Caution Is Needed When Using Niche Models to Infer Changes in Species Abundance: The Case of Two Sympatric Raptor Populations
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Surveys and Target Species
2.3. Satellite-Based Land Cover Mapping
2.4. Ecological Niche Modelling
2.5. Testing the Species Abundance–Habitat Suitability Relationship
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Díaz, S.; Settele, J.; Brondízio, E.; Ngo, H.T.; Guèze, M.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.A.; Butchart, S.H.M.; et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES secretariat: Bonn, Germany, 2019. [Google Scholar]
- Kissling, W.D.; Ahumada, J.A.; Bowser, A.; Fernandez, M.; Fernández, N.; García, E.A.; Guralnick, R.P.; Isaac, N.J.B.; Kelling, S.; Los, W.; et al. Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol. Rev. 2018, 93, 600–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald-Madden, E.; Baxter, P.W.J.; Fuller, R.A.; Martin, T.G.; Game, E.T.; Montambault, J.; Possingham, H.P. Monitoring does not always count. Trends Ecol. Evol. 2010, 25, 547–550. [Google Scholar] [CrossRef] [PubMed]
- Honrado, J.P.; Pereira, H.M.; Guisan, A. Fostering integration between biodiversity monitoring and modelling. J. Appl. Ecol. 2016, 53, 1299–1304. [Google Scholar] [CrossRef]
- Sillero, N. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecol. Modell. 2011, 222, 1343–1346. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef]
- Kulhanek, S.A.; Leung, B.; Ricciardi, A. Using ecological niche models to predict the abundance and impact of invasive species: Application to the common carp. Ecol. Appl. 2011, 21, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Bradley, B.A. Predicting abundance with presence-only models. Landsc. Ecol. 2016, 31, 19–30. [Google Scholar] [CrossRef]
- Weber, M.M.; Stevens, R.D.; Diniz-Filho, J.A.F.; Grelle, C.E.V. Is there a correlation between abundance and environmental suitability derived from ecological niche modelling? A meta-analysis. Ecography 2017, 40, 817–828. [Google Scholar] [CrossRef]
- Dallas, T.A.; Hastings, A. Habitat suitability estimated by niche models is largely unrelated to species abundance. Glob. Ecol. Biogeogr. 2018, 27, 1448–1456. [Google Scholar] [CrossRef]
- Petrou, Z.I.; Manakos, I.; Stathaki, T. Remote sensing for biodiversity monitoring: A review of methods for biodiversity indicator extraction and assessment of progress towards international targets. Biodivers. Conserv. 2015, 24, 2333–2363. [Google Scholar] [CrossRef]
- Mairota, P.; Cafarelli, B.; Didham, R.K.; Lovergine, F.P.; Lucas, R.M.; Nagendra, H.; Rocchini, D.; Tarantino, C. Challenges and opportunities in harnessing satellite remote-sensing for biodiversity monitoring. Ecol. Inform. 2015, 30, 207–214. [Google Scholar] [CrossRef]
- Arenas-Castro, S.; Regos, A.; Gonçalves, J.F.; Alcaraz-Segura, D.; Honrado, J.P. Remotely Sensed Variables of Ecosystem Functioning Support Robust Predictions of Abundance Patterns for Rare Species. Remote Sens. 2019, 11, 2086. [Google Scholar] [CrossRef] [Green Version]
- Regos, A.; Tapia, L.; Gil-Carrera, A.; Domínguez, J. Monitoring protected areas from space: A multi-temporal assessment using raptors as biodiversity surrogates. PLoS ONE 2017, 12, e0181769. [Google Scholar] [CrossRef] [Green Version]
- Regos, A.; Vidal, M.; Lorenzo, M.; Domínguez, J. Integrating intraseasonal grassland dynamics in cross-scale distribution modeling to support waterbird recovery plans. Conserv. Biol. 2020, 34, 494–504. [Google Scholar] [CrossRef]
- Tapia, L.; Dominguez, J.; Rodriguez, L. Modelling habitat selection and distribution of Hen harrier (Circus cyaneus) and Montagu’s harrier (Circus pygargus) in a mountainous area in Galicia. J. Raptor Res. 2004, 38, 133–140. [Google Scholar]
- Tapia, L.; Domínguez, J.; Rodríguez, L. Hunting habitat preferences of raptors in a mountainous area (northwestern Spain). Polish J. Ecol. 2008, 56, 323–333. [Google Scholar]
- Arroyo, B.; Molina, B.; Del Moral, J.C. El Aguilucho Cenizo y el Aguilucho Pálido en España. Población Reproductora en 2017 y Método de Censo; SEO/BirdLife: Madrid, Spain, 2019. [Google Scholar]
- Donázar, J.A.; Cortés-Avizanda, A.; Fargallo, J.A.; Margalida, A.; Moleón, M.; Morales-Reyes, Z.; Moreno-Opo, R.; Pérez-García, J.M.; Sánchez-Zapata, J.A.; Zuberogoitia, I.; et al. Roles of Raptors in a Changing World: From Flagships to Providers of Key Ecosystem Services. Ardeola 2016, 63, 181–234. [Google Scholar] [CrossRef] [Green Version]
- Tapia, L.; Regos, A.; Gil-Carrera, A.; Dominguez, J. Assessing the temporal transferability of raptor distribution models: Implications for conservation. Bird Conserv. Int. 2018, 28, 375–389. [Google Scholar] [CrossRef]
- Tapia, L.; Regos, A.; Gil-Carrera, A.; Domínguez, J. Unravelling the response of diurnal raptors to land use change in a highly dynamic landscape in northwestern Spain: An approach based on satellite earth observation data. Eur. J. Wildl. Res. 2017, 63, 40. [Google Scholar] [CrossRef]
- Alvarez-Martínez, J.M.; Suárez-Seoane, S.; Palacín, C.; Sanz, J.; Alonso, J.C. Can eltonian processes explain species distributions at large scale? A case study with great bustard (otis tarda). Divers. Distrib. 2015, 21, 123–138. [Google Scholar] [CrossRef]
- Grinnell, J. The Niche-Relationships of the California Thrasher. Auk 1917, 34, 427–433. [Google Scholar] [CrossRef]
- Peterson, A.T. Uses and Requirements of Ecological Niche Models and Related Distributional Models. Biodivers. Inform. 2006, 3. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Lado, L.; Tapia, L.; Pérez, M.; Taboada, T.; Martínez-Capel, F.; Macías, F. Atlas Digital de Propiedades de Suelos de Galicia; Universidad Santiago de Compostela: Santiago de Compostela, Spain, 2016. [Google Scholar]
- Pulgar, I. Guía de la flora del Parque Natural Baixa-Limia Serra do Xurés; Consellería de Medio Ambiente; Xunta de Galicia: Santiago de Compostela, Spain, 2005. [Google Scholar]
- Rego, P.R.; Guitián, M.A.R.; Castro, H.L.; Da Costa, J.F.; Sobrino, C.M. Loss of european dry heaths in NW Spain: A case study. Diversity 2013, 5, 557–580. [Google Scholar] [CrossRef]
- Fagúndez, J. Heathlands confronting global change: Drivers of biodiversity loss from past to future scenarios. Ann. Bot. 2013, 111, 151–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regos, A.; Ninyerola, M.; Moré, G.; Pons, X. Linking land cover dynamics with driving forces in mountain landscape of the Northwestern Iberian Peninsula. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 1–14. [Google Scholar] [CrossRef]
- Andersen, D.E. Survey techniques. In Raptor Research and Management Techniques Manual; Bird, D.M., Bildstein, K.L., Eds.; Hancock House Publishers Ltd: Surrey, BC, Canada, 2007; pp. 89–100. [Google Scholar]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.; Tucker, C.J.; Stenseth, N.C.; Lyon, C.B. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Bauer, E.; Kohavi, R.; Chan, P.; Stolfo, S.; Wolpert, D. An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. Mach. Learn. 1999, 36, 105–139. [Google Scholar] [CrossRef]
- Moulds, S. lulcc: Land Use Change Modelling in R. R Package Version 1.0.2. Available online: https://cran.r-project.org/package=lulcc2017 (accessed on 15 October 2020).
- Araújo, M.B.; New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 2007, 22, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Thuiller, W.; Lafourcade, B.; Engler, R.; Araújo, M.B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography 2009, 32, 369–373. [Google Scholar] [CrossRef]
- Marmion, M.; Parviainen, M.; Luoto, M.; Heikkinen, R.K.; Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 2009, 15, 59–69. [Google Scholar] [CrossRef]
- Bombi, P.; D’Amen, M. Scaling down distribution maps from atlas data: A test of different approaches with virtual species. J. Biogeogr. 2012, 39, 640–651. [Google Scholar] [CrossRef]
- Fielding, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Van Horne, B. Density as a Misleading Indicator of Habitat Quality. J. Wildl. Manag. 1983, 47, 893–901. [Google Scholar] [CrossRef]
- Hobbs, N.T.; Hanley, T.A. Habitat evaluation: Do use/availability data reflect carrying capacity? J. Wildl. Manag. 1990, 54, 515–522. [Google Scholar] [CrossRef]
- Merow, C.; Eckhart, V.M.; Schiffers, K.H.; Thuiller, W.; Georges, D.; Edwards, T.C.; Dullinger, S.; Zurell, D.; Kunstler, G.; Zimmermann, N.E.; et al. Does probability of occurrence relate to population dynamics? Ecography 2014, 37, 1155–1166. [Google Scholar]
- Braz, A.G.; de Viveiros Grelle, C.E.; de Souza Lima Figueiredo, M.; Weber, M.d.M. Interspecific competition constrains local abundance in highly suitable areas. Ecography 2020, 1–11. [Google Scholar]
- Fernández-Bellon, D.; Lusby, J.; Bos, J.; Schaub, T.; McCarthy, A.; Caravaggi, A.; Irwin, S.; O’Halloran, J. Expert knowledge assessment of threats and conservation strategies for breeding Hen Harrier and Short-eared Owl across Europe. Bird Conserv. Int. 2021, 31, 268–285. [Google Scholar] [CrossRef]
- Murgatroyd, M.; Redpath, S.M.; Murphy, S.G.; Douglas, D.J.T.; Saunders, R.; Amar, A. Patterns of satellite tagged hen harrier disappearances suggest widespread illegal killing on British grouse moors. Nat. Commun. 2019, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Espín, S.; Terraube, J.; Arroyo, B.; Camarero, P.R.; Mateo, R.; Limiñana, R.; Vázquez-Pumariño, X.; Pinilla, A.; García, J.T.; Mougeot, F. Blood concentrations of p,p′-DDE and PCBs in harriers breeding in Spain and Kazakhstan. Sci. Total Environ. 2018, 624, 1287–1297. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Meyer, E.; Díaz-Porras, D.; Townsend Peterson, A.; Yáñez-Arenas, C. Ecological niche structure and rangewide abundance patterns of species. Biol. Lett. 2013, 9, 20120637. [Google Scholar] [CrossRef]
- Osorio-Olvera, L.; Soberón, J.; Falconi, M. On population abundance and niche structure. Ecography 2019, 42, 1415–1425. [Google Scholar] [CrossRef]
- Osorio-Olvera, L.; Yañez-Arenas, C.; Martínez-Meyer, E.; Peterson, A.T. Relationships between population densities and niche-centroid distances in North American birds. Ecol. Lett. 2020, 23, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Van Proosdij, A.S.J.J.; Sosef, M.S.M.M.; Wieringa, J.J.; Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography 2016, 6, 542–552. [Google Scholar] [CrossRef]
- Hernandez, P.A.; Graham, C.; Master, L.L.; Albert, D.L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 2006, 29, 773–785. [Google Scholar] [CrossRef]
- Bean, W.T.; Stafford, R.; Brashares, J.S. The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models. Ecography 2012, 35, 250–258. [Google Scholar] [CrossRef]
- Arroyo, B.; García, J.; Betagnolle, V. Montagu’s Harrier Circus pygargus. BWP Update 2004, 6, 41–55. [Google Scholar]
- Arroyo, B.; Leckie, F.; Amar, A.; McCluskie, A.; Redpath, S. Ranging behaviour of Hen Harriers breeding in Special Protection Areas in Scotland. Bird Study 2014, 61, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Regos, A.; Arenas-Castro, S.; Tapia, L.; Domínguez, J.; Honrado, J. Using remotely sensed indicators of primary productivity to improve prioritization of conservation areas for top predators. Ecol. Indic. 2021, 125, 107503. [Google Scholar] [CrossRef]
- Requena-Mullor, J.M.; López, E.; Castro, A.J.; Cabello, J.; Virgós, E.; González-Miras, E.; Castro, H. Modeling spatial distribution of European badger in arid landscapes: An ecosystem functioning approach. Landsc. Ecol. 2014, 29, 843–855. [Google Scholar] [CrossRef]
- Regos, A.; Gagne, L.; Alcaraz-Segura, D.; Honrado, J.P.; Domínguez, J. Effects of species traits and environmental predictors on performance and transferability of ecological niche models. Sci. Rep. 2019, 9, 4221. [Google Scholar] [CrossRef]
- Alcaraz-Segura, D.; Lomba, A.; Sousa-Silva, R.; Nieto-Lugilde, D.; Alves, P.; Georges, D.; Vicente, J.R.; Honrado, J.P. Potential of satellite-derived ecosystem functional attributes to anticipate species range shifts. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 86–92. [Google Scholar] [CrossRef]
- Caravaggi, A.; Irwin, S.; Lusby, J.; Mccarthy, A.; Mee, A.; Nagle, T.; O’Halloran, J. Forest management and Hen Harrier Circus cyaneus conservation in Ireland. Irish Birds 2020, 42, 1–12. [Google Scholar]
- Monaghan, F.; Sullivan, C. Hen Harrier Programme Field Guidance for Scoring Bog and Heath; Hen Harrier Project: Galway, Ireland, 2019. [Google Scholar]
- Thirgood, S.J.; Redpath, S.M.; Graham, I.M. What determines the foraging distribution of raptors on heather moorland? Oikos 2003, 100, 15–24. [Google Scholar] [CrossRef]
- Pe’er, G.; Bonn, A.; Bruelheide, H.; Dieker, P.; Eisenhauer, N.; Feindt, P.H.; Hagedorn, G.; Hansjürgens, B.; Herzon, I.; Lomba, Â.; et al. Action needed for the EU Common Agricultural Policy to address sustainability challenges. People Nat. 2020, 2, 305–316. [Google Scholar] [CrossRef]
- Lomba, A.; Moreira, F.; Klimek, S.; Jongman, R.H.G.; Sullivan, C.; Moran, J.; Poux, X.; Honrado, J.P.; Pinto-Correia, T.; Plieninger, T.; et al. Back to the future: Rethinking socioecological systems underlying high nature value farmlands. Front. Ecol. Environ. 2019, 18, 36–42. [Google Scholar] [CrossRef]
1997 | 2017 | |
---|---|---|
Farmland | 47.79 | 83.07 |
Closed heathland | 728.19 | 388.08 |
Open heathland | 402.57 | 695.97 |
Pine plantations | 152.82 | 164.25 |
1997 | 2017 | |
---|---|---|
Hen harrier (Circus cyaneus) | 202.77 | 121.32 |
Montagu’s harrier (Circus pygargus) | 140.22 | 258.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Regos, A.; Tapia, L.; Gil-Carrera, A.; Domínguez, J. Caution Is Needed When Using Niche Models to Infer Changes in Species Abundance: The Case of Two Sympatric Raptor Populations. Animals 2021, 11, 2020. https://doi.org/10.3390/ani11072020
Regos A, Tapia L, Gil-Carrera A, Domínguez J. Caution Is Needed When Using Niche Models to Infer Changes in Species Abundance: The Case of Two Sympatric Raptor Populations. Animals. 2021; 11(7):2020. https://doi.org/10.3390/ani11072020
Chicago/Turabian StyleRegos, Adrián, Luis Tapia, Alberto Gil-Carrera, and Jesús Domínguez. 2021. "Caution Is Needed When Using Niche Models to Infer Changes in Species Abundance: The Case of Two Sympatric Raptor Populations" Animals 11, no. 7: 2020. https://doi.org/10.3390/ani11072020
APA StyleRegos, A., Tapia, L., Gil-Carrera, A., & Domínguez, J. (2021). Caution Is Needed When Using Niche Models to Infer Changes in Species Abundance: The Case of Two Sympatric Raptor Populations. Animals, 11(7), 2020. https://doi.org/10.3390/ani11072020