Supplementing the Diet of Dairy Goats with Dried Orange Pulp throughout Lactation: II Effect on Milk Fatty Acids Profile, Phenolic Compounds, Fat-Soluble Vitamins and Antioxidant Capacity
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Diets, Goats, and Experimental Procedure
2.2. Feed and Milk Chemical Analyses
2.3. Data Treatment and Statistical Analysis
3. Results
3.1. Fat-Soluble Vitamins, Phenolic Compounds, and Antioxidant Capacity
3.2. Fatty Acid Composition
4. Discussion
4.1. Phenolic Compounds, Fat-Soluble Vitamins and Antioxidant Capacity
4.2. Fatty Acid Composition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gil, A.; Martínez de Victoria, E.; Olza, J. Indicadores de evaluación de la calidad de la dieta. Nutr. Hosp. 2015, 31, 128–144. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Diet, Nutrition and the Prevention of Chronic Diseases; WHO Technical Report Series no. 916; WHO/FAO Expert Consultation: Geneva, Switzerland, 2013.
- Food and Agriculture Organization (FAO). Fats and fatty acids in human nutrition: Report of an expert consultation. Food Nutr. Pap. 2010, 91, 1–166. [Google Scholar]
- Molendi-Coste, O.; Legry, V.; Leclercq, I.A. Why and How Meet n-3 PUFA Dietary Recommendations? Gastroenterol. Res. Pr. 2010, 2011, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulbricht, T.L.; Southgate, D.A. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Parodi, P.W. Anti-cancer agents in milkfat. Aust. J. Dairy Technol. 2003, 58, 114–118. [Google Scholar]
- Elwood, P.C.; Givens, D.I.; Beswick, A.D.; Fehily, A.M.; Pickering, J.E.; Gallacher, J. The survival advantage of milk and dairy consumption: An overview of evidence from cohort studies of vascular diseases, diabetes and cancer. J. Am. Coll. Nutr. 2008, 27, 723S–734S. [Google Scholar] [CrossRef] [PubMed]
- Seifried, R.M.; Harrison, E.; Seifried, H.E. Antioxidants in Health and Disease. In Nutrition in the Prevention and Treatment of Disease; Elsevier: Amsterdam, The Netherlands, 2017; pp. 321–346. [Google Scholar]
- McGrath, J.; Duval, S.M.; Tamassia, L.F.; Kindermann, M.; Stemmler, R.; Gouvêa, V.; Acedo, T.S.; Immig, I.; Williams, S.N.; Celi, P. Nutritional strategies in ruminants: A lifetime approach. Res. Veter. Sci. 2018, 116, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Lordan, R.; Tsoupras, A.; Mitra, B.; Zabetakis, I. Dairy Fats and Cardiovascular Disease: Do We Really Need to Be Concerned? Foods 2018, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.T.; Nadeem, M.; Imran, M.; Ullah, R.; Ajmal, M.; Jaspal, M.H. Antioxidant properties of Milk and dairy products: A comprehensive review of the current knowledge. Lipids Health Dis. 2019, 18, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Di Trana, A.; Bonanno, A.; Cecchini, S.; Giorgio, D.; Di Grigoli, A.; Claps, S. Effects of Sulla forage (Sulla coronarium L.) on the oxidative status and milk polyphenol content in goats. J. Dairy Sci. 2015, 98, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Chávez-Servín, J.L.; Andrade-Montemayor, H.M.; Vázquez, C.V.; Barreyro, A.A.; García-Gasca, T.; Martínez, R.A.F.; Ramírez, A.M.O.; de la Torre-Carbot, K. Effects of feeding system, heat treatment and season on phenolic compounds and antioxidant capacity in goat milk, whey and cheese. Small Rumin. Res. 2018, 160, 54–58. [Google Scholar] [CrossRef]
- Martin, B.; Fedele, V.; Ferlay, A.; Grolier, P.; Rock, E.; Gruffat, D.; Chilliard, Y. Effects of grass-based diets on the content of micronutrients and fatty acids in bovine and caprine dairy products. Grassl. Sci. Eur. 2004, 9, 876–886. [Google Scholar]
- Sampelayo, M.S.; Chilliard, Y.; Schmidely, P.; Boza, J. Influence of type of diet on the fat constituents of goat and sheep milk. Small Rumin. Res. 2007, 68, 42–63. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: http://www.fao.org/faostat/es/#home (accessed on 17 September 2019).
- Bampidis, V.; Robinson, P. Citrus by-products as ruminant feeds: A review. Anim. Feed. Sci. Technol. 2006, 128, 175–217. [Google Scholar] [CrossRef]
- Santos, G.T.; Lima, L.S.; Schogor, A.L.B.; Romero, J.V.; De Marchi, F.E.; Grande, P.A.; Santos, N.W.; Santos, F.S.; Kazama, R. Citrus Pulp as a Dietary Source of Antioxidants for Lactating Holstein Cows Fed Highly Polyunsaturated Fatty Acid Diets. Australas. J. Anim. Sci. 2014, 27, 1104–1113. [Google Scholar] [CrossRef]
- Luciano, G.; Roscini, V.; Mattioli, S.; Ruggeri, S.; Gravador, R.S.; Natalello, A.; Lanza, M.; De Angelis, A.; Priolo, A. Vitamin E is the major contributor to the antioxidant capacity in lambs fed whole dried citrus pulp. Animal 2017, 11, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Ibañez, C.; Criscioni, P.; Arriaga, H.; Merino, P.; Espinós, F.J.; Fernández, C. Murciano-Granadina Goat Performance and Methane Emission after Replacing Barley Grain with Fibrous By-Products. PLoS ONE 2016, 11, e0151215. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, J.; Perez-Ecija, A.; Zarazaga, L.; Martín-García, A.; Horcada, A.; Delgado-Pertíñez, M. Using dried orange pulp in the diet of dairy goats: Effects on milk yield and composition and blood parameters of dams and growth performance and carcass quality of kids. Animal 2020, 14, 2212–2220. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, J.L.; Delgado-Pertíñez, M.; Soldevilla, H.G.; Pérez-Cacho, P.R.; Polo, O.P.; Zarazaga, L.Á.; Ramírez, C.A. Effect of Citrus By-product on Physicochemical Parameters, Sensory Analysis and Volatile Composition of Different Kinds of Cheese from Raw Goat Milk. Foods 2020, 9, 1420. [Google Scholar] [CrossRef]
- AOAC. Association of Official Analytical Chemist. Official Methods of Analysis, 18th ed.; Horwitz, W., Latimer, G., Eds.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Shin, E.-C.; Shurson, G.C.; Gallaher, D.D. Antioxidant capacity and phytochemical content of 16 sources of corn distillers dried grains with solubles (DDGS). Anim. Nutr. 2018, 4, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Seiquer, I.; Rueda, A.; Olalla, M.; Cabrera-Vique, C. Assessing the bioavailability of polyphenols and antioxidant properties of extra virgin argan oil by simulated digestion and Caco-2 cell assays. Comparative study with extra virgin olive oil. Food Chem. 2015, 188, 496–503. [Google Scholar] [CrossRef]
- Delgado-Pertíñez, M.; Gutiérrez-Peña, R.; Mena, Y.; Fernández-Cabanás, V.M.; Laberye, D. Milk production, fatty acid composition and vitamin E content of Payoya goats according to grazing level in summer on Mediterranean shrublands. Small Rumin. Res. 2013, 114, 167–175. [Google Scholar] [CrossRef]
- Gutiérrez-Peña, R.; Fernández-Cabanás, V.M.; Mena, Y.; Delgado-Pertíñez, M. Fatty acid profile and vitamins A and E contents of milk in goat farms under Mediterranean wood pastures as affected by grazing conditions and seasons. J. Food Compos. Anal. 2018, 72, 122–131. [Google Scholar] [CrossRef]
- Sukhija, P.S.; Palmquist, D.L. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J. Agric. Food Chem. 1988, 36, 1202–1206. [Google Scholar] [CrossRef]
- Juarez, M.; Polvillo, O.; Contò, M.; Ficco, A.; Ballico, S.; Failla, S. Comparison of four extraction/methylation analytical methods to measure fatty acid composition by gas chromatography in meat. J. Chromatogr. A 2008, 1190, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Barbudo, M.; Granado-Lorencio, F.; Blanco-Navarro, I.; Olmedilla-Alonso, B. Retinol, α- and γ-tocopherol and carotenoids in natural and vitamin A- and E-fortified dairy products commercialized in Spain. Int. Dairy J. 2005, 15, 521–526. [Google Scholar] [CrossRef]
- Chauveau-Duriot, B.; Doreau, M.; Nozière, P.; Graulet, B. Simultaneous quantification of carotenoids, retinol, and tocopherols in forages, bovine plasma, and milk: Validation of a novel UPLC method. Anal. Bioanal. Chem. 2010, 397, 777–790. [Google Scholar] [CrossRef]
- Fellegrini, N.; Ke, R.; Yang, M.; Rice-Evans, C. [34] Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,2′-azinobis(3-ethylenebenzothiazoline-6-sulfonic acid radical cation decolorization assay. Methods Enzymol. 1999, 299, 379–389. [Google Scholar] [CrossRef]
- Vázquez, C.V.; Rojas, M.G.V.; Ramírez, C.A.; Chávez-Servín, J.L.; García-Gasca, T.; Martínez, R.A.F.; García, O.P.; Rosado, J.L.; López-Sabater, C.M.; Castellote, A.I.; et al. Total phenolic compounds in milk from different species. Design of an extraction technique for quantification using the Folin–Ciocalteu method. Food Chem. 2015, 176, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Valdivielso, I.; Bustamante, M.Á.; Buccioni, A.; Franci, O.; De Gordoa, J.C.R.; De Renobales, M.; Barron, L.J.R. Commercial sheep flocks—Fatty acid and fat-soluble antioxidant composition of milk and cheese related to changes in feeding management throughout lactation. J. Dairy Res. 2015, 82, 334–343. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Zulueta, A.; Maurizi, A.; Frigola, A.; Esteve, M.J.; Coli, R.; Burini, G. Antioxidant capacity of cow milk, whey and deproteinized milk. Int. Dairy J. 2009, 19, 380–385. [Google Scholar] [CrossRef]
- Virto, M.; Bustamante, M.; De Gordoa, J.C.R.; Amores, G.; Fernández-Caballero, P.N.; Mandaluniz, N.; Arranz, J.; Nájera, A.I.; Albisu, M.; Pérez-Elortondo, F.J.; et al. Interannual and geographical reproducibility of the nutritional quality of milk fat from commercial grazing flocks. J. Dairy Res. 2012, 79, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Currò, S.; Manuelian, C.L.; De Marchi, M.; Claps, S.; Rufrano, D.; Neglia, G. Effects of Breed and Stage of Lactation on Milk Fatty Acid Composition of Italian Goat Breeds. Animal 2019, 9, 764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.; Juárez, M.; Ramos, M.; Haenlein, G. Physico-chemical characteristics of goat and sheep milk. Small Rumin. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef] [Green Version]
- Strzalkowska, N.; Jóźwik, A.; Bagnicka, E.; Krzyzewski, J.; Horbańczuk, K.; Pyzel, B.; Horbańczuk, J.O. Chemical composition, physical traits and fatty acid profile of goat milk as related to the stage of lactation. Anim. Sci. Pap. Rep. 2009, 27, 311–320. [Google Scholar]
- Kuchtík, J.; KrálÍčková, Š.; Zapletal, D.; Węglarzy, K.; Šustová, K.; Skrzyżala, I. Changes in physico-chemical characteristics, somatic cell count and fatty acid profile of brown short-haired goat milk during lactation. Anim. Sci. Pap. Rep. 2015, 33, 71–83. [Google Scholar]
- Monllor, P.; Muelas, R.; Roca, A.; Atzori, A.S.; Díaz, J.R.; Sendra, E.; Romero, G. Long-Term Feeding of Dairy Goats with Broccoli By-Product and Artichoke Plant Silages: Milk Yield, Quality and Composition. Animal 2020, 10, 1670. [Google Scholar] [CrossRef] [PubMed]
- Chilliard, Y.; Ferlay, A.; Rouel, J.; Lamberet, G. A Review of Nutritional and Physiological Factors Affecting Goat Milk Lipid Synthesis and Lipolysis. J. Dairy Sci. 2003, 86, 1751–1770. [Google Scholar] [CrossRef] [Green Version]
- Chilliard, Y.; Ferlay, A.; Mansbridge, R.M.; Doreau, M. Ruminant milk fat plasticity: Nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids. Anim. Res. 2000, 49, 181–205. [Google Scholar] [CrossRef] [Green Version]
- Nantapo, C.; Muchenje, V.; Hugo, A. Atherogenicity index and health-related fatty acids in different stages of lactation from Friesian, Jersey and Friesian×Jersey cross cow milk under a pasture-based dairy system. Food Chem. 2014, 146, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Vlaeminck, B.; Fievez, V.; Cabrita, A.R.; Fonseca, A.; Dewhurst, R. Factors affecting odd- and branched-chain fatty acids in milk: A review. Anim. Feed. Sci. Technol. 2006, 131, 389–417. [Google Scholar] [CrossRef]
- Fievez, V.; Colman, E.; Castro-Montoya, J.; Stefanov, I.; Vlaeminck, B. Milk odd- and branched-chain fatty acids as biomarkers of rumen function—An update. Anim. Feed. Sci. Technol. 2012, 172, 51–65. [Google Scholar] [CrossRef]
- Gama, M.; Garnsworthy, P.; Griinari, J.; Leme, P.R.; Rodrigues, P.; Souza, L.; Lanna, D. Diet-induced milk fat depression: Association with changes in milk fatty acid composition and fluidity of milk fat. Livest. Sci. 2008, 115, 319–331. [Google Scholar] [CrossRef]
- Cabrita, A.; Bessa, R.; Alves, S.; Dewhurst, R.; Fonseca, A. Effects of Dietary Protein and Starch on Intake, Milk Production, and Milk Fatty Acid Profiles of Dairy Cows Fed Corn Silage-Based Diets. J. Dairy Sci. 2007, 90, 1429–1439. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Dentinho, M.; Francisco, A.; Portugal, A.P.; Belo, A.T.; Martins, A.P.; Alves, S.; Bessa, R.J. Replacing cereals with dehydrated citrus pulp in a soybean oil supplemented diet increases vaccenic and rumenic acids in ewe milk. J. Dairy Sci. 2016, 99, 1173–1182. [Google Scholar] [CrossRef]
- Tripoli, E.; Guardia, M.L.; Giammanco, S.; Majo, D.D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 2007, 104, 466–479. [Google Scholar] [CrossRef]
- Vasta, V.; Bessa, R.J.B. Manipulating Ruminal Biohydrogenation by the Use of Plants Bioactive Compounds; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2012; pp. 263–284. [Google Scholar]
Items | Early- and Mid-Lactation Experimental Diets 1 | Late-Lactation Experimental Diets 1 | ||||
---|---|---|---|---|---|---|
Control | DOP40 | DOP80 | Control | DOP40 | DOP80 | |
Ration ingredients, % DM basis | ||||||
Alfalfa hay | 17.4 | 17.5 | 17.6 | 20.2 | 20.3 | 20.4 |
Concentrate | ||||||
Dehydrated orange pulp (pellets) | 0 | 20.0 | 40.0 | 0.00 | 19.4 | 38.6 |
Grain oats | 22.1 | 13.2 | 4.38 | 21.4 | 12.8 | 4.24 |
Grain barley | 8.53 | 5.11 | 1.70 | 8.28 | 4.96 | 1.65 |
Grain corn | 19.3 | 11.6 | 3.89 | 18.8 | 11.3 | 3.77 |
Soy flour, 44% | 7.31 | 10.2 | 13.0 | 7.09 | 9.92 | 12.6 |
Sunflower pellets, 28% | 12.8 | 12.5 | 13.8 | 12.5 | 12.1 | 13.5 |
Grain peas | 10.3 | 8.12 | 4.05 | 10.0 | 7.87 | 3.93 |
Salt | 0.41 | 0.41 | 0.41 | 0.39 | 0.39 | 0.39 |
Stabilized lard | 0.41 | 0.00 | 0.00 | 0.39 | 0.00 | 0.00 |
Vitamins and minerals | 1.31 | 1.31 | 1.32 | 1.01 | 1.01 | 1.02 |
Proximate composition and nutritive value, % DM | ||||||
DM, % | 87.2 | 87.6 | 88.1 | 87.1 | 87.1 | 88.1 |
Crude protein | 17.8 | 16.6 | 18.4 | 20.9 | 18.7 | 18.3 |
Neutral detergent fiber | 24.3 | 22.6 | 25.4 | 29.8 | 26.6 | 28.3 |
Acid detergent fiber | 12.3 | 15.9 | 19.0 | 14.7 | 15.2 | 16.8 |
Acid detergent lignin | 4.14 | 4.19 | 5.45 | 3.09 | 3.13 | 3.43 |
Ether extract | 3.42 | 2.31 | 1.71 | 2.63 | 1.85 | 1.43 |
Ash | 4.82 | 6.44 | 7.50 | 6.50 | 7.47 | 8.64 |
Gross energy, kcal/g DM | 4.56 | 4.44 | 4.42 | 4.37 | 4.31 | 4.25 |
Forage unit for lactation, UFL/kg | 0.98 | 0.98 | 0.97 | 0.98 | 0.98 | 0.96 |
Protein digestible in the intestine (PDI) | 10.5 | 10.9 | 11.3 | 10.4 | 10.4 | 11.4 |
Total phenolic compounds, g gallic acid equivalents/kg DM | 5.29 | 6.74 | 8.57 | 5.68 | 7.07 | 8.67 |
Total antioxidant capacity, mmol trolox equivalents/kg DM | 14.9 | 20.4 | 26.3 | 11.4 | 19.4 | 31.5 |
α-tocopherol, mg/kg DM | 3.18 | 26.5 | 70.1 | - | - | - |
FA composition, % total FA | ||||||
C8:0–C14:0 | 1.10 | 2.99 | 4.58 | 3.88 | 4.22 | 6.11 |
C16:0 | 23.7 | 23.6 | 27.7 | 23.3 | 25.1 | 27.6 |
C16:1 | 0.77 | 0.62 | 0.64 | 0.57 | 0.42 | 0.69 |
C18:0 | 9.02 | 9.83 | 11.4 | 8.90 | 8.98 | 11.9 |
C18:1 n-9 cis | 26.0 | 23.6 | 20.6 | 26.9 | 20.7 | 15.5 |
C18:2 n-6 cis | 37.0 | 35.3 | 30.2 | 34.2 | 36.3 | 31.7 |
C18:3 n-6 | 0.14 | 0.19 | 0.47 | 0.29 | 0.20 | 0.38 |
C18:3 n-3 | 2.22 | 3.85 | 4.38 | 1.93 | 4.00 | 6.08 |
∑SFA | 33.8 | 36.5 | 43.7 | 36.1 | 38.3 | 45.6 |
∑MUFA | 26.8 | 24.2 | 21.2 | 27.5 | 21.1 | 16.2 |
∑PUFA | 39.4 | 39.3 | 35.1 | 36.4 | 40.5 | 38.2 |
∑n-6 | 37.2 | 35.5 | 30.7 | 34.5 | 36.5 | 32.1 |
∑n-3 | 2.22 | 3.85 | 4.38 | 1.93 | 4.00 | 6.08 |
n6/n3 | 16.7 | 9.22 | 7.01 | 17.8 | 9.13 | 5.28 |
Item | Diet (D) 1 | Lactation Phase (LP)) | SEM | p2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Control | DOP40 | DOP80 | Early | Mid | Late | D | LP | D × LP | ||
Fat, % | 4.11 | 4.19 | 3.85 | 3.72c | 3.96b | 4.52a | 0.07 | ns | *** | ns |
Fat yield, g/day | 60.7 | 57.4 | 56.6 | 66.5a | 54.7b | 52.6b | 2.16 | ns | ** | ns |
Retinol, μg/100 g | 4.84 | 6.64 | 6.07 | 3.09c | 4.59b | 9.11a | 0.94 | ns | ** | ns |
α-Tocopherol, μg/100 g | 27.1b | 28.2b | 45.2a | 35.6a | 25.1b | 38.8a | 2.07 | ** | ** | ns |
Total phenolic compounds, mg gallic acid equivalents/L | 46.3c | 69.1b | 97.0a | 83.3a | 75.7b | 56.1c | 2.73 | *** | *** | *** |
Total antioxidant capacity, μmol trolox equivalents/mL | 6..44c | 9.39b | 12.0a | 10.1a | 9.06b | 8.61c | 0.27 | *** | *** | * |
Item 3 (g/100 g FA) | Diet (D) 1 | Lactation Phase (LP)) | SEM | p2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Control | DOP40 | DOP80 | Early | Mid | Late | D | LP | D × LP | ||
C4:0 | 3.65 | 3.48 | 3.57 | 3.60a | 3.74a | 3.34b | 0.03 | ns | *** | ns |
C6:0 | 4.85a | 4.52b | 4.67ab | 4.78a | 4.84a | 4.39b | 0.04 | ** | *** | ** |
C8:0 | 4.17a | 3.87b | 4.00b | 4.10a | 4.15a | 3.76b | 0.03 | *** | *** | * |
C10:0 | 9.86a,b | 9.53b | 10.13a | 9.69b | 10.62a | 9.14c | 0.08 | ** | *** | ns |
C11:0 | 0.07a | 0.06b | 0.06b | 0.07a | 0.07a | 0.06b | 0.00 | *** | *** | ns |
C12:0 | 5.58a | 5.40b | 5.39b | 5.46a | 5.59a | 5.29b | 0.04 | * | ** | ns |
C13:0 | 0.06 | 0.06 | 0.06 | 0.06a | 0.06a | 0.05b | 0.00 | ns | *** | ns |
C14:0 | 7.30b | 7.46a,b | 7.54a | 7.09b | 6.99b | 8.22a | 0.06 | * | *** | *** |
C14:1 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.00 | ns | ns | ns |
C15:0 | 0.52 | 0.51 | 0.51 | 0.52 | 0.52 | 0.49 | 0.01 | ns | ns | *** |
C15:1 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.00 | ns | ns | ns |
C16:0 | 24.4b | 25.1a | 24.4b | 24.6b | 24.2c | 25.3a | 0.10 | ** | *** | * |
C16:1 | 1.01 | 1.01 | 1.00 | 1.01 | 1.01 | 1.00 | 0.01 | ns | ns | ** |
C17:0 | 0.33 | 0.35 | 0.32 | 0.32 | 0.32 | 0.35 | 0.00 | ns | ns | ns |
C17:1 | 0.09b | 0.11a | 0.10a,b | 0.09b | 0.09b | 0.12a | 0.00 | ** | *** | *** |
C18:0 | 11.4 | 11.3 | 10.9 | 11.5a | 10.8b | 11.2a,b | 0.10 | ns | ** | *** |
C18:1 n-9 trans | 0.97a | 0.91b | 0.89b | 0.94a | 0.96a | 0.85b | 0.01 | *** | *** | ** |
C18:1 n-11 trans (VA) | 0.68 | 0.70 | 0.67 | 0.67 | 0.68 | 0.71 | 0.01 | ns | ns | ** |
C18:1 n-9 cis | 19.6b | 20.0a,b | 20.3a | 19.9a,b | 19.7b | 20.3a | 0.09 | * | * | * |
C18:2 n-6 trans | 0.15b | 0.19a | 0.17a | 0.14b | 0.15b | 0.23a | 0.01 | ** | *** | *** |
C18:2 n-6 cis | 3.20 | 3.30 | 3.23 | 3.31a | 3.35a | 3.08b | 0.03 | ns | *** | *** |
γ -C18:3 n-6 | 0.11a | 0.10b | 0.09b | 0.09b | 0.09b | 0.12a | 0.00 | *** | *** | *** |
α -C18:3 n-3 | 0.21 | 0.22 | 0.22 | 0.21b | 0.21b | 0.23a | 0.00 | ns | * | ** |
CLA cis-9, trans-11 (RA) | 0.69a | 0.67a,b | 0.65b | 0.68a,b | 0.69a | 0.64b | 0.01 | * | * | ** |
CLA trans-10, cis-12 | 0.01 | 0.02 | 0.02 | 0.01b | 0.01b | 0.02a | 0.00 | ns | *** | *** |
C20:0 | 0.22a | 0.20b | 0.20b | 0.21a | 0.21a | 0.19b | 0.00 | * | * | ns |
C20:1 n-9 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.00 | ns | ns | ns |
C20:2 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.00 | ns | ns | ns |
C20:3 n-3 | 0.02 | 0.03 | 0.02 | 0.03 | 0.03 | 0.03 | 0.00 | ns | ns | ns |
C20:3 n-6 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.00 | ns | ns | *** |
C20:4 n-6 | 0.20 | 0.20 | 0.20 | 0.19b | 0.20b | 0.21a | 0.00 | ns | ** | *** |
C20:5 n-3 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.00 | ns | ns | ns |
C21:0 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.00 | ns | ns | ns |
C22:0 | 0.11 | 0.11 | 0.10 | 0.12a | 0.12a | 0.09b | 0.00 | ns | *** | ns |
C22:1 n-9 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.00 | ns | ns | ns |
C22:2 | 0.01 | 0.01 | 0.01 | 0.01b | 0.01b | 0.02a | 0.00 | ns | *** | ns |
C22:5 n-3 | 0.05 | 0.05 | 0.05 | 0.05 | 0.06 | 0.05 | 0.00 | ns | ns | *** |
C22:6 n-3 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.00 | ns | ns | ns |
C23:0 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.00 | ns | ns | ns |
C24:0 | 0.02 | 0.02 | 0.02 | 0.02a | 0.02a | 0.01b | 0.00 | ns | * | ns |
C24:1 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 | ns | ns | ns |
SFA | 72.5a | 72.0a,b | 72.0b | 72.2 | 72.3 | 72.0 | 0.09 | * | ns | *** |
MUFA | 22.6b | 23.0a,b | 23.2a | 23.0a,b | 22.7b | 23.3a | 0.08 | * | * | * |
PUFA | 4.82 | 4.94 | 4.81 | 4.87a,b | 4.94a | 4.77b | 0.03 | ns | * | *** |
SCFA | 22.5a | 21.4b | 22.4a | 22.2b | 23.3a | 20.6c | 0.14 | *** | *** | ** |
MCFA | 39.6b | 40.3a | 39.6b | 39.4b | 39.1c | 41.1a | 0.13 | ** | *** | ** |
LCFA | 37.9 | 38.3 | 38.0 | 38.4a | 37.6b | 38.3a | 0.11 | ns | ** | *** |
n-3 | 0.34 | 0.34 | 0.34 | 0.33b | 0.35a,b | 0.36a | 0.00 | ns | *** | ns |
n-6 | 3.69 | 3.83 | 3.72 | 3.77a,b | 3.82a | 3.67b | 0.03 | ns | * | *** |
CLA total | 0.71a | 0.69a,b | 0.67b | 0.69a,b | 0.70a | 0.66b | 0.01 | * | * | *** |
n-6:n-3 | 10.8 | 11.2 | 10.9 | 11.5a | 11.0b | 10.4c | 0.11 | ns | *** | ** |
MUFA/SFA | 0.31b | 0.32a,b | 0.33a | 0.32 | 0.31 | 0.32 | 0.00 | * | ns | ** |
PUFA/SFA | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.00 | ns | ns | *** |
DI C16:0 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.00 | ns | ns | ** |
DI C18:0 | 0.65b | 0.66a,b | 0.67a | 0.65 | 0.66 | 0.66 | 0.00 | ** | ns | *** |
CLA index | 0.50 | 0.49 | 0.49 | 0.50a | 0.50a | 0.48b | 0.00 | ns | * | *** |
AI | 2.16 | 2.16 | 2.14 | 2.10b | 2.10b | 2.27a | 0.01 | ns | *** | ns |
TI | 3.02a | 3.02a | 2.94b | 3.00b | 2.92c | 3.06a | 0.02 | * | *** | ns |
Item (g/100 g FA) | Early | Mid | Late | ||||||
---|---|---|---|---|---|---|---|---|---|
Control | DOP40 | DOP80 | Control | DOP40 | DOP80 | Control | DOP40 | DOP80 | |
C6:0 | 4.97a | 4.57b,c | 4.84a,b | 4.90a,b | 4.88a,b | 4.72a,b,c | 4.70a,b,c | 4.10d | 4.45c,d |
C8:0 | 4.28a | 3.91b,c | 4.15a,b | 4.22a,b | 4.19a,b | 4.04a,b,c | 4.02a,b,c | 3.52d | 3.82c,d |
C14:0 | 7.15c | 7.10c | 7.01c | 7.01c | 7.06c | 6.89c | 7.72b | 8.18b | 8.71a |
C15:0 | 0.49a.b | 0.56a | 0.50a,b | 0.52a,b | 0.51a,b | 0.54a | 0.55a | 0.45b | 0.49a,b |
C16:0 | 24.3b,c | 25.2a,b | 24.0c | 24.3b,c | 24.6a,b,c | 23.6c | 24.5a,b,c | 25.5a | 25.6a |
C16:1 | 0.95b | 1.09a | 0.98b | 1.00a,b | 0.99a.b | 1.04a.b | 1.08a | 0.96b | 0.97b |
C17:1 | 0.09c | 0.08c | 0.09c | 0.09c | 0.09c | 0.09c | 0.09c | 0.15a | 0.12b |
C18:0 | 11.0b,c,d | 11.9a,b | 11.6a,b,c | 10.7c,d | 10.6c,d | 11.2b,c | 12.4a | 11.4a,b,c | 10.0d |
C18:1 n-9 trans | 0.97a | 0.90a,b | 0.96a | 0.98a | 0.97a | 0.93a | 0.95a | 0.84b,c | 0.78c |
C18:1 n-11 trans | 0.70a,b | 0.64b | 0.66b | 0.69a,b | 0.69a,b | 0.66b | 0.66b | 0.76a | 0.69a,b |
C18:1 n-9 cis | 19.8a,b,c | 20.0a,b,c | 20.0a,b,c | 19.4b,c | 19.3c | 20.3a,b,c | 19.5b,c | 20.6a | 20.5a,b |
C18:2 n-6 trans | 0.15b | 0.14b | 0.15b | 0.15b | 0.15b | 0.14b | 0.15b | 0.28a | 0.23a |
C18:2 n-6 cis | 3.45a | 3.16a,b | 3.35a,b | 3.41a,b | 3.38a,b | 3.26a,b | 2.73c | 3.36a,b | 3.07b,c |
γ -C18:3 n-6 | 0.08b,c | 0.09b,c | 0.08b,c | 0.09b,c | 0.09b,c | 0.09b,c | 0.16a | 0.10b | 0.11b,c |
α -C18:3 n-3 | 0.22a,b,c | 0.20c | 0.21b,c | 0.22a,b,c | 0.21b,c | 0.21b,c | 0.21b,c | 0.24a | 0.23a,b |
CLA cis-9, trans-11 | 0.65b,c | 0.71a,b | 0.68a,b | 0.68a,b | 0.68a,b | 0.71a,b | 0.74a | 0.63b,c | 0.57c |
CLA trans-10, cis-12 | 0.01b | 0.01b | 0.01b | 0.01b | 0.01b | 0.01b | 0.01b | 0.02a | 0.02a |
C20:3 n-6 | 0.03b | 0.04a | 0.03b | 0.03b | 0.03b | 0.04a | 0.04a | 0.03b | 0.03b |
C20:4 n-6 (ARA) | 0.20b | 0.18b | 0.20b | 0.20b | 0.20b | 0.19b | 0.19b | 0.22a | 0.20b |
C22:5 n-3 (DPA) | 0.04b | 0.05a,b | 0.04b | 0.06a | 0.06a | 0.06a | 0.06a | 0.04b | 0.05a,b |
n-6 | 3.92a,b | 3.61b,c | 3.81a,b | 3.88a,b | 3.86a,b | 3.72a,b | 3.28c | 4.01a | 3.64a,b,c |
CLA total | 0.66b,c | 0.72a,b | 0.69a,b | 0.70a,b | 0.69a,b | 0.72a,b | 0.76a | 0.65b,c | 0.59c |
n-6:n-3 | 11.8a | 11.2a,b | 11.6a | 11.1a,b | 11.1a,b | 10.8a,b | 9.41c | 11.3a,b | 10.2b,c |
MUFA/SFA | 0.32a,b | 0.32a,b | 0.32a,b | 0.31b | 0.31b | 0.32a,b | 0.31b | 0.33a | 0.33a |
PUFA/SFA | 0.07a | 0.07a | 0.07a | 0.07a | 0.07a | 0.07a | 0.06b | 0.07a | 0.07a |
DI C16:0 | 0.04b | 0.04b | 0.04b | 0.04b | 0.04b | 0.04b | 0.05a | 0.04b | 0.04b |
DI C18:0 | 0.66a,b | 0.64b,c | 0.65b,c | 0.66a,b | 0.66a,b | 0.66a,b | 0.63c | 0.66a,b | 0.69a |
CLA index | 0.48b,c | 0.52a,b | 0.50a,b | 0.50a,b | 0.50a,b | 0.52a,b | 0.53a | 0.46c | 0.45c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado-Pertíñez, M.; Martín-García, I.; Mena, Y.; Zarazaga, L.Á.; Guzmán, J.L. Supplementing the Diet of Dairy Goats with Dried Orange Pulp throughout Lactation: II Effect on Milk Fatty Acids Profile, Phenolic Compounds, Fat-Soluble Vitamins and Antioxidant Capacity. Animals 2021, 11, 2421. https://doi.org/10.3390/ani11082421
Delgado-Pertíñez M, Martín-García I, Mena Y, Zarazaga LÁ, Guzmán JL. Supplementing the Diet of Dairy Goats with Dried Orange Pulp throughout Lactation: II Effect on Milk Fatty Acids Profile, Phenolic Compounds, Fat-Soluble Vitamins and Antioxidant Capacity. Animals. 2021; 11(8):2421. https://doi.org/10.3390/ani11082421
Chicago/Turabian StyleDelgado-Pertíñez, Manuel, Ignacio Martín-García, Yolanda Mena, Luis Ángel Zarazaga, and José Luis Guzmán. 2021. "Supplementing the Diet of Dairy Goats with Dried Orange Pulp throughout Lactation: II Effect on Milk Fatty Acids Profile, Phenolic Compounds, Fat-Soluble Vitamins and Antioxidant Capacity" Animals 11, no. 8: 2421. https://doi.org/10.3390/ani11082421
APA StyleDelgado-Pertíñez, M., Martín-García, I., Mena, Y., Zarazaga, L. Á., & Guzmán, J. L. (2021). Supplementing the Diet of Dairy Goats with Dried Orange Pulp throughout Lactation: II Effect on Milk Fatty Acids Profile, Phenolic Compounds, Fat-Soluble Vitamins and Antioxidant Capacity. Animals, 11(8), 2421. https://doi.org/10.3390/ani11082421