From the Semen Collection Method to the Hatchlings: The Use of Cryopreserved Sperm from Pheasants Fed an Antioxidant-Enriched Diet
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Birds
2.3. Semen Collection and Semen Quality Parameters
2.4. Freezing Methodology in Pellets
2.5. Thawed Semen Quality
2.6. Females and Artificial Inseminations
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polge, C.; Smith, A.U.; Parkes, A.S. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 1949, 164, 666. [Google Scholar] [CrossRef]
- Blesbois, E. Current status in avian semen cryopreservation. Worlds Poult. Sci. J. 2007, 63, 213–222. [Google Scholar] [CrossRef]
- Váradi, É.; Drobnyák, Á.; Végi, B.; Liptói, K.; Kiss, C.; Barna, J. Cryopreservation of gander semen in cryovials—Comparative study. Acta Vet. Hung. 2019, 67, 246–255. [Google Scholar] [CrossRef]
- Váradi, É.; Végi, B.; Liptói, K.; Barna, J. Methods for cryopreservation of guinea fowl sperm. PLoS ONE 2013, 8, e62759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowalczy, A. The effect of cryopreservation process on morphology and fertilising ability of japanese quail (Coturnix japonica) spermatozoa. CryoLetters 2008, 29, 199–208. [Google Scholar]
- Sontakke, S.D.; Umapathy, G.; Sivaram, V.; Kholkute, S.D.; Shivaji, S. Semen characteristics, cryopreservation, and successful artificial insemination in the Blue Rock Pigeon (Columba livia). Theriogenology 2004, 62, 139–153. [Google Scholar] [CrossRef]
- Woelders, H. Cryopreservation of avian semen. In Cryopreservation and Freeze-Drying Protocols; Wolkers Willem, F., Oldenhof, H., Eds.; Springer: New York, NY, USA, 2021; pp. 379–399. ISBN 978-1-0716-0783-1. [Google Scholar]
- Tang, M.; Cao, J.; Yu, Z.; Liu, H.; Yang, F.; Huang, S.; He, J.; Yan, H. New semen freezing method for chicken and drake using dimethylacetamide as the cryoprotectant. Poult. Sci. 2021, 100, 101091. [Google Scholar] [CrossRef]
- Blesbois, E. Freezing avian semen. Avian Biol. Res. 2011, 4, 52–58. [Google Scholar] [CrossRef]
- Bréque, C.; Surai, P.; Brillard, J.P. Roles of antioxidants on prolonged storage of avian spermatozoa in vivo and in vitro. Mol. Reprod. Dev. 2003, 66, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Ugur, M.R.; Saber Abdelrahman, A.; Evans, H.C.; Gilmore, A.A.; Hitit, M.; Arifiantini, R.I.; Purwantara, B.; Kaya, A.; Memili, E. Advances in cryopreservation of bull sperm. Front. Vet. Sci. 2019, 6, 268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parks, J.E.; Lynch, D.V. Lipid composition and thermotropic phase behaviour of boar, bull, stallion, and rooster sperm membranes. Cryobiology 1992, 29, 255–266. [Google Scholar] [CrossRef]
- Surai, P.F.; Kochish, I.I.; Romanov, M.N.; Griffin, D.K. Nutritional modulation of the antioxidant capacities in poultry: The case of vitamin E. Poult. Sci. 2019, 98, 4030–4041. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, P.K. Motility, viability and fertilizing ability of avian sperm stored under in vitro conditions. Rev. Agric. Sci. 2020, 8, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Khalil-Khalili, A.A.; Zhandi, M.; Zaghari, M.; Mehrabani-Yeganeh, H.; Yousefi, A.R.; Tavakoli-Alamooti, M. The effect of dietary organic selenium on reproductive performance of broiler breeder roosters under dexamethasone induced stress. Theriogenology 2021, 161, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.; Zhandi, M.; Kohram, H.; Zaghari, M.; Sadeghi, M.; Sharafi, M. Improvement of post-thawed sperm quality and fertility of arian rooster by oral administration of d-aspartic acid. Theriogenology 2017, 92, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Najafi, A.; Kia, H.D.; Mehdipour, M.; Hamishehkar, H.; Álvarez-Rodríguez, M. Effect of quercetin loaded liposomes or nanostructured lipid carrier (nlc) on post-thawed sperm quality and fertility of rooster sperm. Theriogenology 2020, 152, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Zhandi, M.; Seifi-Ghajalo, E.; Shakeri, M.; Yousefi, A.R.; Sharafi, M.; Seifi-Jamadi, A. Effect of glutathione supplementation to semen extender on post-thawed rooster sperm quality indices frozen after different equilibration times. CryoLetters 2020, 41, 92–99. [Google Scholar] [PubMed]
- Leão, A.P.A.; de Souza, A.V.; Mesquita, N.F.; Pereira, L.J.; Zangeronimo, M.G. Antioxidant enrichment of rooster semen extenders—A systematic review. Res. Vet. Sci. 2021, 136, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Abdnour, S.A.; Hassan, M.A.E.; Mohammed, A.K.; Alhimaidi, A.R.; Al-Gabri, N.; Al-Khaldi, K.O.; Swelum, A.A. The effect of adding different levels of curcumin and its nanoparticles to extender on post-thaw quality of cryopreserved rabbit sperm. Animals 2020, 10, 1508. [Google Scholar] [CrossRef]
- Daghigh Kia, H.; Farhadi, R.; Ashrafi, I.; Mehdipour, M. Anti-oxidative effects of ethanol extract of origanum vulgare on kinetics, microscopic and oxidative parameters of cryopreserved holstein bull spermatozoa. Iran. J. Appl. Anim. Sci. 2016, 6, 783–789. [Google Scholar]
- Skřivan, M.; Marounek, M.; Dlouhá, G.; Ševčíková, S. Dietary selenium increases vitamin e contents of egg yolk and chicken meat. Br. Poult. Sci. 2008, 49, 482–486. [Google Scholar] [CrossRef] [PubMed]
- Gugała, D.; Flis, M.; Grela, E.R. The effect of zinc, iron, calcium, and copper from organic sources in pheasant diet on the performance, hatching, minerals, and fatty acid composition of eggs. Poult. Sci. 2019, 98, 4640–4647. [Google Scholar] [CrossRef] [PubMed]
- Holá, M.; Zíka, T.; Šálek, M.; Hanzal, V.; Kušta, T.; Ježek, M.; Hart, V. Effect of habitat and game management practices on ring-necked pheasant harvest in the Czech Republic. Eur. J. Wildl. Res. 2015, 61, 73–80. [Google Scholar] [CrossRef]
- Khan, I.M.; Cao, Z.; Liu, H.; Khan, A.; Rahman, S.U.; Khan, M.Z.; Sathanawongs, A.; Zhang, Y. Impact of cryopreservation on spermatozoa freeze-thawed traits and relevance omics to assess sperm cryo-tolerance in farm animals. Front. Vet. Sci. 2021, 8, 139. [Google Scholar] [CrossRef]
- Castillo, A.; Lenzi, C.; Pirone, A.; Baglini, A.; Cerolini, S.; Iaffaldano, N.; Sartore, S.; Russo, C.; Schiavone, A.; Marzoni Fecia di Cossato, M. Optimization of a protocol for the cryopreservation of sperm in pellets for the common pheasant (Phasianus colchicus mongolicus). Animals 2021, 11, 2472. [Google Scholar] [CrossRef]
- Marzoni, M.; Castillo, A.; Romboli, I. In Vivo Responses of cryopreserved pheasant semen. Avian Biol. Res. 2009, 2, 241–254. [Google Scholar]
- Castillo, A.; Romboli, I.; Marzoni, M. Cryopreserved pheasant semen thawed by the hotplate method and tested in vivo. Avian Biol. Res. 2011, 4, 137–138. [Google Scholar]
- Quinn, J.P.; Burrows, W.H. Artificial insemination in fowls. J. Hered. 1936, 27, 31–38. [Google Scholar] [CrossRef]
- Łukaszewicz, E.; Kowalczyk, A.; Jerysz, A. Characteristics of semen collected from gander included in the genetic resources conservation program. Poult. Sci. 2021, 100, 101314. [Google Scholar] [CrossRef]
- Łukaszewicz, E.T.; Kowalczyk, A.M.; Rzońca, Z. Comparative examination of Capercaillie (Tetrao urogallus L.) behaviour responses and semen quality to two methods of semen collection. PLoS ONE 2015, 10, e0138415. [Google Scholar] [CrossRef]
- Lukaszewicz, E. An effective method for freezing white italian gander semen. Theriogenology 2002, 58, 19–27. [Google Scholar] [CrossRef]
- Gerzilov, V. A Study on the semen characteristic and sexual activity of one-and two-year old muscovy drakes. Bulg. J. Agric. Sci. 2004, 10, 143–148. [Google Scholar]
- Madeddu, M.; Berlinguer, F.; Ledda, M.; Leoni, G.G.; Satta, V.; Succu, S.; Rotta, A.; Pasciu, V.; Zinellu, A.; Muzzeddu, M.; et al. Ejaculate collection efficiency and post-thaw semen quality in wild-caught griffon vultures from the sardinian population. Reprod. Biol. Endocrinol. 2009, 7, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krohn, J.; Fischer, D.; Schneider, H.; Failing, K.; Lierz, M.; Ehling, C.; Wehrend, A. Modification and clinical application of the inner perivitelline membrane test in different avian species. Vet. Sci. 2019, 6, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo, A.; Marzoni, M.; Romboli, I. Some advice to breed common pheasants used as donors of good quality semen. Avian Biol. Res. 2009, 2, 243. [Google Scholar]
- Lake, P.E.; Ravie, O.; McAdam, J. Preservation of fowl semen in liquid nitrogen: application to breeding programmes. Br. Poult. Sci. 1981, 22, 71–77. [Google Scholar] [CrossRef]
- Bakst, M.; Cecil, H.C. Techniques for Semen Evaluation, Semen Storage and Fertility Determination, 1st ed.; Poultry Science Association: Champaign, IL, USA, 1997. [Google Scholar]
- Froman, D.P.; McLean, D.J. Objective measurement of sperm motility based upon sperm penetration of Accudenz®. Poult. Sci. 1996, 75, 776–784. [Google Scholar] [CrossRef]
- Tselutin, K.; Seigneurin, F.; Blesbois, E. Comparison of cryoprotectants and methods of cryopreservation of fowl spermatozoa. Poult. Sci. 1999, 78, 586–590. [Google Scholar] [CrossRef] [PubMed]
- Marzoni, M.; Castillo, A.; Romboli, I. Pheasant semen cryopreserved in pellets: effect of drop volume on spermatozoa viability and mobility. Avian Biol. Res. 2009, 2, 251–252. [Google Scholar]
- Gee, G.F.; Bertschinger, H.; Donoghue, A.M.; Blanco, J.; Soley, J. Reproduction in nondomestic birds: physiology, semen collection, artificial insemination and cryopreservation. Avian Poult. Biol. Rev. 2004, 15, 47–101. [Google Scholar] [CrossRef]
- Marzoni, M.; Castillo, A.; Chiarini, R.; Bolognesi, P.G.; Romboli, I. Cryopreservation of pheasant semen: effect of dilution ratio and cooling time on spermatozoa viability and mobility. In Proceedings of the 1st Mediterranean Summit WPSA; Tserveni-Goussi, A., Yannakopoulos, A., Fortomaris, P., Arsenos, G., Sossidou, E., Eds.; University Studio Press: Thessaloniki, Greece, 2008; pp. 451–455. [Google Scholar]
- Marzoni, M.; Castillo, A.; Chiarini, R.; Romboli, I. Effect of vitamin e/selenium ratio on mobility of pheasant spermatozoa. In Proceedings of the 2010 European Poultry Conference, Tours, France, 23–27 August 2010. [Google Scholar]
- Marzoni, M.; Castillo, A.; Romboli, I. Hatchability of pheasant eggs fertilised with cryopreserved semen from dietary manipulated males. Avian Biol. Res. 2012, 5, 172–173. [Google Scholar]
- Chauychu-noo, N.; Thananurak, P.; Boonkum, W.; Vongpralub, T.; Chankitisakul, V. Effect of organic selenium dietary supplementation on quality and fertility of cryopreserved chicken sperm. Cryobiology 2021, 98, 57–62. [Google Scholar] [CrossRef]
- Edens, F.W.; Sefton, A.E. Sel-Plex® improves spermatozoa morphology in broiler breeder males. Int. J. Poult. Sci. 2009, 8, 853–861. [Google Scholar] [CrossRef]
- Gallo, R.; Veronico, M.; Nacucchi, O.; Tafaro, E.; Barile, P.; Nicastro, F.; Zezza, L. The effects of selenium, zinc and vitamin e supplementation on performance of broiler breeder males. Ital. J. Anim. Sci. 2003, 2, 471–473. [Google Scholar]
- Jerysz, A.; Lukaszewicz, E. Effect of dietary selenium and vitamin e on ganders’ response to semen collection and ejaculate characteristics. Biol. Trace Elem. Res. 2013, 153, 196–204. [Google Scholar] [CrossRef] [Green Version]
- Saint Jalme, M.; Lecoq, R.; Seigneurin, F.; Blesbois, E.; Plouzeau, E. Cryopreservation of semen from endangered pheasants: the first step towards a cryobank for endangered avian species. Theriogenology 2003, 59, 875–888. [Google Scholar] [CrossRef]
- Zhang, Y.Y. Semen characterization and sperm storage in Cabot’s Tragopan. Poult. Sci. 2006, 85, 892–898. [Google Scholar] [CrossRef] [PubMed]
- Peris-Frau, P.; Soler, A.J.; Iniesta-Cuerda, M.; Martín-Maestro, A.; Sánchez-Ajofrín, I.; Medina-Chávez, D.A.; Fernández-Santos, M.R.; García-álvarez, O.; Maroto-Morales, A.; Montoro, V.; et al. Sperm cryodamage in ruminants: understanding the molecular changes induced by the cryopreservation process to optimize sperm quality. Int. J. Mol. Sci. 2020, 21, 2781. [Google Scholar] [CrossRef]
- Surai, P.F.; Fisinin, V.I. Selenium in poultry breeder nutrition: an update. Anim. Feed Sci. Technol. 2014, 191, 1–15. [Google Scholar] [CrossRef]
- Chiarini, R.; Marzoni, M.; Schiavone, A.; Castillo, A.; Romboli, I. Fatty acid composition of pheasant spermatozoa. Avian Poult. Biol. Rev. 2002, 13, 238–240. [Google Scholar]
- Surai, P.F.; Blesbois, E.; Grasseau, I.; Chalah, T.; Brillard, J.P.; Wishart, G.J.; Cerolini, S.; Sparks, N.H.C. Fatty acid composition, glutathione peroxidase and superoxide dismutase activity and total antioxidant activity of avian semen. Comp. Biochem. Physiol. Part. B Biochem. Mol. Biol. 1998, 120, 527–533. [Google Scholar] [CrossRef]
- Douard, V.; Hermier, D.; Blesbois, E. Changes in turkey semen lipids during liquid in vitro storage. Biol. Reprod. 2000, 63, 1450–1456. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol. Reprod. Dev. 2017, 84, 1039–1052. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Prasad, J.K.; Srivastava, N.; Ghosh, S.K. Strategies to minimize various stress-related freeze-thaw damages during conventional cryopreservation of mammalian spermatozoa. Biopreservation Biobanking 2019, 17, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Pini, T.; Leahy, T.; de Graaf, S.P. Sublethal sperm freezing damage: manifestations and solutions. Theriogenology 2018, 118, 172–181. [Google Scholar] [CrossRef]
- Ezzati, M.; Shanehbandi, D.; Hamdi, K.; Rahbar, S.; Pashaiasl, M. Influence of cryopreservation on structure and function of mammalian spermatozoa: An overview. Cell Tissue Banking 2020, 21, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Cerolini, S.; Zaniboni, L.; Maldjian, A.; Gliozzi, T. Effect of docosahexaenoic acid and α-tocopherol enrichment in chicken sperm on semen quality, sperm lipid composition and susceptibility to peroxidation. Theriogenology 2006, 66, 877–886. [Google Scholar] [CrossRef]
- Hu, J.; Chen, J.L.; Wen, J.; Zhao, G.P.; Zheng, M.Q.; Liu, R.R.; Liu, W.P.; Zhao, L.H.; Liu, G.F.; Wang, Z.W. Estimation of the genetic parameters of semen quality in Beijing-you chickens. Poult. Sci. 2013, 92, 2606–2612. [Google Scholar] [CrossRef]
- Mavi, G.K.; Dubey, P.P.; Cheema, R.S.; Bansal, B.K. Characterization of fertility associated sperm proteins in aseel and rhode island red chicken breeds. Anim. Reprod. Sci. 2019, 203, 94–104. [Google Scholar] [CrossRef]
- Liu, C.H.; Dong, H.B.; Ma, D.L.; Li, Y.W.; Han, D.; Luo, M.J.; Chang, Z.-L.; Tan, J.H. Effects of ph during liquid storage of goat semen on sperm viability and fertilizing potential. Anim. Reprod. Sci. 2016, 164, 47–56. [Google Scholar] [CrossRef]
- Gaschler, M.M.; Stockwell, B.R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun. 2017, 482, 419–425. [Google Scholar] [CrossRef]
- Santiago-Moreno, J.; Blesbois, E. Functional aspects of seminal plasma in bird reproduction. Int. J. Mol. Sci. 2020, 21, 5664. [Google Scholar] [CrossRef] [PubMed]
- Caglayan, T.; Alasahan, S.; Cetin, O.; Kirikci, K.; Gunlu, A. Effects of egg weight and length of storage period on chick weight and hatchability performance of pheasants (Phasianus colchicus). J. Food Agric. Environ. 2010, 8, 407–410. [Google Scholar]
- Ugurlu, M.; Das, Y.K.; Akdag, F.; Atmaca, E.; Salman, M.; Bülent, T.E.K.E.; Arslan, S. Effect of egg weight and amount of protoporphyrin and biliverdin in the egg shell on hatching characteristics and embryonal mortality in pheasants (Phasianus colchicus). Ankara Univ. Vet. Fak. Derg. 2017, 64, 117–124. [Google Scholar] [CrossRef]
- Marzoni, M.; Castillo, A.; Schiavone, A.; Romboli, I. Effect of dietary vitamin e supplementation on phesant egg production. In Proceedings of the Incubation and Fertility Research Group, WPSA, Oxford, UK, 11–12 September 2000. [Google Scholar]
- Esen, F.; Ozbey, O.; Genç, F. The effect of age on egg production, hatchability and egg quality characteristics in pheasants (Phasianus colchicus). J. Anim. Vet. Adv. 2010, 9, 1237–1241. [Google Scholar] [CrossRef]
- Castillo, A.; Marzoni, M.; Chiarini, R.; Romboli, I. Storage of pheasant semen: some aspects on quality and fertilising ability. Anim. Repord. Sci. 2000, 60–61, 481–492. [Google Scholar]
- Pérez-Marín, C.C.; Arando, A.; Mora, C.; Cabello, A. Fertility after insemination with frozen-thawed sperm using n-methylacetamide extender on the combatiente español avian breed. Anim. Reprod. Sci. 2019, 208, 106111. [Google Scholar] [CrossRef] [PubMed]
- di Iorio, M.; Rusco, G.; Iampietro, R.; Maiuro, L.; Schiavone, A.; Cerolini, S.; Iaffaldano, N. Validation of the turkey semen cryopreservation by evaluating the effect of two diluents and the inseminating doses. Animals 2020, 10, 1329. [Google Scholar] [CrossRef]
CON | E-Se | SEM | p | |
---|---|---|---|---|
Donors (n) | 15 | 15 | ||
Ejaculate volume (µL) | 93.51 | 138.91 | 7.116 | 0.0010 |
pH | 8.44 | 8.39 | 0.040 | 0.5200 |
Sperm concentration (×109/mL) | 7.48 | 9.11 | 0.180 | 0.0001 |
Sperm viability CS (%) | 82.66 | 85.97 | 1.180 | 0.1712 |
Sperm mobility (A550 nm) | 0.256 | 0.270 | 0.008 | 0.3308 |
Normal sperm LS (%) | 77.49 | 82.44 | 2.370 | 0.2690 |
Abnormal sperm tail LS (%) | 4.82 | 2.98 | 0.894 | 0.5220 |
Abnormal sperm head LS (%) | 4.02 | 2.64 | 0.683 | 0.5826 |
Sperm viability CTS | 25.48 | 25.05 | 1.803 | 0.8256 |
Sperm mobility FS | 15.08 | 16.49 | 0.739 | 0.1849 |
Normal sperm LTS | 37.13 | 53.78 | 2.255 | 0.0001 |
Abnormal sperm tail LTS | 37.30 | 27.97 | 1.461 | 0.0007 |
Abnormal sperm head LTS | 24.96 | 18.47 | 0.922 | 0.0002 |
Sperm injuries | ||||
Head | ||||
Bent sperm LTS | 5.77 | 4.40 | 0.572 | 0.1300 |
Fracture sperm LTS | 14.46 | 10.27 | 0.556 | 0.0001 |
Coiled LTS | 0.09 | 0.01 | 0.028 | 0.1586 |
Swollen-detached LTS | 3.78 | 3.38 | 0.402 | 0.9673 |
Knotted LTS | 0.71 | 0.30 | 0.097 | 0.0623 |
Headless LTS | 0.15 | 0.11 | 0.041 | 0.8398 |
Tail | ||||
Looping LTS | 8.89 | 8.23 | 0.667 | 0.6709 |
Fracture LTS | 26.85 | 19.07 | 1.033 | 0.0001 |
Coiled LTS | 1.57 | 0.67 | 0.278 | 0.0690 |
Abs. | pH | SC | % L-CS | % N-LS | % At-LS | % Ah-LS | ||
---|---|---|---|---|---|---|---|---|
CON | Vol. | −0.0392 | 0.1320 | 0.1124 | 0.1845 | −0.0616 | −0.2269 | −0.2597 |
Abs. | −0.2702 | 0.1262 | −0.1613 | −0.0709 | −0.5372 | −0.1904 | ||
pH | 0.6967 ** | 0.0319 | 0.7936** | 0.8304 ** | 0.8345 ** | |||
SC | 0.2262 | 0.7291* | 0.4805 | 0.6508 * | ||||
% L-CS | 0.2674 | −0.0561 | −0.1771 | |||||
% N-LS | 0.7417 ** | 0.8577 ** | ||||||
% At-LS | 0.8907 ** | |||||||
E-Se | vol. | −0.5107 | 0.3183 | −0.2562 | 0.4277 | 0.1381 | 0.5683 | 0.4641 |
Abs. | 0.2816 | 0.1191 | −0.6783 | 0.0466 | −0.0267 | −0.0677 | ||
pH | −0.0735 | −0.0068 | 0.7449 | 0.6339 * | 0.7353 ** | |||
SC | 0.4146 | −0.2801 | −0.3106 | −0.4873 | ||||
% L-CS | 0.0342 | −0.1407 | −0.1578 | |||||
% N-LS | 0.5475 * | 0.7767 ** | ||||||
% At-LS | 0.9125 ** |
% L-CTS | % N-LTS | % At-LTS | % Ah-LTS | ||
---|---|---|---|---|---|
CON | % Abs.-FS | 0.1836 | 0.3605 | −0.3378 | −0.2160 |
% L-CTS | 0.3880 * | −0.4237 * | −0.1221 | ||
% N-LTS | −0.9552 ** | −0.6121 ** | |||
% At-LTS | 0.3737 | ||||
E-Se | % Abs.-FS | 0.8470 ** | −0.0372 | 0.0142 | 0.0269 |
% L-CTS | −0.3258 | 0.2442 | 0.3602 | ||
% N-LTS | −0.9664 ** | −0.9279 ** | |||
% At-LTS | 0.8222 ** |
CON | E-Se | p | ||
---|---|---|---|---|
Females | (n) | 20 | 20 | |
Eggs laid | 356 | 368 | ||
Egg weight | (g) | 33.83 ± 1.93 | 32.94 ± 3.21 | 0.073 |
Egg laying | (%) | 84.76 | 87.62 | 0.615 |
Fertility | 30.34 | 30.44 | 0.982 | |
HFE | 29.63 | 28.57 | 0.343 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo, A.; Lenzi, C.; Pirone, A.; Baglini, A.; Russo, C.; Soglia, D.; Schiavone, A.; Marzoni Fecia di Cossato, M. From the Semen Collection Method to the Hatchlings: The Use of Cryopreserved Sperm from Pheasants Fed an Antioxidant-Enriched Diet. Animals 2021, 11, 2624. https://doi.org/10.3390/ani11092624
Castillo A, Lenzi C, Pirone A, Baglini A, Russo C, Soglia D, Schiavone A, Marzoni Fecia di Cossato M. From the Semen Collection Method to the Hatchlings: The Use of Cryopreserved Sperm from Pheasants Fed an Antioxidant-Enriched Diet. Animals. 2021; 11(9):2624. https://doi.org/10.3390/ani11092624
Chicago/Turabian StyleCastillo, Annelisse, Carla Lenzi, Andrea Pirone, Alessandro Baglini, Claudia Russo, Dominga Soglia, Achille Schiavone, and Margherita Marzoni Fecia di Cossato. 2021. "From the Semen Collection Method to the Hatchlings: The Use of Cryopreserved Sperm from Pheasants Fed an Antioxidant-Enriched Diet" Animals 11, no. 9: 2624. https://doi.org/10.3390/ani11092624
APA StyleCastillo, A., Lenzi, C., Pirone, A., Baglini, A., Russo, C., Soglia, D., Schiavone, A., & Marzoni Fecia di Cossato, M. (2021). From the Semen Collection Method to the Hatchlings: The Use of Cryopreserved Sperm from Pheasants Fed an Antioxidant-Enriched Diet. Animals, 11(9), 2624. https://doi.org/10.3390/ani11092624