Exploration of Genetic Variants within the Goat A-Kinase Anchoring Protein 12 (AKAP12) Gene and Their Effects on Growth Traits
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animal Samples and Data Collection
2.3. Isolation of DNA
2.4. Primer Design and Genotype Detection
2.5. Statistical Analysis
2.6. Linkage Disequilibrium Analysis
3. Results
3.1. Indel Identification
3.2. Analysis of Genetic Diversity
3.3. Linkage Disequilibrium (LD) Analysis
3.4. Association Analysis of Indel Loci with Growth Traits in Goat
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Zhang, X.; Jiang, E.; Yan, H.; Zhu, H.; Chen, H.; Liu, J.; Qu, L.; Pan, C.; Lan, X. InDels within caprine IGF2BP1 intron 2 and the 3′-untranslated regions are associated with goat growth traits. Anim. Genet. 2020, 51, 117–121. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Q.; Wang, K.; Zhang, S.; Pan, C.; Chen, H.; Qu, L.; Yan, H.; Lan, X. A novel 12-bp indel polymorphism within the GDF9 gene is significantly associated with litter size and growth traits in goats. Anim. Genet. 2017, 48, 735–736. [Google Scholar] [CrossRef]
- Bai, Y.; Li, J.; Zhu, H.; Liu, J.; Dong, S.; Li, L.; Qu, L.; Chen, H.; Song, X.; Lan, X. Deletion mutation within the goat PPP3CA gene identified by GWAS significantly affects litter size. Reprod. Fertil. Dev. 2021, 33, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, G.C.; De Moraes, M.R.; Valente, C.M.D.; Silva, C.S.; Modesto, A.A.C.; De Assumpção, P.B.; De Assumpção, P.P.; Santos, S.; Ribeiro-Dos-Santos, Â. Investigation of INDEL variants in apoptosis: The relevance to gastric cancer. BMC Med. Genet. 2020, 21, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Zhu, H.; Zhang, M.; Zhang, X.; Guo, L.; Qi, T.; Tang, H.; Wang, H.; Qiao, X.; Zhang, B.; et al. Development and utilization of an InDel marker linked to the fertility restorer genes of CMS-D8 and CMS-D2 in cotton. Mol. Biol. Rep. 2020, 47, 1275–1282. [Google Scholar] [CrossRef]
- Li, H.; Xu, H.; Akhatayeva, Z.; Liu, H.; Lin, C.; Han, X.; Lu, X.; Lan, X.; Zhang, Q.; Pan, C. Novel indel variations of the sheep FecB gene and their effects on litter size. Gene 2021, 767, 145176. [Google Scholar] [CrossRef]
- Gordon, T.; Grove, B.; Loftus, J.C.; O’Toole, T.; McMillan, R.; Lindstrom, J.; Ginsberg, M.H. Molecular cloning and preliminary characterization of a novel cytoplasmic antigen recognized by myasthenia gravis sera. J. Clin. Investig. 1992, 90, 992–999. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.; Liu, S.; Li, B.; Huo, Z.; Wang, X.; Zhang, H. MiR-338-3p improved lung adenocarcinoma by AKAP12 suppression. Arch. Med. Sci. 2021, 17, 462–473. [Google Scholar] [CrossRef]
- Hu, T.; Wu, X.; Li, K.; Li, Y.; He, P.; Wu, Z.; Jie, F.; Liu, W.; Guan, M. AKAP12 Endogenous Transcripts Suppress The Proliferation, Migration And Invasion Of Colorectal Cancer Cells By Directly Targeting oncomiR-183-5p. Onco Targets Ther. 2019, ume 12, 8301–8310. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhao, H.; Lei, C.; Pan, C.; Chen, H.; Lin, Q.; Lan, X. Effects of genetic variations within goat PITX2 gene on growth traits and mRNA expression. Anim. Biotechnol. 2019, 31, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Chambard, J.C.; Lefloch, R.; Pouysségur, J.; Lenormand, P. ERK implication in cell cycle regulation. Biochim. Biophys. Acta (BBA) Bioenerg. 2007, 1773, 1299–1310. [Google Scholar] [CrossRef]
- Coats, S.R.; Covington, J.W.; Su, M.; Pabón-Peña, L.M.; Eren, M.; Hao, Q.; Vaughan, D.E. SSeCKS Gene Expression in Vascular Smooth Muscle Cells: Regulation by Angiotensin II and a Potential Role in the Regulation of PAI-1 Gene Expression. J. Mol. Cell. Cardiol. 2000, 32, 2207–2219. [Google Scholar] [CrossRef] [PubMed]
- Gelman, I.H.; Tombler, E.; Vargas, J. A Role for SSeCKS, a Major Protein Kinase C Substrate with Tumour Suppressor Activity, in Cytoskeletal Architecture, Formation of Migratory Processes, and Cell Migration during Embryogenesis. J. Mol. Histol. 2000, 32, 13–26. [Google Scholar] [CrossRef]
- Kim, H.-H.; Kim, J.-G.; Jeong, J.; Han, S.-Y.; Kim, K.-W. Akap12 is essential for the morphogenesis of muscles involved in zebrafish locomotion. Differentiation 2014, 88, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Messad, F.; Louveau, I.; Koffi, B.; Gilbert, H.; Gondret, F. Investigation of muscle transcriptomes using gradient boosting machine learning identifies molecular predictors of feed efficiency in growing pigs. BMC Genom. 2019, 20, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Shaha, M.; Das Gupta, M.; Dutta, A.; Miazi, O.F. Polymorphism of fecundity genes (BMP15 and GDF9) and their association with litter size in Bangladeshi prolific Black Bengal goat. Trop. Anim. Health Prod. 2021, 53, 1–8. [Google Scholar] [CrossRef]
- Zhao, C.; Gui, L.; Li, Y.; Plath, M.; Zan, L. Associations between allelic polymorphism of the BMP Binding Endothelial Regulator and phenotypic variation of cattle. Mol. Cell. Probes 2015, 29, 358–364. [Google Scholar] [CrossRef]
- Kang, Z.; Bai, Y.; Lan, X.; Zhao, H. Goat AKAP12: Indel Mutation Detection, Association Analysis With Litter Size and Alternative Splicing Variant Expression. Front. Genet. 2021, 12. [Google Scholar] [CrossRef]
- Bi, Y.; Zhang, S.; Li, J.; He, L.; Kang, Y.; Chen, H.; Lan, X.; Pan, C. The mRNA expression profile of the goat prion protein testis-specific (PRNT) gene and its associations with litter size. Theriogenology 2021, 165, 69–75. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, X.; Cai, H.; Pan, C.; Lei, C.; Chen, H.; Lan, X. Genetic variants and effects on milk traits of the caprine paired-like homeodomain transcription factor 2 (PITX2) gene in dairy goats. Gene 2013, 532, 203–210. [Google Scholar] [CrossRef]
- Cui, W.; Liu, N.; Zhang, X.; Zhang, Y.; Qu, L.; Yan, H.; Lan, X.; Dong, W.; Pan, C. A 20-bp insertion/deletion (indel) polymorphism within the CDC25A gene and its associations with growth traits in goat. Arch. Anim. Breed. 2019, 62, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Cui, Y.; Wang, Z.; Yan, H.; Meng, Z.; Zhu, H.; Qu, L.; Lan, X.; Pan, C. One 16 bp insertion/deletion (indel) within the KDM6A gene revealing strong associations with growth traits in goat. Gene 2019, 686, 16–20. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, S.; Li, J.; Wang, X.; Peng, K.; Lan, X.; Pan, C. Development of a touch-down multiplex PCR method for simultaneously rapidly detecting three novel insertion/deletions (indels) within one gene: An example for goat GHR gene. Anim. Biotechnol. 2018, 30, 366–371. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, H.; Wang, K.; Zhou, T.; Chen, M.; Zhu, H.; Pan, C.; Zhang, E. Goat CTNNB1: mRNA expression profile of alternative splicing in testis and association analysis with litter size. Gene 2018, 679, 297–304. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, Y.; Bai, Y.; Yang, H.; Yan, H.; Liu, J.; Shi, L.; Song, X.; Li, L.; Dong, S.; et al. Relationship between SNPs of POU1F1 Gene and Litter Size and Growth Traits in Shaanbei White Cashmere Goats. Animals 2019, 9, 114. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhang, Z.; He, Z.; Tang, W.; Li, T.; Zeng, Z.; He, L.; Shi, Y. A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: Update of the SHEsis (http://analysis.bio-x.cn). Cell Res. 2009, 19, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, S.; Shen, C.; Niu, Z.; Yang, H.; Zhang, K.; Liu, Z.; Wang, Y.; Lan, X. Indel mutations within the bovine HSD17B3 gene are significantly associated with ovary morphological traits and mature follicle number. J. Steroid Biochem. Mol. Biol. 2021, 209, 105833. [Google Scholar] [CrossRef]
- Akhatayeva, Z.; Li, H.; Mao, C.; Cheng, H.; Zhang, G.; Jiang, F.; Meng, X.; Yao, Y.; Lan, X.; Song, E.; et al. Detecting novel Indel variants within the GHR gene and their associations with growth traits in Luxi Blackhead sheep. Anim. Biotechnol. 2020, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jiang, E.; Wang, K.; Zhang, Y.; Yan, H.; Qu, L.; Chen, H.; Lan, X.; Pan, C. Two Insertion/Deletion Variants within SPAG17 Gene Are Associated with Goat Body Measurement Traits. Animals 2019, 9, 379. [Google Scholar] [CrossRef] [Green Version]
- Farstad, W. Ethics in animal breeding. Reprod. Domest. Anim. 2018, 53, 4–13. [Google Scholar] [CrossRef]
- Liu, N.; Cui, W.; Chen, M.; Zhang, X.; Song, X.; Pan, C. A 21-bp indel within theLLGL1gene is significantly associated with litter size in goat. Anim. Biotechnol. 2019, 32, 1–6. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Q.; Wang, K.; Yan, H.; Pan, C.; Chen, H.; Liu, J.; Zhu, H.; Qu, L.; Lan, X. Two strongly linked single nucleotide polymorphisms (Q320P and V397I) in GDF9 gene are associated with litter size in cashmere goats. Theriogenology 2019, 125, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, C.; Guo, Y.; She, S.; Wang, B.; Jiang, Y.; Bai, Y.; Song, X.; Li, L.; Shi, L.; et al. Screening of Deletion Variants within the Goat PRDM6 Gene and Its Effects on Growth Traits. Animals 2020, 10, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, Y.; Feng, B.; Wang, Z.; Zhu, H.; Qu, L.; Lan, X.; Pan, C.; Song, X. Myostatin (MSTN) Gene Indel Variation and Its Associations with Body Traits in Shaanbei White Cashmere Goat. Animals 2020, 10, 168. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Bi, Y.; Wang, R.; Pan, C.; Chen, H.; Lan, X.; Qu, L. Detection of a 4 bp Mutation in the 3′UTR Region of Goat Sox9 Gene and Its Effect on the Growth Traits. Animals 2020, 10, 672. [Google Scholar] [CrossRef] [Green Version]
- Tang, Q.; Zhang, Y.; Yang, Y.; Hu, H.; Lan, X.; Pan, C. The KMT2A gene: mRNA differential expression in the ovary and a novel 13-nt nucleotide sequence variant associated with litter size in cashmere goats. Domest. Anim. Endocrinol. 2021, 74, 106538. [Google Scholar] [CrossRef]
- Nelson, P.J.; Gelman, I.H. Cell-cycle regulated expression and serine phosphorylation of the myristylated protein kinase C substrate, SSeCKS: Correlation with culture confluency, cell cycle phase and serum response. Mol. Cell. Biochem. 1997, 175, 233–241. [Google Scholar] [CrossRef]
- Nauert, J.; Klauck, T.M.; Langeberg, L.K.; Scott, J.D. Gravin, an autoantigen recognized by serum from myasthenia gravis patients, is a kinase scaffold protein. Curr. Biol. 1997, 7, 52–62. [Google Scholar] [CrossRef] [Green Version]
- Nelson, P.; Moissoglu, K.; Vargas, J.; Klotman, P.; Gelman, I. Involvement of the protein kinase C substrate, SSeCKS, in the actin-based stellate morphology of mesangial cells. J. Cell Sci. 1999, 112, 361–370. [Google Scholar] [CrossRef]
- Zhang, J.; Piao, H.-Y.; Guo, S.; Wang, Y.; Zhang, T.; Zheng, Z.-C.; Zhao, Y. LINC00163 inhibits the invasion and metastasis of gastric cancer cells as a ceRNA by sponging miR-183 to regulate the expression of AKAP12. Int. J. Clin. Oncol. 2020, 25, 570–583. [Google Scholar] [CrossRef] [PubMed]
- Hehnly, H.; Canton, D.; Bucko, P.; Langeberg, L.K.; Ogier, L.; Gelman, I.; Santana, L.; Wordeman, L.; Scott, J.D. A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells. eLife 2015, 4, e09384. [Google Scholar] [CrossRef] [PubMed]
- Rose, A.B. Introns as Gene Regulators: A Brick on the Accelerator. Front. Genet. 2019, 9, 672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Song, X.; Wu, H.; Tang, Q.; Wei, Z.; Wang, X.; Lan, X.; Zhang, B. Detection of rs665862918 (15-bp Indel) of the HIAT1 Gene and its Strong Genetic Effects on Growth Traits in Goats. Animals 2020, 10, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdollahzadeh, R.; Daraei, A.; Mansoori, Y.; Sepahvand, M.; Amoli, M.M.; Tavakkoly-Bazzaz, J. Competing endogenous RNA (ceRNA) cross talk and language in ceRNA regulatory networks: A new look at hallmarks of breast cancer. J. Cell. Physiol. 2019, 234, 10080–10100. [Google Scholar] [CrossRef]
Loci | Size | Genotypic Frequencies | Alleles Frequencies | HWE | Population Parameters | |||||
---|---|---|---|---|---|---|---|---|---|---|
N | II | ID | DD | I | D | p Value | Ho | He | PIC | |
P1–7 bp | 780 | 0.018 | 0.355 | 0.627 | 0.196 | 0.804 | 0.00032 | 0.685 | 0.315 | 0.265 |
P2–13 bp | 1405 | 0.9 | 0.258 | 0.733 | 0.138 | 0.862 | 0.002 | 0.762 | 0.238 | 0.210 |
Different Haplotypes | P1–7bp InDel—P2–13bp InDel | Haplotype Frequencies |
---|---|---|
hap1 | D7D13 | 0.680 |
hap2 | D7I13 | 0.115 |
hap3 | I7D13 | 0.205 |
hap4 | I7I13 | 0.000 |
Loci | Parameters | Genotypes | p-Values | ||
---|---|---|---|---|---|
II | ID | DD | |||
P1–7 bp | BW (kg) | 56.10 ± 6.19 (n = 5) | 56.14 ± 1.46 (n = 96) | 54.16 ± 1.01 (n = 195) | 0.522 |
BH (cm) | 55.21 ± 1.42 (n = 14) | 57.07 ± 0.28 (n = 277) | 56.91 ± 0.19 (n = 489) | 0.307 | |
HHC (cm) | 56.05 ab ± 1.82 (n = 14) | 60.09 b ± 0.29 (n = 277) | 60.14 a ± 0.21 (n = 489) | 0.013 | |
BL (cm) | 63.82 ± 1.91 (n = 14) | 65.41 ± 0.32 (n = 277) | 65.08 ± 0.27 (n = 489) | 0.506 | |
CD (cm) | 28.37 ± 0.98 (n = 14) | 27.71 ± 0.16 (n = 271) | 27.82 ± 0.14 (n = 479) | 0.659 | |
CW (cm) | 17.61 ± 0.96 (n = 14) | 18.63 ± 0.22 (n = 271) | 19.20 ± 0.17 (n = 481) | 0.053 | |
HW (cm) | 20.08 ± 0.95 (n = 6) | 19.88 ± 0.23 (n = 149) | 19.43 ± 0.16 (n = 268) | 0.248 | |
ChC (cm) | 83.50 ± 3.02 (n = 13) | 85.19 ± 0.60 (n = 0.60) | 86.16 ± 0.45 (n = 488) | 0.307 | |
CC (cm) | 7.88 ± 0.27 (n = 13) | 7.90 ± 0.57 (n = 278) | 7.93 ± 0.45 (n = 489) | 0.916 | |
P2–13 bp | BW (kg) | 67.17 A ± 2.62 (n = 6) | 47.09 B ± 1.00 (n = 173) | 48.66 B ± 0.72 (n = 407) | 0.001 |
BH (cm) | 57.85 ± 1.40 (n = 13) | 56.33 ± 0.22 (n = 362) | 56.42 ± 0.15 (n = 1026) | 0.504 | |
HHC (cm) | 60.50 ± 1.32 (n = 13) | 59.46 ± 0.24 (n = 361) | 59.44 ± 0.15 (n = 1027) | 0.724 | |
BL (cm) | 68.31 AB ± 1.20 (n = 13) | 66.02 A ± 0.31 (n = 362) | 65.01 B ± 0.18 (n = 1027) | 0.005 | |
CD (cm) | 29.15 AB ± 0.62 (n = 13) | 28.70 A ± 0.15 (n = 362) | 27.86 B ± 0.96 (n = 1028) | 6 × 10−6 | |
CW (cm) | 21.42 A ± 0.65 (n = 13) | 19.80 A ± 0.19 (n = 362) | 18.94 B ± 0.12 (n = 1030) | 3.18 × 10−4 | |
HW (cm) | 22.63 A ± 0.75 (n = 8) | 17.30 B ± 0.23 (n = 205) | 17.90 B ± 0.15 (n = 491) | 1.8 × 10−5 | |
ChC (cm) | 92.77 AB ± 2.86 (n = 13) | 87.21 A ± 0.48 (n = 358) | 84.88 B ± 0.31 (n = 1027) | 1.32 × 10−3 | |
CC (cm) | 8.21 AB ± 0.24 (n = 13) | 8.08 A ± 0.42 (n = 361) | 7.92 B ± 0.31 (n = 1027) | 0.007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Y.; Yuan, R.; Luo, Y.; Kang, Z.; Zhu, H.; Qu, L.; Lan, X.; Song, X. Exploration of Genetic Variants within the Goat A-Kinase Anchoring Protein 12 (AKAP12) Gene and Their Effects on Growth Traits. Animals 2021, 11, 2090. https://doi.org/10.3390/ani11072090
Bai Y, Yuan R, Luo Y, Kang Z, Zhu H, Qu L, Lan X, Song X. Exploration of Genetic Variants within the Goat A-Kinase Anchoring Protein 12 (AKAP12) Gene and Their Effects on Growth Traits. Animals. 2021; 11(7):2090. https://doi.org/10.3390/ani11072090
Chicago/Turabian StyleBai, Yangyang, Rongrong Yuan, Yunyun Luo, Zihong Kang, Haijing Zhu, Lei Qu, Xianyong Lan, and Xiaoyue Song. 2021. "Exploration of Genetic Variants within the Goat A-Kinase Anchoring Protein 12 (AKAP12) Gene and Their Effects on Growth Traits" Animals 11, no. 7: 2090. https://doi.org/10.3390/ani11072090
APA StyleBai, Y., Yuan, R., Luo, Y., Kang, Z., Zhu, H., Qu, L., Lan, X., & Song, X. (2021). Exploration of Genetic Variants within the Goat A-Kinase Anchoring Protein 12 (AKAP12) Gene and Their Effects on Growth Traits. Animals, 11(7), 2090. https://doi.org/10.3390/ani11072090