Dairy Cows Activity under Heat Stress: A Case Study in Spain
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- Yij = studied behavior (eating, rumination, rest, activity, and heavy breathing) in minutes for each hour (i) and animal (j);
- μ = general mean;
- Ti = heat stress level (NS/HS) for each hour (i);
- εij = residual error, residuals, deviations from the mean.
- Yij = studied behavior (eating and rumination) in minutes for each hour (i) and animal (j);
- μ = daily average minutes devoted to the behavior;
- T and T’ = period length of the sin and cos waves;
- a,b,c,d = equation parameters;
- εij = residual error, residuals, deviations from the mean.
- Yij = studied behavior (rest, activity, and heavy breathing) in minutes for each hour (i) and animal (j);
- μ = daily average minutes devoted to the behavior;
- a = modelled amplitude of daily variation;
- b = the hour at which the minimum value is achieved;
- εij = residual error, residuals, deviations from the mean.
- RSS = Residual sum of squares;
- TSS = Total sum of squares;
- n = number of observations;
- p = number of parameters.
3. Results
3.1. Results of Time of Dedication Per Hour to Each Activity
3.2. Behavioral Daily Patterns
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lees, A.; Sejian, V.; Wallage, A.; Steel, C.; Mader, T.; Lees, J.; Gaughan, J. The Impact of Heat Load on Cattle. Animals 2019, 9, 322. [Google Scholar] [CrossRef] [Green Version]
- Thom, E.C. The discomfort index. Weatherwise 1959, 12, 57–60. [Google Scholar] [CrossRef]
- Zimbelman, R.B.; Rhoads, R.P.; Rhoads, M.L.; Duff, G.C.; Baumgard, L.H.; Collier, R.J.A. Re-Evaluation of the Impact of Temperature Humidity Index (THI) and Black Globe Humidity Index (BGHI) on Milk Production in High Producing Dairy Cows. In Proceedings of the Southwest Nutrition and Management Conference, Tempe, AZ, USA, 24–25 February 2005; Tempe, A.Z.J.R., Collier, E., Eds.; The University of Arizona: Tucson, AZ, USA, 2009; pp. 158–168. [Google Scholar]
- Collier, R.J.; Hall, L.W.; Rungruang, S.; Zimbleman, R.B. Quantifying heat stress and its impact on metabolism and performance. In Proceedings of the 23rd Annu Florida Ruminant Nutrition Symposium, Gainesville, FL, USA, 31 January–1 February 2012; p. 68. [Google Scholar]
- Polsky, L.; von Keyserlingk, M.A.G. Invited review: Effects of heat stress on dairy cattle welfare. J. Dairy Sci. 2017, 100, 8645–8657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habeeb, A.A.; Gad, A.E.; Atta, M.A. Temperature-Humidity Indices as Indicators to Heat Stress of Climatic Conditions with Relation to Production and Reproduction of Farm Animals. Int. J. Biotechnol. Recent Adv. 2018, 1, 35–50. [Google Scholar] [CrossRef] [Green Version]
- Moretti, R.; Biffani, S.; Chessa, S.; Bozzi, R. Heat stress effects on Holstein dairy cows’ rumination. Animal 2017, 11, 2320–2325. [Google Scholar] [CrossRef] [Green Version]
- Tullo, E.; Mattachini, G.; Riva, E.; Finzi, A.; Provolo, G.; Guarino, M. Effects of Climatic Conditions on the Lying Behavior of a Group of Primiparous Dairy Cows. Animals 2019, 9, 869. [Google Scholar] [CrossRef] [Green Version]
- Galán, E.; Llonch, P.; Villagrá, A.; Levit, H.; Pinto, S.; del Prado, A. A systematic review of non-productivity-related animal-based indicators of heat stress resilience in dairy cattle. PLoS ONE 2018, 13, e0206520. [Google Scholar] [CrossRef]
- Fournel, S.; Ouellet, V.; Charbonneau, É. Practices for Alleviating Heat Stress of Dairy Cows in Humid Continental Climates: A Literature Review. Animals 2017, 7, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbut, P.; Angrecka, S. Relationship between THI level and dairy cows’ behaviour during summer period. Ital. J. Anim. Sci. 2018, 17, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Brown-Brandl, T.M.; Eigenberg, R.A.; Nienaber, J.A. Heat stress risk factors of feedlot heifers. Livest. Sci. 2006, 105, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Wechsler, B. Coping and coping strategies: A behavioural view. Appl. Anim. Behav. Sci. 1995, 43, 123–134. [Google Scholar] [CrossRef]
- Müller, R.; Schrader, L. A new method to measure behavioural activity levels in dairy cows. Appl. Anim. Behav. Sci. 2003, 83, 247–258. [Google Scholar] [CrossRef]
- Grant, R.; Albright, J. Effect of Animal Grouping on Feeding Behavior and Intake of Dairy Cattle. J. Dairy Sci. 2001, 84, E156–E163. [Google Scholar] [CrossRef]
- Dado, R.; Allen, M. Variation in and Relationships Among Feeding, Chewing, and Drinking Variables for Lactating Dairy Cows. J. Dairy Sci. 1994, 77, 132–144. [Google Scholar] [CrossRef]
- Liu, J.; Li, L.; Chen, X.; Lu, Y.; Wang, D. Effects of heat stress on body temperature, milk production, and reproduction in dairy cows: A novel idea for monitoring and evaluation of heat stress—A review. Asian Australas. J. Anim. Sci. 2019, 32, 1332–1339. [Google Scholar] [CrossRef]
- Meneses, X.; Park, R.; Ridge, E.; Daigle, C. Hourly activity patterns and behaviour-based management of feedlot steers with and without a cattle brush. Appl. Anim. Behav. Sci. 2021, 236, 105241. [Google Scholar] [CrossRef]
- Banhazi, T.M.; Lehr, H.; Black, J.L.; Crabtee, H.; Schofield, C.P.; Tscharke, M.; Berckmans, D. Precision Livestock Farming: An international review of scientific and commercial aspects. Int. J. Agric. Biol. Eng. 2012, 5, 1. [Google Scholar]
- Berckmans, D.; Guarino, M. From the Editors: Precision livestock farming for the global livestock sector. Anim. Front. 2017, 7, 4–5. [Google Scholar] [CrossRef] [Green Version]
- Bahlo, C.; Dahlhaus, P.; Thompson, H.; Trotter, M. The role of interoperable data standards in precision livestock farming in extensive livestock systems: A review. Comput. Electron. Agric. 2019, 156, 459–466. [Google Scholar] [CrossRef]
- Lindblom, J.; Lundstrom, C.; Ljung, M.; Jonsson, A. Promoting sustainable intensification in precision agriculture: Review of decision support systems development and strategies. Precis. Agric. 2017, 18, 309–331. [Google Scholar] [CrossRef] [Green Version]
- Bishop, J.C.; Falzon, G.; Trotter, M.; Kwan, P.; Meek, P.D. Livestock vocalisation classification in farm soundscapes. Comput. Electron. Agric. 2019, 162, 531–542. [Google Scholar] [CrossRef]
- Meunier, B.; Pradel, P.; Sloth, K.H.; Cirié, C.; Delval, E.; Mialon, M.M.; Veissier, I. Image analysis to refine measurements of dairy cow behaviour from a real-time location system. Biosyst. Eng. 2018, 173, 32–44. [Google Scholar] [CrossRef]
- Clark, C.; Lyons, N.; Millapan, L.; Talukder, S.; Cronin, G.; Kerrisk, K.; Garcia, S. Rumination and activity levels as predictors of calving for dairy cows. Animal 2015, 9, 691–695. [Google Scholar] [CrossRef] [Green Version]
- Lovarelli, D.; Bacenetti, J.; Guarino, M. A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production. J. Clean. Prod. 2020, 262, 121409. [Google Scholar] [CrossRef]
- Costa, J.; Cantor, M.; Neave, H. Symposium review: Precision technologies for dairy calves and management applications. J. Dairy Sci. 2020, 104, 1203–1219. [Google Scholar] [CrossRef]
- Lokhorst, C.; de Mol, R.M.; Kamphuis, C. Invited review: Big data in precision dairy farming. Animal 2019, 13, 1519–1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Research Council. A Guide to Environmental Research on Animals; National Academy of Science: Washington, DC, USA, 1971. [Google Scholar]
- St-Pierre, N.R.; Cobanov, B.; Schnitkey, G. Economic Losses from Heat Stress by US Livestock Industries. J. Dairy Sci. 2003, 86, E52–E77. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 20 April 2020).
- Villagrá, A.; Althaus, R.L.; Lainez, M.; Martinez, A.B.; Torres, A.G. Modelling of daily rhythms of behavioural patterns in growing pigs on twocommercial farms. Biol. Rhythm Res. 2007, 38, 347–354. [Google Scholar] [CrossRef]
- Estellés, F.; Rodríguez-Latorre, A.R.; Calvet, S.; Villagrá, A.; Torres, A.G. Daily carbon dioxide emission and activity of rabbits during the fattening period. Biosyst. Eng. 2010, 106, 338–343. [Google Scholar] [CrossRef]
- Grothendieck, G. nls2: Non-Linear Regression with Brute Force. R Package Version 0.2. 2013. Available online: https://CRAN.R-project.org/package=nls2 (accessed on 20 April 2020).
- Spiess, A.N.; Neumeyer, N. An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: A Monte Carlo approach. BMC Pharmacol. 2010, 10, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohmanova, J.; Misztal, I.; Cole, J.B. Temperature-Humidity Indices as Indicators of Milk Production Losses due to Heat Stress. J. Dairy Sci. 2007, 90, 1947–1956. [Google Scholar] [CrossRef] [PubMed]
- Doron, B.; Moshe, K.; Israel, F.; Boaz, H.; Rachel, L.T. Technical note: Accelerometer-based recording of heavy breathing in lactating and dry cows as an automated measure of heat load. J. Dairy Sci. 2019, 102, 3480–3486. [Google Scholar]
- Lees, A.M.; Lees, J.C.; Sejian, V.; Sullivan, M.L.; Gaughan, J.B. Influence of shade on panting score and behavioural responses of Bos taurus and Bos indicus feedlot cattle to heat load. Anim. Prod. Sci. 2019, 60, 305–315. [Google Scholar] [CrossRef]
- Robertshaw, D. Mechanisms for the control of respiratory evaporative heat loss in panting animals. J. Appl. Physiol. 2006, 101, 664–668. [Google Scholar] [CrossRef] [PubMed]
- Gaughan, J.B.; Mader, T.L.; Holt, S.M.; Lisle, A. A new heat load index for feedlot cattle. J. Anim. Sci. 2008, 86, 226–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mader, T.L.; Davis, M.S.; Brown-Brandl, T. Environmental factors influencing heat stress in feedlot cattle. J. Anim. Sci. 2006, 84, 712–719. [Google Scholar] [CrossRef] [Green Version]
- Lamp, O.; Derno, M.; Otten, W.; Mielenz, M.; Nürnberg, G.; Kuhla, B. Metabolic Heat Stress Adaption in Transition Cows: Differences in Macronutrient Oxidation between Late-Gestating and Early-Lactating German Holstein Dairy Cows. PLoS ONE 2015, 10, e0125264. [Google Scholar] [CrossRef] [Green Version]
- Ammer, S.; Lambertz, C.; Von Soosten, D.; Zimmer, K.; Meyer, U.; Danicke, S.D.; Gauly, M. Impact of diet composition and temperature–humidity index on water and dry matter intake of high-yielding dairy cows. J. Anim. Physiol. Anim. Nutr. 2018, 102, 103–113. [Google Scholar] [CrossRef]
- Soriani, N.; Panella, G.; Calamari, L. Rumination time during the summer season and its relationships with metabolic conditions and milk production. J. Dairy Sci. 2013, 96, 5082–5094. [Google Scholar] [CrossRef] [Green Version]
- Schirmann, K.; Chapinal, N.; Weary, D.M.; Heuwieser, W.; von Keyserlingk, M.A.G. Rumination and its relationship to feeding and lying behavior in Holstein dairy cows. J. Dairy Sci. 2012, 95, 3212–3217. [Google Scholar] [CrossRef] [Green Version]
- Provolo, G.; Riva, E. One year study of lying and standing behaviour of dairy cows in a freestall barn in Italy. J. Agric. Eng. 2009, 2, 27–33. [Google Scholar]
- Fregonesi, J.A.; Leaver, J.D. Behaviour, performance and health indicators of welfare for dairy cows housed in strawyard or cubicle systems. Livest. Prod. Sci. 2001, 68, 205–216. [Google Scholar] [CrossRef]
- De Palo, P.; Tateo, A.; Padalino, B.; Zezza, F.; Centoducati, P. Influence of temperature-humidity index on the preference of primiparous Holstein Friesians for different kinds of cubicle flooring. Ital. J. Anim. Sci. 2005, 4, 194–196. [Google Scholar] [CrossRef]
- Cook, N.B.; Mentink, R.L.; Bennett, T.B.; Burgi, K. The effect of heat stress and lameness on time budgets of lactating dairy cows. J. Dairy Sci. 2007, 90, 1674–1682. [Google Scholar] [CrossRef] [Green Version]
- Brzozowska, A.; Łukaszewicz, M.; Sender, G.; Kolasińska, D.; Oprządek, J. Locomotor activity of dairy cows in relation to season and lactation. Appl. Anim. Behav. Sci. 2014, 156, 6–11. [Google Scholar] [CrossRef]
- Rulquin, H.; Caudal, J.P. Effects of lying or standing on mammary blood flow and heart rate of dairy cows. Ann. Zootech. 1992, 41, 101. [Google Scholar] [CrossRef] [Green Version]
- Igono, M.O.; Bjotvedt, G.; Sanford-Crane, H.T. Environmental profile and critical temperature effects on milk production of Holstein cows in desert climate. Int. J. Biometeorol. 1992, 36, 77–87. [Google Scholar] [CrossRef]
- Cook, N.B.; Nordlund, K.V. Behavioral needs of the transition cow and considerations for special needs facility design. Vet. Clin. N. Am. Food Anim. Pract. 2004, 20, 495–520. [Google Scholar] [CrossRef] [PubMed]
Cow State | Definition |
---|---|
Mid activity | Combination of movements such as walking in an irregular rhythm or pattern or standing and performing various behaviors not characterized by intense and fast movements. |
Rest | Detected when the animal is standing or lying down motionless and does not ruminate. |
Rumination | Rhythmic circular movements of jaw not associated with eating, interrupted by brief pauses during the time that bolus is swallowed. |
Heavy Breathing | High respiratory rate. Fast and shallow movement of the thorax visible when looking at the animal from the side, along with a forward heaving movement of body while breathing (standing or lying down). |
High activity | Includes any combination of activities characterized by eruptive, intense and fast movements. |
Eating | Muzzle or tongue physically contacts and manipulates feed, often but not always followed by visible chewing movements. |
Group | Eating | Rumination | Rest | Activity | Heavy Breathing |
---|---|---|---|---|---|
NS | 8.74 ± 0.08 | 23.59 ± 0.11 | 16.16 ± 0.08 | 7.58 ± 0.05 | 1.50 ± 0.04 |
HS | 8.27 ± 0.08 | 22.12 ± 0.11 | 13.36 ± 0.08 | 7.82 ± 0.05 | 5.74 ± 0.04 |
p-Value | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
Equations | R2 |
---|---|
Eating_NS = 8.77 + 4.114 × sin (2π/9.82 × Hour + 2.052) + 2.814 × cos (2π/5.922 × Hour − 3.84) | 0.74 |
Eating_HS = 8.142 + 3.710 × sin (2π/6.19 × Hour − 1.325) +5.006 × cos (2π/10.56 × Hour + 0.964) | 0.80 |
Rumination_NS = 23.133 − 4.330 × sin (2π/18.628 × Hour − 97.534) − 5.150 × cos (2π/12.473 × Hour + 1.827) | 0.75 |
Rumination_HS = 22.137 − 0.386 × sin (2π/1.808 × Hour − 12.284) − 2.660 × cos (2π/11.220 × Hour + 1.334) | 0.76 |
Rest_NS = 16.247 − 2.466 × sin (2π/24 × Hour − 2.763) | 0.73 |
Rest_HS = 13.371 − 4.872 × sin (2 π/24 × Hour − 2.680) | 0.79 |
Activity_NS = 7.503 + 2.496 × sin (2π/24 × Hour − 2.568) | 0.77 |
Activity_HS = 7.796 + 2.735 × sin (2π/24 × Hour − 2.313) | 0.77 |
Heavy breathing_NS = 1.476 + 0.608 × sin (2π/24 × Hour − 2.565) | 0.93 |
Heavy breathing_HS = 5.71 + 4.492 × sin (2π/24 × Hour − 2.535) | 0.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramón-Moragues, A.; Carulla, P.; Mínguez, C.; Villagrá, A.; Estellés, F. Dairy Cows Activity under Heat Stress: A Case Study in Spain. Animals 2021, 11, 2305. https://doi.org/10.3390/ani11082305
Ramón-Moragues A, Carulla P, Mínguez C, Villagrá A, Estellés F. Dairy Cows Activity under Heat Stress: A Case Study in Spain. Animals. 2021; 11(8):2305. https://doi.org/10.3390/ani11082305
Chicago/Turabian StyleRamón-Moragues, Adrián, Patricia Carulla, Carlos Mínguez, Arantxa Villagrá, and Fernando Estellés. 2021. "Dairy Cows Activity under Heat Stress: A Case Study in Spain" Animals 11, no. 8: 2305. https://doi.org/10.3390/ani11082305
APA StyleRamón-Moragues, A., Carulla, P., Mínguez, C., Villagrá, A., & Estellés, F. (2021). Dairy Cows Activity under Heat Stress: A Case Study in Spain. Animals, 11(8), 2305. https://doi.org/10.3390/ani11082305