Disentangling the Multidimensional Relationship between Livestock Breeds and Ecosystem Services
Abstract
:Simple Summary
Abstract
1. Introduction
2. Livestock Breed as an Eco-Cultural Entity
3. Livestock Breeds as a Biodiversity Component
3.1. Livestock Breeds as Goods
3.2. Livestock Breeds as Final Ecosystem Services
3.3. Livestock Breeds as Mediators of Ecosystem Services
4. Livestock Breed as a Driver of Farming System Heterogeneity
5. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. World Livestock: Transforming the Livestock Sector through the Sustainable Development Goals; FAO: Rome, Italy, 2018. [Google Scholar]
- Leroy, G.; Baumung, R.; Boettcher, P.; Besbes, B.; From, T.; Hoffmann, I. Animal genetic resources diversity and ecosystem services. Glob. Food Sec. 2018, 17, 84–91. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, N.; Tyedmers, P. Forecasting potential global environmental costs of livestock production 2000–2050. Proc. Natl. Acad. Sci. USA 2010, 107, 18371–18374. [Google Scholar] [CrossRef] [Green Version]
- Bernués, A.; Martin-Collado, D. Review of Methods for Identification and Valuation of the Ecosystem Services Provided by Livestock Breeds; FAO: Rome, Italy, 2019. [Google Scholar]
- Dumont, B.; Ryschawy, J.; Duru, M.; Benoit, M.; Chatellier, V.; Delaby, L.; Donnars, C.; Dupraz, P.; Lemauviel-Lavenant, S.; Méda, B.; et al. Review: Associations among goods, impacts and ecosystem services provided by livestock farming. Animal 2019, 13, 1773–1784. [Google Scholar] [CrossRef] [Green Version]
- Ryschawy, J.; Dumont, B.; Therond, O.; Donnars, C.; Hendrickson, J.; Benoit, M.; Duru, M. Review: An integrated graphical tool for analysing impacts and services provided by livestock farming. Animal 2019, 13, 1760–1772. [Google Scholar] [CrossRef] [Green Version]
- Hall, S.J.G. Livestock biodiversity as interface between people, landscapes and nature. People Nat. 2019, 1, 284–290. [Google Scholar] [CrossRef]
- Marsoner, T.; Egarter Vigl, L.; Manck, F.; Jaritz, G.; Tappeiner, U.; Tasser, E. Indigenous livestock breeds as indicators for cultural ecosystem services: A spatial analysis within the Alpine Space. Ecol. Indic. 2018, 94, 55–63. [Google Scholar] [CrossRef]
- Ovaska, U.; Soini, K. Local Breeds—Rural Heritage or New Market Opportunities? Colliding Views on the Conservation and Sustainable Use of Landraces. Sociol. Ruralis 2017, 57, 709–729. [Google Scholar]
- Martin-Collado, D.; Boettcher, P.; Bernués, A. Opinion paper: Livestock agroecosystems provide ecosystem services but not their components-the case of species and breeds. Animal 2019, 13, 2111–2113. [Google Scholar] [CrossRef] [Green Version]
- Tixier-Boichard, M.; Verrier, E.; Rognon, X.; Zerjal, T. Farm animal genetic and genomic resources from an agroecological perspective. Front. Genet. 2015, 6, 2013–2015. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, I.; From, T.; Boerma, D. Ecosystem Services Provided by Livestock Species and Breeds, with Special Consideration to the Contributions of Small-Scale Livestock Keepers and Pastoralists; FAO: Rome, Italy, 2014. [Google Scholar]
- Boettcher, P.J.; Hoffmann, I.; Baumung, R.; Drucker, A.G.; McManus, C.; Berg, P.; Stella, A.; Nilsen, L.; Moran, D.; Naves, M.; et al. Genetic resources and genomics for adaptation of livestock to climate change. Front. Genet. 2014, 5, 2014–2016. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, I. Adaptation to climate change--exploring the potential of locally adapted breeds. Animal 2013, 7 (Suppl. 2), 346–362. [Google Scholar] [CrossRef]
- Mottet, A.; Teillard, F.; Boettcher, P.; De’Besi, G.; Besbes, B. Review: Domestic herbivores and food security: Current contribution, trends and challenges for a sustainable development. Animal 2018, 12, S188–S198. [Google Scholar] [CrossRef]
- Dumont, B.; Puillet, L.; Martin, G.; Savietto, D.; Aubin, J.; Ingrand, S.; Niderkorn, V.; Steinmetz, L.; Thomas, M. Incorporating diversity into animal production systems can increase their performance and strengthen their resilience. Front. Sustain. Food Syst. 2020, 4, 109. [Google Scholar] [CrossRef]
- Manning, P.; Gossner, M.M.; Bossdorf, O.; Allan, E.; Zhang, Y.Y.; Prati, D.; Blüthgen, N.; Boch, S.; Böhm, S.; Börschig, C.; et al. Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa. Ecology 2015, 96, 1492–1501. [Google Scholar] [CrossRef] [Green Version]
- Hall, S.J.G.; Bunce, R.G.H. The use of cattle Bos taurus for restoring and maintaining holarctic landscapes: Conclusions from a long-term study (1946–2017) in northern England. Ecol. Evol. 2019, 9, 5859–5869. [Google Scholar] [CrossRef] [Green Version]
- Velado-Alonso, E.; Morales-Castilla, I.; Rebollo, S.; Gómez-Sal, A. Relationships between the distribution of wildlife and livestock diversity. Divers. Distrib. 2020, 26, 1264–1275. [Google Scholar] [CrossRef]
- Martinez-Harms, M.J.; Bryan, B.A.; Balvanera, P.; Law, E.A.; Rhodes, J.R.; Possingham, H.P.; Wilson, K.A. Making decisions for managing ecosystem services. Biol. Conserv. 2015, 184, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Bennett, E.M.; Cramer, W.; Begossi, A.; Cundill, G.; Díaz, S.; Egoh, B.N.; Geijzendorffer, I.R.; Krug, C.B.; Lavorel, S.; Lazos, E.; et al. Linking biodiversity, ecosystem services, and human well-being: Three challenges for designing research for sustainability. Curr. Opin. Environ. Sustain. 2015, 14, 76–85. [Google Scholar] [CrossRef]
- FAO. World Watch List for Domestic Animal Diversity, 3rd ed.; FAO: Rome, Italy, 2000. [Google Scholar]
- FAO. The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture; FAO Commis: Rome, Italy, 2015. [Google Scholar]
- Zeder, M.A. Out of the Fertile Crescent: The dispersal of domestic livestock through Europe and Africa. In Human Dispersal and Species Movement; Boivin, N., Petraglia, M., Crassard, R., Eds.; Cambridge University Press: Cambridge, UK, 2017; pp. 261–303. [Google Scholar]
- Felius, M.; Beerling, M.L.; Buchanan, D.S.; Theunissen, B.; Koolmees, P.A.; Lenstra, J.A. On the history of cattle genetic resources. Diversity 2014, 6, 705–750. [Google Scholar] [CrossRef] [Green Version]
- Hall, S.J.G. Livestock Biodiversity: Genetic Resources for the Farming of the Future. In Livestock Biodiversity: Genetic Resources for the Farming of the Future; Hall, S.J.G., Ed.; Wiley: Oxford, UK; New York, NY, USA, 2004; pp. 31–43. [Google Scholar]
- Larson, G.; Fuller, D.Q. The Evolution of Animal Domestication. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 115–136. [Google Scholar] [CrossRef] [Green Version]
- FAO. The State of the World’s Animal Genetic Resources for Food and Agriculture—In Brief G.; FAO: Rome, Italy, 2007; Volume 9. [Google Scholar]
- Mason, I.L. The role of natural and artificial selection in the origin of breeds of farm animals: A critique of Darwin’s ‘The variation of animals and plants under domestication’. Z. Tierzüchtung Züchtungsbiologie 1973, 90, 229–244. [Google Scholar] [CrossRef]
- Taberlet, P.; Valentini, A.; Rezaei, H.R.; Naderi, S.; Pompanon, F.; Negrini, R.; Ajmone-Marsan, P. Are cattle, sheep, and goats endangered species? Mol. Ecol. 2008, 17, 275–284. [Google Scholar] [CrossRef]
- Zeller, U.; Starik, N.; Göttert, T. Biodiversity, land use and ecosystem services—An organismic and comparative approach to different geographical regions. Glob. Ecol. Conserv. 2017, 10, 114–125. [Google Scholar] [CrossRef]
- Interlaken Declaration. Global Plan of Action for Animal Genetic Resources and the Interlaken Declaration; FAO Commission on Genetic Resources for Food and Agriculture, FAO: Rome, Italy, 2007. [Google Scholar]
- CBD. Aichi Biodiversity Targets. 2011. Available online: https://www.cbd.int/sp/targets/ (accessed on 4 August 2021).
- Felius, M.; Theunissen, B.; Lenstra, J.A. Conservation of cattle genetic resources: The role of breeds. J. Agric. Sci. 2015, 153, 152–162. [Google Scholar] [CrossRef]
- Boettcher, P.J.; Tixier-Boichard, M.; Toro, M.A.; Simianer, H.; Eding, H.; Gandini, G.; Joost, S.; Garcia, D.; Colli, L.; Ajmone-Marsan, P. Objectives, criteria and methods for using molecular genetic data in priority setting for conservation of animal genetic resources. Anim. Genet. 2010, 41, 64–77. [Google Scholar] [CrossRef] [Green Version]
- Gicquel, E.; Boettcher, P.; Besbes, B.; Furre, S.; Fernández, J.; Danchin-Burge, C.; Berger, B.; Baumung, R.; Feijóo, J.R.J.; Leroy, G. Impact of conservation measures on demography and genetic variability of livestock breeds. Animal 2020, 14, 670–680. [Google Scholar] [CrossRef]
- Zeller, U.; Göttert, T. The relations between evolution and domestication reconsidered—Implications for systematics, ecology, and nature conservation. Glob. Ecol. Conserv. 2019, 20, e00756. [Google Scholar] [CrossRef]
- Welden, E.A.; Chausson, A.; Melanidis, M.S. Leveraging Nature-based Solutions for transformation: Reconnecting people and nature. People Nat. 2021, 1–12. [Google Scholar]
- Díaz, S.; Demissew, S.; Carabias, J.; Joly, C.; Lonsdale, M.; Ash, N.; Larigauderie, A.; Adhikari, J.R.; Arico, S.; Báldi, A.; et al. The IPBES Conceptual Framework—connecting nature and people. Curr. Opin. Environ. Sustain. 2015, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Díaz, S.; Pascual, U.; Stenseke, M.; Martín-López, B.; Watson, R.T.; Molnár, Z.; Hill, R.; Chan, K.M.A.; Baste, I.A.; Brauman, K.A.; et al. Assessing nature’s contributions to people. Science 2018, 359, 270–272. [Google Scholar] [CrossRef] [Green Version]
- Faivre, N.; Fritz, M.; Freitas, T.; de Boissezon, B.; Vandewoestijne, S. Nature-Based Solutions in the EU: Innovating with nature to address social, economic and environmental challenges. Environ. Res. 2017, 159, 509–518. [Google Scholar] [CrossRef]
- Secretariat of the Convention on Biological Diversity. COP 5 Decission V/5. Agricultural Biological Diversity: Review of Phase I of the Programme of Work and Adoption of a Multi-Year Work Programme 2000. Conference of the Parties to the Convention on Biological Diversity; Secretariat of the Convention on Biological Diversity: Nairobi, Kenya, 2000. [Google Scholar]
- Mace, G.M.; Norris, K.; Fitter, A.H. Biodiversity and ecosystem services: A multilayered relationship. Trends Ecol. Evol. 2012, 27, 19–26. [Google Scholar] [CrossRef]
- World Bank. Minding the Stock: Bringing Public Policy to Bear on Livestock Sector Development; World Bank: Washington, DC, USA, 2009. [Google Scholar]
- Hoffmann, I. Livestock biodiversity and sustainability. Livest. Sci. 2011, 139, 69–79. [Google Scholar] [CrossRef]
- FAO. Breeding Strategies for Sustainable Management of Animal Genetic Resources FAO Animal Production and Health Guidelines. No. 3; FAO: Rome, Italy, 2010. [Google Scholar]
- FAO. World Agriculture: Towards 2030/2050; FAO: Rome, Italy, 2006. [Google Scholar]
- FAO. Coping with Climate Change—The Roles of Genetic Resources for Food and Agriculture; FAO: Rome, Italy, 2015. [Google Scholar]
- Sponenberg, D.P.; Beranger, J.; Martin, A.M.; Couch, C.R. Conservation of rare and local breeds of livestock. Rev. Sci. Tech. 2018, 37, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Velado-Alonso, E.; Morales-Castilla, I.; Gómez-Sal, A. Recent land use and management changes decouple the adaptation of livestock diversity to the environment. Sci. Rep. 2020, 10, 1–12. [Google Scholar]
- Morris, C.A.; Baker, R.L.; Hickey, S.M.; Johnson, D.L.; Cullen, N.G.; Wilson, J.A. Evidence of genotype by environment interaction for reproductive and maternal traits in beef cattle. Anim. Sci. 1993, 56, 69–83. [Google Scholar] [CrossRef]
- Steinheim, G.; Ødegård, J.; Ådnøy, T.; Klemetsdal, G. Genotype by environment interaction for lamb weaning weight in two Norwegian sheep breeds1. J. Anim. Sci. 2008, 86, 33–39. [Google Scholar] [CrossRef]
- Wright, I.A.; Jones, J.R.; Maxwell, T.J.; Russel, A.J.F.; Hunter, E.A. The effect of genotype × environment interactions on biological efficiency in beef cows. Anim. Prod. 1994, 58, 197–207. [Google Scholar] [CrossRef]
- Gliessman, S.R. Animals in Agroecosystems. In Agroecology: The Ecology of Sustainable Food Systems; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Pauler, C.M.; Isselstein, J.; Berard, J.; Braunbeck, T.; Schneider, M.K. Grazing Allometry: Anatomy, Movement, and Foraging Behavior of Three Cattle Breeds of Different Productivity. Front. Vet. Sci. 2020, 7, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Belsky, A.J.; Blumenthal, D.M. Effects of Livestock Grazing on Stand Dynamics and Soils in Upland Forests of the Interior West. Conserv. Biol. 1997, 11, 315–327. [Google Scholar] [CrossRef]
- Reeder, J.; Schuman, G. Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands. Environ. Pollut. 2002, 116, 457–463. [Google Scholar] [CrossRef]
- Arcoverde, G.B.; Andersen, A.N.; Setterfield, S.A. Is livestock grazing compatible with biodiversity conservation? Impacts on savanna ant communities in the Australian seasonal tropics. Biodivers. Conserv. 2017, 26, 883–897. [Google Scholar] [CrossRef]
- Ren, H.; Eviner, V.T.; Gui, W.; Wilson, G.W.T.; Cobb, A.B.; Yang, G.; Zhang, Y.; Hu, S.; Bai, Y. Livestock grazing regulates ecosystem multifunctionality in semi-arid grassland. Funct. Ecol. 2018, 32, 2790–2800. [Google Scholar] [CrossRef] [Green Version]
- Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, M.A. Agroecology and the design of climate change-resilient farming systems. Agron. Sustain. Dev. 2015, 35, 869–890. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Sal, A. Patterns of Vegetation Cover Shaping the Cultural Landscapes in the Iberian Peninsula. In the Vegetation of the Iberian Peninsula; Loidi, J., Ed.; Springer: Cham, Switzerland, 2017; pp. 459–497. [Google Scholar]
- Zeder, M.A. Domestication as a model system for the extended evolutionary synthesis. Interface Focus 2017, 7, 20160133. [Google Scholar] [CrossRef] [PubMed]
- Rook, A.J.; Dumont, B.; Isselstein, J.; Osoro, K.; WallisDeVries, M.F.; Parente, G.; Mills, J. Matching type of livestock to desired biodiversity outcomes in pastures—A review. Biol. Conserv. 2004, 119, 137–150. [Google Scholar] [CrossRef]
- Wallis De Vries, M.F.; Parkinson, A.E.; Dulphy, J.P.; Sayer, M.; Diana, E. Effects of livestock breed and grazing intensity on biodiversity and production in grazing systems. 4. Effects on animal diversity. Grass Forage Sci. 2007, 62, 185–197. [Google Scholar]
- Dumont, B.; Rook, A.J.; Coran, C.; Röver, K.-U. Effects of livestock breed and grazing intensity on biodiversity and production in grazing systems. 2. Diet selection. Grass Forage Sci. 2007, 62, 159–171. [Google Scholar] [CrossRef]
- Scimone, M.; Rook, A.J.; Garel, J.P.; Sahin, N. Effects of livestock breed and grazing intensity on grazing systems: 3. Effects on diversity of vegetation. Grass Forage Sci. 2007, 62, 172–184. [Google Scholar] [CrossRef]
- Rosa García, R.; Fraser, M.D.; Celaya, R.; Ferreira, L.M.M.; García, U.; Osoro, K. Grazing land management and biodiversity in the Atlantic European heathlands: A review. Agrofor. Syst. 2013, 87, 19–43. [Google Scholar] [CrossRef]
- Pauler, C.M.; Isselstein, J.; Suter, M.; Berard, J.; Braunbeck, T.; Schneider, M.K. Choosy grazers: Influence of plant traits on forage selection by three cattle breeds. Funct. Ecol. 2020, 34, 980–992. [Google Scholar] [CrossRef]
- Pauler, C.M.; Isselstein, J.; Braunbeck, T.; Schneider, M.K. Influence of Highland and production-oriented cattle breeds on pasture vegetation: A pairwise assessment across broad environmental gradients. Agric. Ecosyst. Environ. 2019, 284, 106585. [Google Scholar] [CrossRef]
- Hoffmann, I. Climate change and the characterization, breeding and conservation of animal genetic resources. Anim. Genet. 2010, 41, 32–46. [Google Scholar] [CrossRef]
- Murray, M.; Trail, J.C.M.; Davis, C.E.; Black, S.J. Genetic Resistance to African Trypanosomiasis. J. Infect. Dis. 1984, 149, 311–319. [Google Scholar] [CrossRef]
- Kim, S.-J.; Ka, S.; Ha, J.-W.; Kim, J.; Yoo, D.; Kim, K.; Lee, H.-K.; Lim, D.; Cho, S.; Hanotte, O.; et al. Cattle genome-wide analysis reveals genetic signatures in trypanotolerant N’Dama. BMC Genom. 2017, 18, 371. [Google Scholar] [CrossRef]
- Bowles, D.; Carson, A.; Isaac, P. Genetic Distinctiveness of the Herdwick Sheep Breed and Two Other Locally Adapted Hill Breeds of the UK. PLoS ONE 2014, 9, e87823. [Google Scholar] [CrossRef]
- Lee, M.A.; Davis, A.P.; Chagunda, M.G.G.; Manning, P. Forage quality declines with rising temperatures, with implications for livestock production and methane emissions. Biogeosciences 2017, 14, 1403–1417. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Ferre, M.G.; López-i-Gelats, F.; Howden, M.; Smith, P.; Morton, J.F.; Herrero, M. Re-framing the climate change debate in the livestock sector: Mitigation and adaptation options. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 869–892. [Google Scholar] [CrossRef]
- Ausden, M. Habitat Management for Conservation; Oxford University Press: New York, NY, USA, 2007. [Google Scholar]
- Kleijn, D.; Rundlöf, M.; Scheper, J.; Smith, H.G.; Tscharntke, T. Does conservation on farmland contribute to halting the biodiversity decline? Trends Ecol. Evol. 2011, 26, 474–481. [Google Scholar] [CrossRef]
- Gómez Sal, A.; Rodríguez, M.A.; De Miguel, J.M. Matter transfer and land use by cattle in a dehesa ecosystem of Central Spain. Vegetatio 1992, 99–100, 345–354. [Google Scholar] [CrossRef]
- De Miguel, J.M.; Rodríguez, M.; Gómez Sal, A. Determination of animal behaviour-environment relationships by correspondence analysis. J. Range Manag. 1997, 50, 85–93. [Google Scholar] [CrossRef]
- Morales-Jerrett, E.; Mancilla-Leytón, J.M.; Delgado-Pertíñez, M.; Mena, Y. The contribution of traditional meat goat farming systems to human wellbeing and its importance for the sustainability of this livestock subsector. Sustainability 2020, 12, 1181. [Google Scholar] [CrossRef] [Green Version]
- Robinson, T.P.; Thornton, P.K.; Franceschini, G.; Kruska, R.L.; Chiozza, F.; Notenbaert, A.; Cecchi, G.; Herrero, M.; Epprecht, M.; Fritz, S.; et al. Global Livestock Production Systems; FAO & ILRI: Rome, Italy, 2011. [Google Scholar]
- Tichit, M.; Puillet, L.; Sabatier, R.; Teillard, F. Multicriteria performance and sustainability in livestock farming systems: Functional diversity matters. Livest. Sci. 2011, 139, 161–171. [Google Scholar] [CrossRef]
- Cingolani, A.M.; Noy-Meir, I.; Díaz, S. Grazing effects on rangeland diversity: A synthesis of contemporary models. Ecol. Appl. 2005, 15, 757–773. [Google Scholar] [CrossRef]
- Eldridge, D.J.; Poore, A.G.B.; Ruiz-Colmenero, M.; Letnic, M.; Soliveres, S. Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing. Ecol. Appl. 2016, 26, 1273–1283. [Google Scholar] [CrossRef] [Green Version]
- Crain, J.M.; Ballantyne, F.; Peel, M.; Zambatis, N.; Morrow, C.; Stock, W.D. Grazing and landscape controls on nitrogen availability across 330 South African savanna sites. Austral. Ecol. 2009, 34, 731–740. [Google Scholar] [CrossRef]
- Vuorio, V.; Muchiru, A.; Reid, R.S.; Ogutu, J.O. How pastoralism changes savanna vegetation: Impact of old pastoral settlements on plant diversity and abundance in south-western Kenya. Biodivers. Conserv. 2014, 23, 3219–3240. [Google Scholar]
- Milchunas, D.G.; Lauenroth, W.K.; Burke, I.C. Livestock Grazing: Animal and Plant Biodiversity of Shortgrass Steppe and the Relationship to Ecosystem Function. Oikos 1998, 83, 65. [Google Scholar] [CrossRef]
- Gómez-Sal, A. The ecological rationale and nature conservation value of extensive livestock systems in the Iberian Peninsula. In Examples of European Agrienvironmental Schemes and Livestock Systems and Their Influence on Spanish Cultural Landscapes; Bunce, R.G.H., Pérez-Soba, M., Elbersen, B.S., Prados, M.J., Andersen, E., Bell, M., Smeets, P.J.A.M., Eds.; Alterra-Rapport: Wageningen, The Netherland, 2001; pp. 103–123. [Google Scholar]
- Dettenmaier, S.J.; Messmer, T.A.; Hovick, T.J.; Dahlgren, D.K. Effects of livestock grazing on rangeland biodiversity: A meta-analysis of grouse populations. Ecol. Evol. 2017, 7, 7620–7627. [Google Scholar] [CrossRef] [Green Version]
- Steinfeld, H. The livestock revolution—A global veterinary mission. Vet. Parasitol. 2004, 125, 19–41. [Google Scholar] [CrossRef] [PubMed]
- Naylor, R.; Steinfeld, H.; Falcon, W.; Galloway, J.; Smil, V.; Bradford, E.; Alder, J.; Mooney, H. Losing the links between livestock and land. Science 2005, 310, 1621–1622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tullo, E.; Finzi, A.; Guarino, M. Review: Environmental impact of livestock farming and Precision Livestock Farming as a mitigation strategy. Sci. Total Environ. 2019, 650, 2751–2760. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.; Martins, I.S.; Kastner, T.; Plutzar, C.; Theurl, M.C.; Eisenmenger, N.; Huijbregts, M.A.J.; Wood, R.; Stadler, K.; Bruckner, M.; et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 2019, 3, 628–637. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velado-Alonso, E.; Gómez-Sal, A.; Bernués, A.; Martín-Collado, D. Disentangling the Multidimensional Relationship between Livestock Breeds and Ecosystem Services. Animals 2021, 11, 2548. https://doi.org/10.3390/ani11092548
Velado-Alonso E, Gómez-Sal A, Bernués A, Martín-Collado D. Disentangling the Multidimensional Relationship between Livestock Breeds and Ecosystem Services. Animals. 2021; 11(9):2548. https://doi.org/10.3390/ani11092548
Chicago/Turabian StyleVelado-Alonso, Elena, Antonio Gómez-Sal, Alberto Bernués, and Daniel Martín-Collado. 2021. "Disentangling the Multidimensional Relationship between Livestock Breeds and Ecosystem Services" Animals 11, no. 9: 2548. https://doi.org/10.3390/ani11092548
APA StyleVelado-Alonso, E., Gómez-Sal, A., Bernués, A., & Martín-Collado, D. (2021). Disentangling the Multidimensional Relationship between Livestock Breeds and Ecosystem Services. Animals, 11(9), 2548. https://doi.org/10.3390/ani11092548