Chemical Compositions of Brown and Green Seaweed, and Effects on Nutrient Digestibility in Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Birds and Experimental Designs
2.3. Sample Collection
2.4. Chemical Analysis
2.5. Calculations
2.6. Statistical Analysis
3. Results
3.1. Chemical Composition of Brown and Green Seaweed
3.2. Apparent Ileal Digestibility of Nutrients in Broiler Chickens Fed with Brown and Green Seaweed-Based Feeds
4. Discussion
4.1. Nutrient Contents of Brown and Green Seaweed
4.2. Apparent Ileal Digestibility of Nutrients in Broiler Chickens Fed with Brown and Green Seaweed-Based Feeds
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belghit, I.; Rasinger, J.D.; Heesch, S.; Biancarosa, I.; Liland, N.; Torstensen, B.; Waagbø, R.; Lock, E.J.; Bruckner, C.G. In-depth metabolic profiling of marine macroalgae confirms strong biochemical differences between brown, red and green algae. Algal Res. 2017, 26, 240–249. [Google Scholar] [CrossRef]
- Rao, P.V.S.; Periyasamy, C.; Kumar, K.S.; And, A.S.R.; Anantharaman, P. Bioprospecting of Algae; Noor, M.M., Bhatnagar, S.K., Sinha, S.K., Eds.; SPR: Meerut, India, 2018; Chapter 6; pp. 59–67. [Google Scholar]
- Hayes, M. Marine Bioactive Compound: Sources, Characterization and Applications; Springer: Ashtown, Ireland, 2019; Volume 53, ISBN 9788578110796. [Google Scholar]
- Corino, C.; Modina, S.C.; Di Giancamillo, A.; Chiapparini, S.; Rossi, R. Seaweeds in pig nutrition. Animals 2019, 9, 1126. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Vaquero, M.; Hayes, M. Red and green macroalgae for fish and animal feed and human functional food development. Food Rev. Int. 2016, 32, 15–45. [Google Scholar] [CrossRef]
- Soomro, R.N.; Hu, R.; Qiao, Y.; El-Hack, M.E.A.; Abbasi, I.H.R.; Mohamed, M.A.E.; Bodinga, B.M.; Alagawany, M.; Yang, X.; Yao, J.; et al. Effect of dietary protein sources and amino acid balances on performance, intestinal permeability and morphology in broiler chickens. Int. J. Pharmacol. 2017, 13, 378–387. [Google Scholar] [CrossRef] [Green Version]
- Van Den Burg, S.; Stuiver, M.; Veenstra, F.; Bikker, P.; Contreras, A.L.; Palstra, A.; Broeze, J.; Jansen, H.; Jak, R.; Gerritsen, A.; et al. A Triple P Review of the Feasibility of Sustainable Offshore Seaweed Production in the North Sea; Wageningen UR: Wageningen, the Netherlands, 2013; Volume 13-077, ISBN 9789086156528. [Google Scholar]
- Hardouin, K.; Bedoux, G.; Burlot, A.-S.; Donnay-Moreno, C.; Bergé, J.-P.; Nyvall-Collén, P.; Bourgougnon, N. Enzyme-assisted extraction (EAE) for the production of antiviral and antioxidant extracts from the green seaweed Ulva armoricana (Ulvales, Ulvophyceae). Algal Res. 2016, 16, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Shao, P.; Chen, M.; Pei, Y.; Sun, P. In intro antioxidant activities of different sulfated polysaccharides from chlorophytan seaweeds Ulva Fasciata. Int. J. Biol. Macromol. 2013, 59, 295–300. [Google Scholar] [CrossRef]
- Da Silva Barbosa, J.; Costa, M.S.S.P.; De Melo, L.F.M.; De Medeiros, M.J.C.; De Lima Pontes, D.; Scortecci, K.C.; Rocha, H.A.O. In vitro immunostimulating activity of sulfated polysaccharides from Caulerpa Cupressoides Var. Flabellata. Mar. Drugs 2019, 17, 105. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wang, X.; Wu, H.; Liu, R. Overview on biological activities and molecular characteristics of sulfated polysaccharides from marine green algae in recent years. Mar. Drugs 2014, 12, 4984–5020. [Google Scholar] [CrossRef]
- Alldritt, I.; Whitham-Agut, B.; Sipin, M.; Studholme, J.; Trentacoste, A.; Tripp, J.A.; Cappai, M.G.; Ditchfield, P.; Devièse, T.; Hedges, R.E.M.; et al. Metabolomics reveals diet-derived plant polyphenols accumulate in physiological bone. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef]
- Øverland, M.; Mydland, L.T.; Skrede, A. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. J. Sci. Food Agric. 2019, 99, 13–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Deek, A.A.; Brikaa, M.A. Nutritional and biological evaluation of marine seaweed as a feedstuff and as a pellet binder in poultry diet. Int. J. Poult. Sci. 2009, 8, 875–881. [Google Scholar] [CrossRef]
- Verma, P.; Kumar, M.; Mishra, G.; Sahoo, D. Multivariate analysis of fatty acid and biochemical constitutes of seaweeds to characterize their potential as bioresource for biofuel and fine chemicals. Bioresour. Technol. 2017, 226, 132–144. [Google Scholar] [CrossRef]
- Marinho-Soriano, E.; Fonseca, P.C.; Carneiro, M.A.A.; Moreira, W.S.C. Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour. Technol. 2006, 97, 2402–2406. [Google Scholar] [CrossRef]
- Ahmad, F.; Sulaiman, M.R.; Saimon, W.; Yee, C.F.; Matanjun, P. Proximate compositions and total phenolic contents of selected edible seaweed from Semporna, Sabah, Malaysia. Borneo Sci. 2012, 31, 74–83. [Google Scholar]
- Peng, J.; Yuan, J.P.; Wu, C.F.; Wang, J.H. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: Metabolism and bioactivities relevant to human health. Mar. Drugs 2011, 9, 1806–1828. [Google Scholar] [CrossRef]
- El-Deek, A.A.; Al-Harthi, M.A.; Abdalla, A.A.; Elbanoby, M.M. The use of brown algae meal in finisher broiler. Egypt Poult. Sci. 2011, 31, 767–781. [Google Scholar]
- Kidgell, J.T.; Magnusson, M.; de Nys, R.; Glasson, C.R.K. Ulvan: A systematic review of extraction, composition and function. Algal Res. 2019, 39, 101–422. [Google Scholar] [CrossRef]
- Ravindran, V.; Hew, L.I.; Ravindran, G.; Bryden, W.L. Apparent ileal digestibility of amino acids in dietary ingredients for broiler chickens. Anim. Sci. 2005, 81, 85–97. [Google Scholar] [CrossRef]
- Ahmed, A.; Zulkifli, I.; Farjam, A.S.; Abdullah, N.; Liang, J.B.; Awad, E.A. Effect of solid state fermentation on nutrient content and ileal amino acids digestibility of canola meal in broiler chickens. Ital. J. Anim. Sci. 2014, 13, 410–414. [Google Scholar] [CrossRef] [Green Version]
- Loh, T.C.; Ling, H.G.; Thanh, N.T.; Foo, H.L.; Rajion, M.A.; David, S.I. Effects of feeding phytogenic substances and phytase on growth performance and nutrient digestibility of young broilers. J. Appl. Anim. Res. 2008, 33, 187–192. [Google Scholar] [CrossRef]
- Kim, Y.; Mosier, N.S.; Hendrickson, R.; Ezeji, T.; Blaschek, H.; Dien, B.; Cotta, M.; Dale, B.; Ladisch, M.R. Composition of corn dry-grind ethanol by-products: DDGS, wet cake, and thin stillage. Bioresour. Technol. 2008, 99, 5165–5176. [Google Scholar] [CrossRef] [PubMed]
- Short, F.J.; Gorton, P.; Wiseman, J.; Boorman, K.N. Determination of titanium dioxide added as an inert marker in chicken digestibility studies. Anim. Feed Sci. Technol. 1996, 59, 215–221. [Google Scholar] [CrossRef]
- Stein, H.H.; Sève, B.; Fuller, M.F.; Moughan, P.J.; De Lange, C.F.M. Invited review: Amino acid bioavailability and digestibility in pig feed ingredients: Terminology and application. J. Anim. Sci. 2007, 85, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.A.; Boldaji, F. Comparison of inert markers [chromic oxide or insoluble ash (celiteTM)] for determining apparent metabolizable energy of wheat- or barley-Based broiler diets with or without enzymes. Poult. Sci. 1997, 76, 594–598. [Google Scholar] [CrossRef]
- Guerra-Rivas, G.; Gómez-Gutiérrez, C.M.; Alarcón-Arteaga, G.; Soria-Mercado, I.E.; Ayala-Sánchez, N.E. Screening for anticoagulant activity in marine algae from the Northwest Mexican Pacific coast. J. Appl. Phycol. 2011, 23, 495–503. [Google Scholar] [CrossRef]
- Matanjun, P.; Mohamed, S.; Mustapha, N.M.; Muhammad, K. Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. J. Appl. Phycol. 2008, 21, 75–80. [Google Scholar] [CrossRef]
- Ortiz, J.; Uquiche, E.; Robert, P.; Romero, N.; Quitral, V.; Llantén, C. Functional and nutritional value of the Chilean seaweeds Codium fragile, Gracilaria chilensis and Macrocystis pyrifera. Eur. J. Lipid Sci. Technol. 2009, 111, 320–327. [Google Scholar] [CrossRef] [Green Version]
- Tabarsa, M.; Rezaei, M.; Ramezanpour, Z.; Robert Waaland, J.; Rabiei, R. Fatty acids, amino acids, mineral contents, and proximate composition of some brown seaweeds. J. Phycol. 2012, 48, 285–292. [Google Scholar] [CrossRef]
- Wong, K.H.; Cheung, P.C.K. Nutritional evaluation of some subtropical red and green seaweeds. Food Chem. 2000, 71, 445–482. [Google Scholar] [CrossRef]
- Seo, U.; Kang, H.; Yoon, K.; An, Y. Analysis of dietary fiber, mineral content and fatty acid composition of Cheonggak (Codium fragile). Korean J. Food Nutr. 2019, 32, 328–334. [Google Scholar] [CrossRef]
- McDermid, K.J.; Stuercke, B.; Balazs, G.H. Nutritional composition of marine plants in the diet of the green sea turtle (Chelonia mydas) in the Hawaiian Islands. Bull. Mar. Sci. 2007, 81, 55–71. [Google Scholar]
- Pereira, L. Edible Seaweeds of the World; CRC Press: Coimbra, Portugal, 2016; ISBN 9780429154041. [Google Scholar]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- El-Shenody, R.A.; Ashour, M.; Ghobara, M.M.E. Evaluating the chemical composition and antioxidant activity of three Egyptian seaweeds: Dictyota dichotoma, Turbinaria decurrens, and Laurencia obtusa. Braz. J. Food Technol. 2019, 22, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Bikker, P.; Stokvis, L.; van Krimpen, M.M.; van Wikselaar, P.G.; Cone, J.W. Evaluation of seaweeds from marine waters in Northwestern Europe for application in animal nutrition. Anim. Feed Sci. Technol. 2020, 263, 114460. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Giger-Reverdin, S.; Lessire, M.; Lebas, F.; Ankers, P. Seaweeds for livestock diets: A review. Anim. Feed Sci. Technol. 2016, 212, 1–17. [Google Scholar] [CrossRef]
- Cabrita, A.R.J.; Maia, M.R.G.; Oliveira, H.M.; Sousa-Pinto, I.; Almeida, A.A.; Pinto, E.; Fonseca, A.J.M. Tracing seaweeds as mineral sources for farm-animals. J. Appl. Phycol. 2016, 28, 3135–3150. [Google Scholar] [CrossRef]
- Rupérez, P. Mineral content of edible marine seaweeds. Food Chem. 2002, 79, 23–26. [Google Scholar] [CrossRef]
- Mendis, E.; Kim, S.K. Present and Future Prospects of Seaweeds in Developing Functional Foods, 1st ed.; Elsevier Inc.: San Diego, CA, USA, 2011; Volume 64, ISBN 9780123876690. [Google Scholar]
- Kulshreshtha, G.; Hincke, M.T.; Prithiviraj, B.; Critchley, A. A review of the varied uses of macroalgae as dietary supplements in selected poultry with special reference to laying hen and broiler chickens. J. Mar. Sci. Eng. 2020, 8, 536. [Google Scholar] [CrossRef]
- Kahing, W.; Cheung, P.C. Influence of drying treatment on three Sargassum species: 1. Proximate composition, amino acid profile and some physico-chemical properties. J. Appl. Phycol. 2001, 13, 43–50. [Google Scholar] [CrossRef]
- Suryaningrum, L.H.; Dedi, J.; Setiawati, M.; Sunarno, M.T.D. Nutrient composition and apparent digestibility coefficient of Ulva lactuca meal in the Nile tilapia (Oreochromis niloticus). AACL Bioflux 2017, 10, 77–86. [Google Scholar]
- Van Ginneken, V.J.T.; Helsper, J.P.F.G.; De Visser, W.; Van Keulen, H.; Brandenburg, W.A. Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas. Lipids Health Dis. 2011, 10, 4–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.-K. Handbook of Marine Macroalgae: Biotechnology and Applied Phycology; Wiley-Blackwall publishing: Oxford, UK, 2012; ISBN 9780470979181. [Google Scholar]
- Qin, Y. Bioactive Seaweeds for Food Applications: Natural Ingredients for Healthy Diets; Elsevier Science: Amsterdam, the Netherlands, 2018; pp. 1–302. [Google Scholar]
- Alemawor, F.; Dzogbefia, V.P.; Oddoye, E.O.K.; Oldham, J.H. Enzyme cocktail for enhancing poultry utilisation of cocoa pod husk. Sci. Res. Essay 2009, 4, 555–559. [Google Scholar]
- Sundu, B.; Kumar, A.; Dingle, J. Amino acid digestibilities of palm kernel meal in poultry. J. Indones. Trop. Anim. Agric. 2008, 33, 139–144. [Google Scholar]
- Sundu, B.; Kumar, A.; Dingle, J. Palm kernel meal in broiler diets: Effect on chicken performance and health. Worlds. Poult. Sci. J. 2006, 62, 316–325. [Google Scholar] [CrossRef]
- Azizi, M.N.; Loh, T.C.; Foo, H.L.; Teik Chung, E.L. Is palm kernel cake a suitable alternative feed ingredient for poultry? Animals 2021, 11, 338. [Google Scholar] [CrossRef] [PubMed]
- Lahaye, M.; Robic, A. Structure and function properties of Ulvan, a polysaccharide from green seaweeds. Biomacromolecules 2007, 8, 1765–1774. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, M.N.; Freitas, A.L.P.; Carvalho, A.F.U.; Sampaio, T.M.T.; Farias, D.F.; Teixeira, D.I.A.; Gouveia, S.T.; Pereira, J.G. Nutritive and non-nutritive attributes of washed-up seaweeds from the coast of Ceará, Brazil. Food Chem. 2009, 115, 254–259. [Google Scholar] [CrossRef]
- Khatun, J.; Loh, T.C.; Akit, H.; Foo, H.L.; Mohamad, R. Influence of different sources of oil on performance, meat quality, gut morphology, ileal digestibility and serum lipid profile in broilers. J. Appl. Anim. Res. 2018, 46, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Bassiouni, M.I.; Ali, M.F.; Gaafar, H.M.; Shamas, A.S. Effect of premix and seaweed additives on productive performance of lactating friesian cows. Int. Res. J. Agric. Sci. 2013, 1, 11–18. [Google Scholar]
- Montagne, L.; Pluske, J.R.; Hampson, D.J. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim. Feed Sci. Technol. 2003, 108, 95–117. [Google Scholar] [CrossRef]
- Urbano, M.G.; Goi, I. Bioavailability of nutrients in rats fed on edible seaweeds, Nori (Porphyra tenera) and Wakame (Undaria pinnatifida), as a source of dietary fibre. Food Chem. 2002, 76, 281–286. [Google Scholar] [CrossRef]
Ingredients (%) | Starter | Finisher |
---|---|---|
Corn (yellow) | 46.0 | 52.0 |
Soybean meal (dehulled) | 40.0 | 32.0 |
Wheat pollard | 5.0 | 6.0 |
Palm oil | 4.0 | 5.10 |
L-Lysine 1 | 0.20 | 0.20 |
DL-Methionine 2 | 0.40 | 0.30 |
DCP 3 | 2.60 | 2.40 |
Calcium carbonate | 0.80 | 1.0 |
Choline chloride | 0.20 | 0.20 |
Salt | 0.30 | 0.30 |
Mineral mix 4 | 0.15 | 0.15 |
Vitamin mix 5 | 0.15 | 0.15 |
Antioxidants | 0.10 | 0.10 |
Toxin binder | 0.10 | 0.10 |
Total | 100 | 100 |
Calculated analysis 6 | ||
ME (kcal/kg) | 3040.16 | 3149.82 |
Protein | 21.95 | 19.06 |
Fat | 5.98 | 7.19 |
Fibre | 4.34 | 4.00 |
Calcium | 0.83 | 0.85 |
Total phosphorous | 1.01 | 0.94 |
Available phosphorus | 0.50 | 0.47 |
Ingredients (%) | Dietary Treatments | |
---|---|---|
BS 1 | GS 2 | |
Brown seaweed | 90.30 | 0.00 |
Green seaweed | 0.00 | 90.30 |
Palm oil | 6.00 | 6.00 |
CaCO3 | 1.70 | 1.70 |
Salt | 0.40 | 0.40 |
Vitamin premix 3 | 0.50 | 0.50 |
Mineral premix 4 | 0.50 | 0.50 |
Choline-Cl | 0.30 | 0.30 |
TiO2 | 0.30 | 0.30 |
Total | 100 | 100 |
Nutrient Contents | Seaweed | p-Values | |
---|---|---|---|
BS 1 | GS 2 | ||
Moisture content% | 3.18 ± 0.30 | 3.80 ± 0.06 | 0.0897 |
Organic matter% | 87.10 ± 0.29 | 87.06 ± 0.11 | 0.9312 |
Dry matter% | 96.82 ± 0.30 | 96.20 ± 0.06 | 0.0897 |
Crude protein% | 59.8 ± 0.86 a | 55.88 ± 0.23 b | 0.0046 |
Crude fibre% | 5.78 ± 0.16 | 5.19 ± 0.19 | 0.1041 |
Crude lipid% | 1.28 ± 0.01 a | 0.30 ± 0.01 b | <0.0001 |
Carbohydrate% | 29.19 ± 0.88 b | 34.68 ± 0.24 a | 0.0009 |
Ash% | 9.58 ± 0.14 | 9.17 ± 0.04 | 0.0863 |
Gross energy (kcal/kg) | 6171.53 ± 32.15 | 6150.26 ± 29.81 | 0.7488 |
Ca% | 0.14 ± 0.01 | 0.13 ± 0.01 | 0.7482 |
Na% | 0.18 ± 0.02 | 0.14 ± 0.01 | 0.1366 |
K% | 2.96 ± 0.5 | 2.20 ± 0.03 | 0.2132 |
Mg% | 0.73 ± 0.13 | 0.55 ± 0.01 | 0.2321 |
Zn (mg. 100 g−1) | 10.73 ± 0.08 a | 8.54 ± 0.56 b | 0.0174 |
Cu (mg. 100 g−1) | 3.21 ± 1.52 | 2.63 ± 1.31 | 0.7865 |
Fe (mg. 100 g−1) | 14.67 ± 3.51 | 11.73 ± 2.75 | 0.5453 |
Mn (mg. 100 g−1) | 13.34 ± 1.24 | 11.14 ± 0.16 | 0.1534 |
Na/K ratio | 0.061 | 0.064 | 0.6210 |
Amino Acids | Seaweed | p-Values | |
---|---|---|---|
BS 2 | GS 3 | ||
Essential amino acids | |||
Lysine | 13.66 ± 1.33 | 11.34 ± 1.61 | 0.3899 |
Leucine | 4.76 ± 0.01 a | 2.84 ± 0.36 b | 0.0271 |
Isoleucine | 5.87 ± 3.33 | ND | - |
Valine | 2.06 ± 1.03 | ND | - |
Phenyl alanine | 1.53 ± 0.42 | 2.40 ± 0.68 | 0.3938 |
Threonine | 24.24 ± 0.56 a | 8.41 ± 1.51 b | 0.0042 |
Histidine | ND | ND | - |
Methionine | ND | ND | - |
Arginine | 9.41 ± 0.64 | 8.32 ± 0.50 | 0.3093 |
Glycine | 4.18 ± 1.89 b | 25.41 ± 1.83 a | 0.0150 |
Tryptophan | ND | ND | - |
Non-essential amino acids | |||
Aspartic acid | 4.05 ± 0.38 a | 2.57 ± 0.25 b | 0.0401 |
Glutamic acid | 12.34 ± 2.06 a | 5.70 ± 0.22 b | 0.0328 |
Proline | ND | 15.67 ± 4.30 | - |
Serine | 10.13 ± 0.47 | 8.40 ± 0.39 | 0.1053 |
Tyrosine | ND | ND | - |
Alanine | 3.77 ± 0.44 | 3.30 ± 0.07 | 0.4071 |
Nutrient Contents | Dietary Treatments 1 | p-Values | |
---|---|---|---|
BS | GS | ||
Dry matter% | 40.78 ± 0.80 | 39.07 ± 0.30 | 0.1155 |
Organic matter% | 82.03 ± 0.64 | 80.60 ± 0.97 | 0.2860 |
Crude protein% | 60.69 ± 0.85 a | 57.80 ± 0.42 b | 0.0380 |
Crude fibre% | 48.56 ± 0.79 a | 44.02 ± 1.30 b | 0.0409 |
Crude fat% | 88.82 ± 2.49 | 86.80 ± 1.80 | 0.5460 |
Ash% | 17.97 ± 0.64 | 19.40 ± 0.97 | 0.2860 |
AME 2 (kcal/kg) | 2894.13 ± 37.35 | 2780.70 ± 51.41 | 0.1488 |
Ca% | 96.91 ± 0.57 | 97.61 ± 0.22 | 0.2993 |
Na% | 94.32 ± 0.42 | 96.30 ± 0.61 | 0.0559 |
K% | 93.66 ± 1.68 | 95.26 ± 0.38 | 0.2628 |
Mg% | 83.72 ± 2.61 | 87.42 ± 1.12 | 0.2629 |
Zn% | 95.06 ± 1.75 | 97.27 ± 0.31 | 0.2819 |
Cu% | 89.94 ± 0.40 b | 94.64 ± 1.38 a | 0.0307 |
Fe% | 94.09 ± 1.56 | 95.56 ± 1.16 | 0.4819 |
Mn% | 67.64 ± 2.95 | 73.80 ± 5.77 | 0.3966 |
Amino Acids (%) | Dietary Treatments 1 | p-Values | |
---|---|---|---|
BS | GS | ||
Essential amino acids | |||
Lysine | ND | ND | - |
Leucine | 73.17 ± 4.18 | 59.10 ± 3.19 | 0.0555 |
Isoleucine | 45.76 ± 8.74 | 56.81 ± 3.57 | 0.3068 |
Valine | 62.09 ± 3.61 | 59.67 ± 7.23 | 0.7792 |
Phenyl alanine | 63.50 ± 4.23 | 68.04 ± 9.21 | 0.7252 |
Threonine | 56.68 ± 3.77 | 56.19 ± 7.12 | 0.9779 |
Histidine | ND | ND | - |
Methionine | 77.54 ± 6.59 a | 54.23 ± 2.97 b | 0.0322 |
Arginine | 40.96 ± 2.61 b | 63.76 ± 2.85 a | 0.0042 |
Glycine | 57.53 ± 3.86 | 58.04 ± 6.83 | 0.9514 |
Tryptophan | ND | ND | - |
Non-essential amino acids | |||
Aspartic acid | 60.07 ± 3.14 | 57.71 ± 6.38 | 0.7562 |
Glutamic acid | 65.54 ± 2.79 | 62.60 ± 2.48 | 0.4761 |
Proline | 71.93 ± 3.73 a | 49.21 ± 3.63 b | 0.0121 |
Serine | 64.82 ± 2.92 a | 56.80 ± 0.79 b | 0.0450 |
Tyrosine | 53.97 ± 7.01 | 57.25 ± 2.41 | 0.6816 |
Alanine | 55.77 ± 4.95 | 60.81 ± 6.33 | 0.5645 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azizi, M.N.; Loh, T.C.; Foo, H.L.; Akit, H.; Izuddin, W.I.; Shazali, N.; Teik Chung, E.L.; Samsudin, A.A. Chemical Compositions of Brown and Green Seaweed, and Effects on Nutrient Digestibility in Broiler Chickens. Animals 2021, 11, 2147. https://doi.org/10.3390/ani11072147
Azizi MN, Loh TC, Foo HL, Akit H, Izuddin WI, Shazali N, Teik Chung EL, Samsudin AA. Chemical Compositions of Brown and Green Seaweed, and Effects on Nutrient Digestibility in Broiler Chickens. Animals. 2021; 11(7):2147. https://doi.org/10.3390/ani11072147
Chicago/Turabian StyleAzizi, Mohammad Naeem, Teck Chwen Loh, Hooi Ling Foo, Henny Akit, Wan Ibrahim Izuddin, Nurhazirah Shazali, Eric Lim Teik Chung, and Anjas Asmara Samsudin. 2021. "Chemical Compositions of Brown and Green Seaweed, and Effects on Nutrient Digestibility in Broiler Chickens" Animals 11, no. 7: 2147. https://doi.org/10.3390/ani11072147
APA StyleAzizi, M. N., Loh, T. C., Foo, H. L., Akit, H., Izuddin, W. I., Shazali, N., Teik Chung, E. L., & Samsudin, A. A. (2021). Chemical Compositions of Brown and Green Seaweed, and Effects on Nutrient Digestibility in Broiler Chickens. Animals, 11(7), 2147. https://doi.org/10.3390/ani11072147