Google Scholar] [CrossRef]
- Zielińska, P.; Kiełbowicz, Z.; Paczuska, J. High Intensity Laser Therapy (HILT) in treatment of orthopedic diseases in horses. Med. Weter 2015, 7, 373–376. [Google Scholar]
- Quiney, L.; Murray, R.; Dyson, S. Management of primary injuries of the medial collateral ligament of thecarpus in two horses. J. Equine Vet. Sci. 2020, 86, 102878. [Google Scholar] [CrossRef]
- Thomsen, S: Pathological analysis of photothermal and photomechanical effects of laser-tissue interactions. Photochem. Photobiol. 1991, 53, 825–835. [CrossRef]
- Wright, A.; Sluka, K.A. Nonpharmacological treatments for musculoskeletal pain. Clin. J. Pain 2001, 17, 33–46. [Google Scholar] [CrossRef]
- Nannemann, D. Thermal modalities: Heat and cold. AAOHN J. 1991, 39, 70–75. [Google Scholar]
- Baker, K.G.; Robertson, V.J.; Duck, F.A. A review of therapeutic ultrasound: Biophysical effects. Phys. Ther. 2001, 7, 1351–1358. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.R. Laser-tissue interactions in dermatology. In Lasers in Cutaneous and Aesthetic Surgery; Arndt, K.A., Dover, J.S., Olbricht, S.M., Eds.; Lippincott-Raven: Philadelphia, PA, USA, 1997; Volume 28. [Google Scholar]
- Goldman, L.; Blaney, D.J.; Kindel, D.J.; Franke, E.K. Effect of the laser beam on the skin. J. Investig. Dermatol. 1963, 40, 121–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatt, N.; Alster, T.S. Laser surgery in dark skin. Dermatol. Surg. 2008, 34, 184–195. [Google Scholar]
- Anderson, R.R.; Margolis, R.J.; Watenabe, S.; Flotte, T.; Hruza, G.J.; Dover, J.S. Selective photothermolysis of cutaneous pigmentation by q-switched Nd: YAG laser pulses at 1064, 532 and 355 nm. J. Investig. Dermatol. 1989, 93, 28–32. [Google Scholar] [CrossRef] [Green Version]
- Esnouf, A.; Wright, P.; Ahmed, S. Depth of penetration of an 850 nm wavelength low level laser in human skin. Acupunct. Electro-Ther. Res. 2007, 32, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Ackemann, G.; Hartmann, M.; Scherer, K.; Lang, E.; Hohenleutner, U.; Landthaler, M. Correlations between light penetration into skin and the therapeutic outcome following laser therapy of port wine stains. Lasers Med. Sci. 2002, 17, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Tanzi, E.L.; Alster, T.S. Cutaneous laser surgery in darker skin phototypes. Cutis 2004, 73, 21–30. [Google Scholar]
- Ihsan, F.R. Low-level laser therapy accelerates collateral circulation and enhances microcirculation. Photomed. Laser Surg. 2005, 23, 289–294. [Google Scholar] [CrossRef]
- Samoilova, K.A.; Zhevago, N.A.; Petrischev, N.N.; Zimin, A.A. Role of nitric oxide in the visible light-induced rapid increase of human skin microcirculation at the local and systemic levels, II: Healthy volunteers. Photomed. Laser Surg. 2008, 26, 443–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maegawa, Y.; Itoh, T.; Hosokawa, T.; Yaegashi, K.; Nishi, M. Effects of near-infrared low-level laser irradiation on microcirculation. Lasers Surg. Med. 2000, 27, 427–443. [Google Scholar] [CrossRef]
- Walsh, L.J. The current status of low level laser therapy in dentistry. Part 1. Soft tissue applications. Austr. Dent. J. 1997, 42, 247–254. [Google Scholar] [CrossRef]
- Wyszyńska, J.; Bal-Bocheńska, M. Efficacy of high-intensity laser therapy in treating knee osteoarthritis: A first systematic review. Photomed. Laser Surg. 2018, 36, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Kubota, J. Effects of Diode laser therapy on blood flow in axial pattern flaps in the rat model. Lasers Med. Sci. 2002, 17, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Godlewska, M.; Soroko, M.; Zielińska, P. Assessment of Vein Diameter and Body Surface Temperature after High-Intensity Laser Therapy (HILT) on the Tarsal Joint in Healthy Horses. J. Equine Vet. Sci. 2020, 93, 103198. [Google Scholar] [CrossRef] [PubMed]
- Seidel, G.E., Jr.; Elsden, R.P. Why identical twins may be different. Hoard’s Dairym. 1989, 132, 740. [Google Scholar]
- Silvers, W.K. Dominant spotting, patch, and rump-white. In The Coat Colors of Mice; Springer: New York, NY, USA, 1979; pp. 206–241. [Google Scholar]
- Soroko, M.; Howell, K.; Dudek, K.; Wilk, I.; Zastrzeżyńska, M.; Janczarek, I. A pilot study into the utility of dynamic infrared thermography for measuring body surface temperature changes during treadmill exercise in horses. J. Equine Vet. Sci. 2018, 62, 44–46. [Google Scholar] [CrossRef]
- Omar, K.M.; Al-Khaza’leh, K.A.; Jaafar, M.S.; Jidin, Y.; Bidi, N. Laser effects on skin melanin. Mod. Appl. Sci. 2009, 3, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Godlewska, M.; Soroko, M.; Zielińska, P.; Dudek, K. Use of thermography for assessment of high-intensity laser therapy in racehorses: Pilot study. Med. Weter 2020, 76, 593–596. [Google Scholar] [CrossRef]
- Bergh, A.; Nyman, G.; Lundeberg, T.; Drevemo, S. Effect of defocused CO2 laser on equine skin, subcutis and fetlock joint temperature. Equine Comp. Exerc. Physiol. 2005, 2, 61–69. [Google Scholar] [CrossRef]
- Peng, Q.; Juzeniene, A.; Chen, J.; Svaasand, L.O.; Warloe, T.; Giercksky, K.E.; Moan, J. Lasers in medicine. Rep. Prog. Phys. 2008, 71, 056701. [Google Scholar] [CrossRef]
- Naylor, L.H.; Carter, H.; Fitz Simons, M.G.; Cable, N.T.; Thijssen, D.H.; Green, D.J. Repeated increases in blood flow, independent of exercise, enhance conduit artery vasodilator function in humans. Am. J. Physiol. Heart Circ. Physiol. 2011, 300, 664–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munce, T.A.; Kenney, W.L. Age-specific modification of local cutaneous vasodilation by capsaicin-sensitive primary afferents. J. Appl. Physiol. 2003, 95, 1016–1024. [Google Scholar] [CrossRef] [Green Version]
- Schmelz, M.; Michael, M.; Weider, C.; Schmidt, R.; Torebjork, H.E.; Handwerker, H.O. Which nerve fibers mediate the axon reflex flare in human skin? Neuroreport 2000, 11, 645–648. [Google Scholar] [CrossRef]
- Nagasawa, A. Specialist applications of low reactive-level laser therapy. In Low Reactive Level Laser Therapy: Practical Application; John Wiley: Chichester, UK, 1991; pp. 76–98. [Google Scholar]
- Fredriksson, I.; Larsson, M.; Strömberg, T. Measurement depth and volume in laser Doppler flowmetry. Microvasc. Res. 2009, 78, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Fairchild, P.W. Dependence of light transmission through human skin on incident beam diameter at different wavelengths. In Laser-Tissue Interaction IX; International Society for Optics and Photonics: Bellingham, WA, USA, 1998; Volume 3254, pp. 354–360. [Google Scholar]
- Ash, C.; Dubec, M.; Donne, K.; Bashford, T. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med. Sci. 2017, 32, 1909–1918. [Google Scholar] [CrossRef]
- Macedo, O.; Alster, T.S. Laser treatment of darker skin tones: A practical approach. Dermatol. Ther. 2000, 13, 114–126. [Google Scholar] [CrossRef]
Parameters | Group A Pigmented Skin | Group B Non-Pigmented Skin | p-Value |
---|---|---|---|
Tavg before HILT (°C) | 25.8 (23.0–29.5) | 30.1 (22.1–31.8) | 0.257 |
Min–Max | 21.3–30.8 | 17.8–32.2 | |
Davg before HILT (mm) | 3.1 (2.8–3.7) | 3.8 (2.9–4.3) | 0.226 |
Min–Max | 2.4–4.1 | 2.6–5.7 | |
Tavg after HILT (°C) | 28.2 (26.1–31.6) | 27.8 (22.9–30.7) | 0.496 |
Min–Max | 24.3–33.9 | 20.9–31.9 | |
Davg after HILT (mm) | 4.0 (3.5–4.9) | 4.3 (3.2–5.5) | 0.596 |
Min–Max | 2.7–5.0 | 2.5–5.8 | |
ΔTavg (°C) | 3.0 (2.1–3.6) | −0.2 (–2.5–0.7) | 0.001 * |
Min–Max | 0.5–5.5 | –3.5–3.1 | |
ΔDavg (mm) | 0.9 (0.4–1.1) | 0.4 (0.1–0.9) | 0.140 |
Min–Max | 0.2–1.8 | −0.1–1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zielińska, P.; Soroko, M.; Howell, K.; Godlewska, M.; Hildebrand, W.; Dudek, K. Comparison of the Effect of High-Intensity Laser Therapy (HILT) on Skin Surface Temperature and Vein Diameter in Pigmented and Non-Pigmented Skin in Healthy Racehorses. Animals 2021, 11, 1965. https://doi.org/10.3390/ani11071965
Zielińska P, Soroko M, Howell K, Godlewska M, Hildebrand W, Dudek K. Comparison of the Effect of High-Intensity Laser Therapy (HILT) on Skin Surface Temperature and Vein Diameter in Pigmented and Non-Pigmented Skin in Healthy Racehorses. Animals. 2021; 11(7):1965. https://doi.org/10.3390/ani11071965
Chicago/Turabian StyleZielińska, Paulina, Maria Soroko, Kevin Howell, Maria Godlewska, Weronika Hildebrand, and Krzysztof Dudek. 2021. "Comparison of the Effect of High-Intensity Laser Therapy (HILT) on Skin Surface Temperature and Vein Diameter in Pigmented and Non-Pigmented Skin in Healthy Racehorses" Animals 11, no. 7: 1965. https://doi.org/10.3390/ani11071965
APA StyleZielińska, P., Soroko, M., Howell, K., Godlewska, M., Hildebrand, W., & Dudek, K. (2021). Comparison of the Effect of High-Intensity Laser Therapy (HILT) on Skin Surface Temperature and Vein Diameter in Pigmented and Non-Pigmented Skin in Healthy Racehorses. Animals, 11(7), 1965. https://doi.org/10.3390/ani11071965