Feeding and Management of Horses with and without Free Faecal Liquid: A Case–Control Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Horses
2.2. Sampling and Analysis of Wrapped Forages
2.3. Chemical Analysis of Forage
2.4. Data Collection
2.5. Data Treatment
2.6. Calculations and Statistical Analysis
3. Results
3.1. Horses
3.2. Chemical Composition of Forages
3.3. Types and Amounts of Roughages
3.4. Types and Amounts of Concentrates
3.5. Types and Amounts of Supplement Feeds
3.6. Feed Rations and Total Daily Intake of Feed Components
3.7. Feeding Practices
3.8. Management Factors
4. Discussion
4.1. Horses
4.2. Feeding Practices and Management Factors
4.3. Feeding Forages
4.4. Feeding Concentrates
4.5. Daily Intake of Nutrients and Total Feed Ration
4.6. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kienzle, E.; Zehnder, C.; Pfister, K.; Gerhards, H.; Sauter-Louis, C.; Harris, P. Field study on risk factors for free fecal water in pleasure horses. J. Equine Vet. Sci. 2016, 44, 32–36. [Google Scholar] [CrossRef]
- Ertelt, A.; Gehlen, H. Free fecal water in the horse-an unsolved problem. Pferdeheilkunde 2015, 31, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Valle, E.; Gandini, M.; Bergero, D. Management of chronic diarrhea in an adult horse. J. Equine Vet. Sci. 2013, 33, 130–135. [Google Scholar] [CrossRef]
- Lindroth, K.M.; Johansen, A.; Båverud, V.; Dicksved, J.; Lindberg, J.E.; Müller, C.E. Differential Defecation of Solid and Liquid Phases in Horses—A Descriptive Survey. Animals 2020, 10, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, M.A.; White II, N.A.; Crisman, M.V.; Ward, D.L. Effects of feeding large amounts of grain on colonic contents and feces in horses. Am. J. Vet. Res. 2004, 65, 687–694. [Google Scholar] [CrossRef]
- Müller, C.; Von Rosen, D.; Udén, P. Effect of forage conservation method on microbial flora and fermentation pattern in forage and in equine colon and faeces. Livest. Sci. 2008, 119, 116–128. [Google Scholar] [CrossRef]
- Carroll, C.; Huntington, P. Body condition scoring and weight estimation of horses. Equine Vet. J. 1988, 20, 41–45. [Google Scholar] [CrossRef]
- Spörndly, R. Fodertabeller för Idisslare 2003; Sveriges Lantbruksuniv: Garpenberg, Sweden, 2003. [Google Scholar]
- Zehnder, C. Feldstudie zu Risikofaktoren für den Absatz von freiem Kotwasser beim Freizeitpferd. Ph.D. Thesis, LMU, München, Germany, 2009. [Google Scholar]
- Miyaji, M.; Ueda, K.; Kobayashi, Y.; Hata, H.; Kondo, S. Fiber digestion in various segments of the hindgut of horses fed grass hay or silage. Anim. Sci. J. 2008, 79, 339–346. [Google Scholar] [CrossRef]
- Muhonen, S.; Julliand, V.; Lindberg, J.; Bertilsson, J.; Jansson, A. Effects on the equine colon ecosystem of grass silage and haylage diets after an abrupt change from hay. J. Anim. Sci. 2009, 87, 2291–2298. [Google Scholar] [CrossRef]
- Ragnarsson, S.; Lindberg, J.E. Nutritional value of mixed grass haylage in Icelandic horses. Livest. Sci. 2010, 131, 83–87. [Google Scholar] [CrossRef]
- Müller, C.E. Equine digestion of diets based on haylage harvested at different plant maturities. Anim. Feed. Sci. Technol. 2012, 177, 65–74. [Google Scholar] [CrossRef]
- Kuoppala, K.; Rinne, M.; Huhtanen, P. Morphological composition and digestibility of primary growth and regrowth of timothy. In Proceedings of the NJF’s 22nd Congress ‘Nordic Agriculture in Global Perspective’, Turku, Finland, 1–4 July 2003. [Google Scholar]
- Woodward, A.; Nielsen, B.; Liesman, J.; Lavin, T.; Trottier, N. Protein quality and utilization of timothy, oat-supplemented timothy, and alfalfa at differing harvest maturities in exercised Arabian horses. J. Anim. Sci. 2011, 89, 4081–4092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salem, S.E.; Maddox, T.W.; Berg, A.; Antczak, P.; Ketley, J.M.; Williams, N.J.; Archer, D.C. Variation in faecal microbiota in a group of horses managed at pasture over a 12-month period. Sci. Rep. 2018, 8, 8510. [Google Scholar] [CrossRef] [Green Version]
- Proudman, C.; Hunter, J.; Darby, A.; Escalona, E.; Batty, C.; Turner, C. Characterisation of the faecal metabolome and microbiome of Thoroughbred racehorses. Equine Vet. J. 2015, 47, 580–586. [Google Scholar] [CrossRef] [Green Version]
- Blackmore, T.M.; Dugdale, A.; Argo, C.M.; Curtis, G.; Pinloche, E.; Harris, P.A.; Worgan, H.J.; Girdwood, S.E.; Dougal, K.; Newbold, C.J. Strong stability and host specific bacterial community in faeces of ponies. PLoS ONE 2013, 8, e75079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindroth, K.M.; Dicksved, J.; Pelve, E.; Båverud, V.; Müller, C.E. Faecal bacterial composition in horses with and without free faecal liquid: A case control study. Sci. Rep. 2021, 11, 4745. [Google Scholar] [CrossRef]
- Jones, S.; Spier, S. Pathophysiology of colonic inflammation and diarrhea. Equine Intern. Med. Phila. WB Saunders 1998, 660–663. [Google Scholar]
- Clarke, L.L.; Roberts, M.C.; Argenzio, R.A. Feeding and digestive problems in horses: Physiologic responses to a concentrated meal. Vet. Clin. N. Am. Equine Pract. 1990, 6, 433–450. [Google Scholar] [CrossRef]
- Hudson, J.M.; Cohen, N.D.; Gibbs, P.G.; Thompson, J.A. Feeding practices associated with colic in horses. J. Am. Vet. Med Assoc. 2001, 219, 1419–1425. [Google Scholar] [CrossRef]
- Tinker, M.K.; White, N.; Lessard, P.; Thatcher, C.; Pelzer, K.; Davis, B.; Carmel, D. Prospective study of equine colic risk factors. Equine Vet. J. 1997, 29, 454–458. [Google Scholar] [CrossRef]
- Tinker, M.; White, N.; Lessard, P.; Thatcher, C.; Pelzer, K.; Davis, B. Descriptive epidemiology and incidence of colic on horse farms: A prospective study. In Proceedings of the 5th Equine Colic Research Symposium, Athens, GA, USA, 26–28 September 1994; p. 22. [Google Scholar]
- De Fombelle, A.; Julliand, V.; Drogoul, C.; Jacotot, E. Feeding and microbial disorders in horses: 1-Effects of an abrupt incorporation of two levels of barley in a hay diet on microbial profile and activities. J. Equine Vet. Sci. 2001, 21, 439–445. [Google Scholar] [CrossRef]
- Hoffman, R.; Wilson, J.; Kronfeld, D.; Cooper, W.; Lawrence, L.; Sklan, D.; Harris, P. Hydrolyzable carbohydrates in pasture, hay, and horse feeds: Direct assay and seasonal variation. J. Anim. Sci. 2001, 79, 500–506. [Google Scholar] [CrossRef]
- Willard, J.G.; Willard, J.; Wolfram, S.; Baker, J. Effect of diet on cecal pH and feeding behavior of horses. J. Anim. Sci. 1977, 45, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Hintz, H.; Argenzio, R.; Schryver, H. Digestion coefficients, blood glucose levels and molar percentage of volatile acids in intestinal fluid of ponies fed varying forage-grain ratios. J. Anim. Sci. 1971, 33, 992–995. [Google Scholar] [CrossRef] [PubMed]
- Garner, H.; Moore, J.; Johnson, J.; Clark, L.; Amend, J.; Tritschler, L.; Coffmann, J.; Sprouse, R.; Hutcheson, D.; Salem, C. Changes in the caecal flora associated with the onset of laminitis. Equine Vet. J. 1978, 10, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Argenzio, R.; Lowe, J.; Pickard, D.; Stevens, C. Digesta passage and water exchange in the equine large intestine. Am. J. Physiol. -Leg. Content 1974, 226, 1035–1042. [Google Scholar] [CrossRef]
- Blikslager, A.T.; White, N.A.; Moore, J.N.; Mair, T.S. The Equine Acute Abdomen; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Schoster, A. Probiotic use in equine gastrointestinal disease. Vet. Clin. Equine Pract. 2018, 34, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Stevens, C.; Hume, I. Comparative Physiology of the Vertebrate Digestive System; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Brownlow, M.A.; Hutchins, D. The concept of osmolality: Its use in the evaluation of “dehydration” in the horse. Equine Vet. J. 1982, 14, 106–110. [Google Scholar] [CrossRef] [PubMed]
Variables | Minimum | Median | Maximum | Mean | SD |
---|---|---|---|---|---|
Dry matter | 179 | 728 | 951 | 692 | 152.9 |
Ammonia N | 0.003 | 1.3 | 5.0 | 1.6 | 1.12 |
pH | 3.9 | 5.5 | 6.1 | 5.4 | 0.46 |
Ash | 29 | 59 | 110 | 60 | 14.3 |
Crude protein (CP) | 36 | 88 | 184 | 92 | 28.3 |
Estimated digestible CP | 10 | 50 | 139 | 53 | 26.4 |
Neutral detergent fibre | 432 | 607 | 721 | 609 | 49.6 |
Acid detergent fibre | 255 | 350 | 931 | 356 | 65.5 |
Lignin | 19 | 34 | 56 | 35 | 7.6 |
Water-soluble carbohydrates | 3 | 110 | 230 | 105 | 52.7 |
Glucose | 0.1 | 32.1 | 132.6 | 38.1 | 25.08 |
Fructose | 0.6 | 38.1 | 128.6 | 39.2 | 33.91 |
Sucrose | 0.2 | 4.9 | 113.7 | 12.1 | 16.88 |
Fructans | 0.3 | 12.4 | 113.7 | 21.0 | 22.70 |
Calcium | 1.0 | 3.5 | 12.6 | 3.8 | 1.64 |
Phosphorus | 1.1 | 2.1 | 3.5 | 2.1 | 0.48 |
Magnesium | 0.5 | 1.3 | 4.0 | 1.4 | 0.59 |
Potassium | 5.0 | 16.7 | 34.0 | 17.1 | 5.03 |
Sodium | 0.05 | 0.1 | 2.4 | 0.3 | 0.44 |
Sulphur | 0.6 | 1.5 | 2.6 | 1.5 | 0.41 |
Lactic acid | 0.5 | 3.5 | 26.1 | 5.6 | 5.08 |
Acetic acid | 0.1 | 1.1 | 8.2 | 1.7 | 1.83 |
Propionic acid | 0.1 | 0.2 | 2.7 | 0.3 | 0.35 |
Butyric acid | 0.1 | 0.1 | 24.5 | 2.3 | 4.84 |
Formic acid | 0.1 | 0.1 | 4.3 | 0.5 | 0.74 |
Ethanol | 0.1 | 1.8 | 30.2 | 3.6 | 4.77 |
2,3-Butandiol | 0.1 | 0.1 | 9.1 | 0.7 | 1.32 |
Volatile fatty acids | 0.4 | 1.5 | 39.7 | 4.8 | 2.05 |
Short-chain fatty acids | 0.9 | 5.0 | 65.8 | 10.4 | 6.50 |
In vitro digestible OM | 532 | 735 | 867 | 729 | 64.4 |
Estimated MEh 1 | 5.9 | 9.3 | 11.4 | 9.2 | 1.06 |
Variable | Case | Control | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Minimum | Median | Maximum | Mean | SD | Minimum | Median | Maximum | Mean | SD | p-Value | |
Amount of specific type of feed 1 | |||||||||||
Wrapped forage | 0.4 | 1.4 | 2.5 | 1.4 | 0.44 | 0.4 | 1.4 | 3.5 | 1.5 | 0.61 | 0.97 |
Hay | 0 | 0 | 0.6 | 0 | 0.11 | 0 | 0 | 1.3 | 0 | 0.19 | NA |
Straw | 0 | 0 | 1.1 | 0.1 | 0.18 | 0 | 0 | 0.8 | 0.2 | 0.19 | <0.0001 |
Lucerne | 0 | 0 | 0.3 | 0.03 | 0.07 | 0 | 0 | 0.4 | 0.08 | 0.05 | 0.05 |
Concentrates | 0 | 0.1 | 1.5 | 0.2 | 0.3 | 0 | 0.1 | 0.6 | 0.1 | 0.16 | 0.004 |
Mineral feeds | 0 | 0 | 0 | 0.008 | 0.01 | 0 | 0.02 | 0.04 | 0.01 | 0.011 | 0.08 |
Total feed ration 1,2 | |||||||||||
Total daily feed intake | 0.4 | 1.6 | 3.7 | 1.7 | 0.61 | 0.4 | 1.6 | 3.6 | 1.9 | 0.62 | 0.09 |
Proportion of concentrate, % of diet | 0.5 | 6.9 | 42.7 | 9.7 | 8.22 | 0.7 | 7.7 | 47.9 | 9.1 | 8.16 | <0.0001 |
Total intake of feed component | |||||||||||
Metabolisable energy for horses, MJ | 3 | 15 | 67 | 16 | 8 | 3 | 15 | 42 | 16 | 6.9 | 0.57 |
Digestible crude protein | 3 | 81 | 337 | 89 | 50.6 | 3 | 81 | 285 | 95 | 49.4 | 0.007 |
Neutral detergent fibre | 257 | 929 | 3459 | 1005 | 524.7 | 181 | 929 | 3237 | 1105 | 522.9 | <0.0001 |
Starch | 0 | 2 | 106 | 19 | 28.9 | 0 | 2 | 102 | 17 | 26 | 0.004 |
Crude fat | 0 | 1 | 37 | 5 | 9 | 0 | 1 | 28 | 5 | 6.8 | 0.28 |
Water-soluble carbohydrates | 20 | 172 | 367 | 177 | 80 | 26 | 152 | 359 | 167 | 74.5 | 0.02 |
Calcium (Ca) | 1 | 8 | 47 | 10 | 6.4 | 2 | 8 | 34 | 10 | 6.3 | 0.47 |
Phosphorus (P) | 1 | 4 | 15 | 5 | 2.8 | 1 | 4 | 16 | 5 | 2.7 | 0.85 |
Magnesium (Mg) | 1 | 3 | 11 | 3 | 2.1 | 1 | 3 | 13 | 3 | 2.2 | 0.63 |
Sodium (Na) | 0 | 1 | 19 | 2 | 2.6 | 0 | 1 | 22 | 2 | 3.2 | 0.92 |
Potassium (K) | 5 | 26 | 126 | 29 | 18.7 | 5 | 26 | 151 | 27 | 16.7 | 0.95 |
Variables | Case, n (%) | Control, n (%) | p-Value |
---|---|---|---|
Number of feedings of forage per day | 0.87 | ||
1 time | 1 (2) | 0 (0) | |
2 times | 15 (30) | 13 (26) | |
3 times | 14 (28) | 13 (26) | |
4 times | 14 (28) | 14 (28) | |
>4 times | 6 (12) | 8 (16) | |
Ad libitum access | 0 (0) | 2 (4) | |
Maximum time between two feedings of roughage | 0.45 | ||
<4 h | 7 (14) | 9 (18) | |
4–8 h | 12 (24) | 13 (26) | |
>8 h | 25 (50) | 28 (56) | |
Free access | 0 (0) | 2 (4) | |
Feeding strategy for roughage in paddock | 0.76 | ||
Forage not fed in the paddock | 4 (8) | 3 (6) | |
On the ground | 16 (32) | 18 (36) | |
In a feeding rack/tub or similar | 23 (46) | 23 (46) | |
Combination of ground and feeding rack | 3 (6) | 1 (2) | |
Other (in a hay-net, from a bale, in an automatic feeder) | 4 (8) | 4 (8) | |
Number of concentrate feedings per day | 0.43 | ||
Not fed concentrate | 14 (28) | 14 (28) | |
1 time | 18 (38) | 21 (42) | |
2 times | 12 (24) | 9 (18) | |
3 times | 5 (10) | 4 (8) | |
4 times | 1 (2) | 2 (4) | |
>4 times | 0 (0) | 0 (0) | |
Type of water source in stable/loose housing system | |||
Frostless automatic waterer | 18 (32) | 20 (40) | 0.76 |
Automatic waterer | 8 (16) | 7 (14) | |
Tub | 2 (4) | 3 (6) | |
Bucket | 13 (26) | 10 (20) | |
Natural water source | 3 (6) | 2 (4) | |
Combination of bucket and automatic waterer | 6 (12) | 8 (16) | |
Type of water source in paddock during winter | 0.25 | ||
Frostless automatic waterer | 12 (24) | 13 (26) | |
Frostless tub | 14 (28) | 16 (32) | |
Automatic waterer | 1 (2) | 3 (6) | |
Tub | 11 (22) | 10 (20) | |
Bucket | 2 (4) | 4 (8) | |
Natural water source | 2 (4) | 2 (4) | |
Combination of bucket and automatic waterer | 8 (16) | 2 (4) |
Changes in Faecal Appearance | Case Horses, n (%) |
---|---|
Less loose when changing from wrapped forage to hay | 9 (18) |
Less loose when changing from wrapped forage to pasture | 12 (24) |
Less loose when changing to another batch of wrapped forage | 4 (8) |
No change in faecal appearance with any change in feeding | 3 (6) |
More loose in association with changing feeds | 4 (8) |
Less loose when changing from primary to regrowth harvest 1 | 17 (34) |
Less loose when using feed additives 2 | 13 (26) |
Have not tried any change in feeding | 0 (0) |
Variables | Case, n (%) | Control, n (%) | p-Value |
---|---|---|---|
Housing system | 0.81 | ||
Individual box at night, in paddock during daytime | 32 (64) | 31 (62) | |
Loose housing system | 18 (36) | 19 (38) | |
Bedding | 0.72 | ||
Straw | 14 (28) | 15 (30) | |
Shavings | 6 (12) | 8 (16) | |
Sawdust | 6 (12) | 5 (10) | |
Peat | 3 (6) | 2 (4) | |
Combination of shavings and peat | 3 (6) | 4 (8) | |
Rubber mat | 3 (6) | 2 (4) | |
Combination of shavings and straw | 12 (24) | 11 (22) | |
Other (Raw sawdust, straw pellets) | 3 (6) | 3 (6) | |
Access to salt lick in loose housing system/stable | 1.00 | ||
Yes | 46 (92) | 45 (90) | |
No | 4 (8) | 5 (10) | |
Time spent per day in paddock during winter | 0.51 | ||
<8 h | 14 (28) | 19 (32) | |
8–12 h | 17 (34) | 15 (30) | |
>12 h | 19 (38) | 19 (38) | |
Paddock type (winter) | 0.67 | ||
Grass (old grass during winter) | 15 (30) | 17 (34) | |
Sand/Gravel | 6 (12) | 6 (12) | |
Soil | 16 (32) | 15 (30) | |
Forest | 13 (27) | 12 (24) | |
Annual time spent on pasture | 0.33 | ||
<4 weeks | 2 (4) | 2 (4) | |
4–8 weeks | 11 (22) | 7 (14) | |
8–12 weeks | 8 (16) | 9 (18) | |
>12 weeks | 23 (46) | 23 (46) | |
Not on pasture | 6 (12) | 9 (18) | |
Type of pasture | 0.68 | ||
Pasture on arable land | 9 (18) | 10 (20) | |
Natural or semi-natural pasture | 19 (38) | 17 (34) | |
Forest pasture | 1 (2) | 1 (2) | |
No pasture | 5 (10) | 9 (18) | |
Other (combination of different pasture types) | 16 (32) | 13 (26) | |
Type of water source on pasture | 0.43 | ||
Frostless automatic waterer | 2 (4) | 0 (0) | |
Frostless tub | 3 (6) | 3 (6) | |
Automatic waterer | 3 (6) | 1 (2) | |
Tub | 24 (48) | 25 (50) | |
Bucket | 5 (10) | 5 (10) | |
Natural water source | 3 (6) | 6 (12) | |
Combination of automatic waterer/bucket or automatic waterer/tub | 10 (20) | 10 (20) | |
Access to salt lick while on pasture | 0.30 | ||
Yes | 43 (86) | 40 (80) | |
No | 7 (14) | 10 (20) | |
Anthelmintic routines | 0.37 | ||
Regularly dewormed ≥ 1 time per year | 10 (20) | 14 (28) | |
Dewormed due to high 1 egg counts ≥ 1 time per year | 27 (54) | 25 (50) | |
Dewormed due to high 1 egg counts < 1 time per year | 8 (16) | 6 (12) | |
Dewormed if considered necessary | 3 (6) | 3 (6) | |
Not dewormed | 2 (4) | 2 (4) | |
Time from last deworming | 0.70 | ||
Not dewormed | 2 (4) | 2 (4) | |
0–3 months ago | 22 (44) | 18 (36) | |
3–6 months ago | 12 (22) | 13 (24) | |
6–12 months ago | 2 (4) | 7 (14) | |
>1 year ago | 12 (24) | 10 (20) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindroth, K.M.; Lindberg, J.-E.; Johansen, A.; Müller, C.E. Feeding and Management of Horses with and without Free Faecal Liquid: A Case–Control Study. Animals 2021, 11, 2552. https://doi.org/10.3390/ani11092552
Lindroth KM, Lindberg J-E, Johansen A, Müller CE. Feeding and Management of Horses with and without Free Faecal Liquid: A Case–Control Study. Animals. 2021; 11(9):2552. https://doi.org/10.3390/ani11092552
Chicago/Turabian StyleLindroth, Katrin M., Jan-Erik Lindberg, Astrid Johansen, and Cecilia E. Müller. 2021. "Feeding and Management of Horses with and without Free Faecal Liquid: A Case–Control Study" Animals 11, no. 9: 2552. https://doi.org/10.3390/ani11092552
APA StyleLindroth, K. M., Lindberg, J. -E., Johansen, A., & Müller, C. E. (2021). Feeding and Management of Horses with and without Free Faecal Liquid: A Case–Control Study. Animals, 11(9), 2552. https://doi.org/10.3390/ani11092552