The Impact of the Adjunct Heat-Treated Starter Culture and Lb. helveticus LH-B01 on the Proteolysis and ACE Inhibitory Activity in Dutch-Type Cheese Model during Ripening
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Cheese Models
2.2. Physicochemical Analyses
2.3. Proteolysis
2.4. Determination of the ACE-Inhibitory Activity of Dutch-Type Cheese Models
2.5. Microbiological Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Analysis
3.2. Proteolysis
3.3. Determination of ACE Inhibitory Activity
3.4. Microbiological Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Poveda, J.M.; Chicón, R.; Cabezas, L. Biogenic amine content and proteolysis in Manchego cheese manufactured with Lactobacillus paracasei subsp. paracasei as adjunct and other autochthonous strains as starters. Int. Dairy J. 2015, 47, 94–101. [Google Scholar]
- Cavanagh, D.; Kilcawley, K.N.; O’Sullivan, M.G.; Fitzgerald, G.F.; McAuliffe, O. Assessment of wild non-dairy lactococcal strains for flavor diversification in a mini-Gouda type cheese model. Food Res. Int. 2014, 62, 432–440. [Google Scholar] [CrossRef]
- El-Tanboly, E.S.; El-Hofi, M.; Youssef, Y.B.; El-Desoki, W.; Jalil, R.A. Influence of freeze-shocked mesophilic lactic starter bacteria and adjunct lactobacilli on the rate of ripening Gouda cheese and flavor development. J. Am. Sci. 2010, 6, 465–471. [Google Scholar]
- Klein, N.; Lortal, S. Attenuated starters: An efficient means to influence cheese ripening—A review. Int. Dairy J. 1999, 9, 751–762. [Google Scholar] [CrossRef] [Green Version]
- Law, B.A. Controlled and accelerated cheese ripening: The research base for new technology. Int. Dairy J. 2001, 11, 383–398. [Google Scholar] [CrossRef]
- Garbowska, M.; Pluta, A.S.; Berthold-Pluta, A. Changes during ripening of reduced-fat Dutch-type cheeses produced with low temperature and long time (LTLT) heat-treated adjunct starter culture. LWT- Food Sci. Technol. 2016, 69, 287–294. [Google Scholar] [CrossRef]
- Barac, M.; Pesic, M.; Zilic, S.; Smiljanic, M.; Sredovic Ignjatovic, I.; Vucic, T.; Kostic, A.; Milincic, D. The Influence of Milk Type on the Proteolysis and Antioxidant Capacity of White-Brined Cheese Manufactured from High-Heat-Treated Milk Pretreated with Chymosin. Foods 2019, 8, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beganović, J.; Kos, B.; Pavunc, A.L.; Uroić, K.; Džidara, P.; Šušković, J. Proteolytic activity of probiotic strain Lactobacillus helveticus M92. Anaerobe 2013, 20, 58–64. [Google Scholar] [CrossRef]
- Sadat-Mekmene, L.; Richoux, R.; Aubert-Frogerais, L.; Madec, M.N.; Corre, C.; Piot, M.; Jardin, J.; Le Feunteun, S.; Lortal, S.; Gagnaire, V. Lactobacillus helveticus as a tool to change proteolysis and functionality in Swiss-type cheeses. J. Dairy Sci. 2013, 96, 1455–1470. [Google Scholar] [CrossRef] [PubMed]
- Baptista, D.P.; Galli, B.D.; Cavalheiro, F.G.; Negrão, F.; Eberlin, M.N.; Gigante, M.L. Lactobacillus helveticus LH-B02 favours the release of bioactive peptide during Prato cheese ripening. Int. Dairy J. 2018, 87, 75–83. [Google Scholar] [CrossRef]
- Sadat-Mekmene, L.; Genay, M.; Atlan, D.; Lortal, S.; Gagnaire, V. Original features of cell-envelope proteinases of Lactobacillus helveticus. A review. Int. J. Food Microbiol. 2011, 146, 1–13. [Google Scholar] [CrossRef]
- Slattery, L.; OCallaghan, J.; Fitzgerald, G.F.; Beresford, T.; Ross, R.P. Lactobacillus helveticus a thermophilic dairy starter related to gut bacteria. J. Dairy Sci. 2010, 93, 4435–4454. [Google Scholar] [CrossRef]
- Ruyssen, T.; Janssens, M.; Van Gasse, B.; Van Laere, D.; Van der Eecken, N.; De Meerleer, M.; Vermeiren, L.; Van Hoorde, K.; Martins, J.C.; Uyttendaele, M.; et al. Characterisation of Gouda cheeses based on sensory, analytical and high-field 1H nuclear magnetic resonance spectroscopy determinations: Effect of adjunct cultures and brine composition on sodium-reduced Gouda cheese. Int. Dairy J. 2013, 33, 142–152. [Google Scholar] [CrossRef]
- Gupta, A.; Mann, B.; Kumar, R.; Sangwan, R.B. Antioxidant activity of Cheddar cheeses at different stages of ripening. Int. J. Dairy Technol. 2009, 62, 339–347. [Google Scholar] [CrossRef]
- Garbowska, M.; Pluta, A.; Berthold-Pluta, A. Antihypertensive Peptide Activity in Dutch-Type Cheese Models Prepared with Diferent Additional Strains of Lactobacillus Genus Bacteria. Appl. Sci. Basel. 2019, 9, 1679. [Google Scholar]
- Garbowska, M.; Pluta, A.; Berthold-Pluta, A. Proteolytic and ACE-inhibitory activities of Dutch-type cheese models prepared with different strains of Lactococcus lactis. Food Biosci. 2020, 35, 1–7. [Google Scholar] [CrossRef]
- AOAC. International Official Methods of Analysis. 18th 2005, Current through Revision 2; AOAC International: Gaithersburg, MD, USA, 2007. [Google Scholar]
- IDF Standard 222:2008. Cheese—Determination of Fat Content—Van Gulik Method; International Dairy Federation: Brussels, Belgium, 2008. [Google Scholar]
- AOAC. International Official Methods of Analysis; AOAC International: Gaithersburg, MD, USA, 2000; Volume 2. [Google Scholar]
- ISO-2781:2011. Cheese and Processed Cheese—Determination of the Nitrogenous Fractions; International Dairy Federation: Brussels, Belgium, 2011. [Google Scholar]
- Church, F.C.; Swaisgood, H.E.; Porter, D.H.; Catignani, G.L. Spectrophotometric assay asing o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J. Dairy Sci. 1983, 66, 1219–1227. [Google Scholar] [CrossRef]
- Guinee, T.; Auty, M.; Fenolen, M. The effect of fat content on the rheology, microstructure and heat-induced functional characteristics of Cheddar cheese. Int. Dairy J. 2000, 10, 277–288. [Google Scholar] [CrossRef]
- Sadowska, J.; Białobrzewski, I.; Jeliński, T.; Markowski, M. Effect of fat content and storage time on the rheological properties of Dutch-type cheese. J. Food Eng. 2009, 94, 254–259. [Google Scholar] [CrossRef]
- McSweeney, P.L.H.; Fox, P.F. Chemical methods for the characterization of proteolysis in cheese during ripening. Dairy Sci. Technol. 1997, 77, 41–76. [Google Scholar] [CrossRef] [Green Version]
- Benfeldt, C.; Sorensen, J. Heat treatment of cheese milk: Effect on proteolysis during cheese ripening. Int. Dairy J. 2001, 11, 567–574. [Google Scholar] [CrossRef]
- Sadat-Mekmene, L.; Jardin, J.; Corre, C.; Mollé, D.; Richoux, R.; Delage, M.M.; Lortal, S.; Gagnaire, V. Simultaneous presence of PrtH and PrtH2 proteinases in Lactobacillus helveticus strains improves break down of the pure a-s1-casein. Appl. Environ. Microbiol. 2011, 77, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Tellez, A.; Corredig, M.; Brovko, L.Y.; Griffiths, M.W. Characterization of immune active peptides obtained from milk fermented by Lactobacillus helveticus. J. Dairy Res. 2010, 18, 1–8. [Google Scholar] [CrossRef]
- Genay, M.; Sadat, L.; Gagnaire, V.; Lortal, S. prtH2, not prtH, is the ubiquitous cell wall proteinase gene in Lactobacillus helveticus. Appl. Environ. Microbiol. 2009, 75, 3238–3249. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Li, X.; Bi, W.; Zhang, L.; Ma, L.; Ren, H.; Li, M. Isomaltooligosaccharide increases the Lactobacillus rhamnosus viable count in Cheddar cheese. Int. J. Dairy Technol. 2015, 68, 389–398. [Google Scholar] [CrossRef]
- Zhang, X.; Hao, X.Y.; Wang, H.; Li, X.; Liu, L.; Yang, W.; Zhao, M.; Wang, L.; Bora, A.F.M. The effects of Lactobacillus plantarum combined with inulin on the physicochemical properties and sensory acceptance of low-fat Cheddar cheese during ripening. Int. Dairy J. 2021, 115, 104947. [Google Scholar] [CrossRef]
- Munir, M.; Nadeem, M.; Qureshi, T.M.; Gamlath, C.J.; Martin, G.J.O.; Hemar, Y.; Ashokkumar, M. Effect of sonication, microwaves and high-pressure processing on ACE-inhibitory activity and antioxidant potential of Cheddar cheese during ripening. Ultrason. Sonochem. 2020, 67, 105140. [Google Scholar] [CrossRef]
- Ong, L.; Henriksson, A.; Shah, N.P. Development of probiotic Cheddar cheese containing Lactobacillus acidophilus, Lb. casei, Lb. paracasei and Bifidobacterium spp. and the influence of these bacteria on proteolytic patterns and production of organic acid. Int. Dairy J. 2006, 16, 446–456. [Google Scholar] [CrossRef]
- Law, B.A. Proteolysis in relation to normal and accelerated cheese ripening. In Cheese: Chemistry, Physics and Microbioloogy; Fox, P.F., Ed.; Elsevier Applied Science Publication Ltd.: London, UK, 1987; Volume 1, pp. 365–392. [Google Scholar]
- Bergamini, C.V.; Hynes, E.R.; Zalazar, C.A. Influence of probiotic bacteria on the proteolysis profile of a semi-hard cheese. Int. Dairy J. 2006, 16, 856–866. [Google Scholar] [CrossRef]
- Garabal, J.I.; Rodriquez-Alonso, P.; Centeno, J.A. Characterization of lactic acid bacteria isolated from raw cows’ milk cheeses currently produced in Galicia (NW Spain). LWT Food Sci. Technol. 2008, 41, 1452–1458. [Google Scholar] [CrossRef]
- Farkye, N.; Madkor, S.; Atkins, H. Proteolytic abilities of some lactic acid bacteria in model cheese system. Int. Dairy J. 1995, 5, 715–725. [Google Scholar] [CrossRef]
- Ardö, Y.; Larsson, P.; Lindmark-Månsson, H.; Hedenberg, A. Studies of peptidolysis during early maturation and its influence on low-fat cheese quality. Milchwissenschaft 1989, 44, 485–489. [Google Scholar]
- Herreros, M.A.; Fresno, J.M.; González Prieto, M.J.; Tornadijo, M.E. Technological characterization of lactic acid bacteria isolated from Armada cheese (a Spanish goat’s milk cheese). Int. Dairy J. 2003, 13, 469–479. [Google Scholar] [CrossRef]
- Nieto-Arribas, P.; Seseña, S.; Poveda, J.M.; Palop, L.; Cabezas, L. Genotypic and technological characterization of Leuconostoc isolates to be used as adjunct starters in Manchego cheese manufacture. Food Microbiol. 2010, 27, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Baptista, D.P.; Negrão, F.; Eberlin, M.N.; Gigante, M.L. Peptide profile and angiotensin-converting enzyme inhibitory activity of Prato cheese with salt reduction and Lactobacillus helveticus as an adjunct culture. Food Res. Int. 2020, 133, 109190. [Google Scholar] [CrossRef]
- Sheibani, A.; Ayyash, M.M.; Shah, N.P.; Mishra, V.K. The effects of salt reduction on characteristics of hard type cheese made using high proteolytic starter culture. Int. Food Res. J. 2015, 22, 2452–2459. [Google Scholar]
- Ong, L.; Shah, N.P. Release and identification of angiotensin-converting enzyme-inhibitory peptides as influenced by ripening temperatures and probiotic adjuncts in Cheddar cheeses. LWT Food Sci. Technol. 2008, 41, 1555–1566. [Google Scholar] [CrossRef]
- Hynes, E.; Ogier, J.C.; Delacroix-Buchet, A. Proteolysis during ripening of miniature washed-curd cheese manufactured with different strains of starter bacteria and a Lactobacillus plantarum adjunct culture. Int. Dairy J. 2001, 11, 587–597. [Google Scholar] [CrossRef]
- Burns, P.; Cuffia, F.; Milesi, M.; Vinderola, G.; Meinardi, C.; Sabbag, N.; Hynes, E. Technological and probiotic role of adjunct cultures of non-starter lactobacilli in soft cheeses. Food Microbiol. 2012, 30, 45–50. [Google Scholar] [CrossRef]
- Van Hoorde, K.; Van Leuven, I.; Dirinck, P.; Heyndrickx, M.; Coudijzer, K.; Vandamme, P.; Huys, G. Selection, application and monitoring of Lactobacillus paracasei strains as adjunct cultures in the production of Gouda-type cheeses. Int. J. Food Microbiol. 2010, 144, 226–235. [Google Scholar] [CrossRef]
- Crow, V.; Curry, B.; Hayes, M. The ecology of non-starter lactic acid bacteria (NSLAB) and their use as adjuncts in New Zealand Cheddar. Int. Dairy J. 2001, 11, 275–283. [Google Scholar] [CrossRef]
- Beresford, T.; Williams, A. The microbiology of cheese ripening. In Cheese: Chemistry, Physics and Microbiology; Fox, P.F., McSweeney, P.L.H., Cogan, T.M., Guinee, T.P., Eds.; Academic Press: London, UK, 2004; Volume 1, pp. 287–317. [Google Scholar]
- Crow, V.; Coolbear, T.; Gopal, P.; Martley, F.; McKay, L.; Riepe, H. The role of autolysis of lactic acid bacteria in the ripening of cheese. Int. Dairy J. 1995, 5, 855–875. [Google Scholar] [CrossRef]
- Lane, C.N.; Fox, P.F.; Walsh, E.M.; Folkertsma, B.; McSweeney, P.L.H. Effect of compositional and environmental factors on the growth of indigenous non-starter lactic acid bacteria in Cheddar cheese. Le Lait 1997, 77, 561–573. [Google Scholar] [CrossRef]
Cheese Model Variant | Coagulating Enzyme | Basic Starter | Additional Starter |
---|---|---|---|
C | Fromase 2200 TL | 2.0% CHN–19 | (-) |
LHB01 | 1.5% Lactobacillus helveticus (LHB01) | ||
XT–312 55 °C | 1.5% XT–312 starter heated at 55 °C/15 min | ||
XT–312 60 °C | 1.5% XT–312 starter heated at 60 °C/15 min | ||
XT–312 65 °C | 1.5% XT–312 starter heated at 65 °C/15 min | ||
XT–312 70 °C | 1.5% XT–312 starter heated at 70 °C/15 min | ||
XT–312 75 °C | 1.5% XT–312 starter heated at 75 °C/15 min |
Cheese Model | |||||||
---|---|---|---|---|---|---|---|
C | LHB01 | XT–312 55 °C | XT–312 60 °C | XT–312 65 °C | XT–312 70 °C | XT–312 75 °C | |
Moisture (%) | 46.31 a | 46.76 a | 47.02 a | 46.78 a | 46.89 a | 47.08 a | 46.90 a |
Moisture on fat free basis (MFFB %) | 55.81 a | 56.46 a | 56.99 a | 56.66 a | 56.73 a | 57.00 a | 56.83 a |
Fat (%) | 17.03 a | 17.18 a | 17.50 a | 17.44 a | 17.35 a | 17.40 a | 17.48 a |
Fat in dry matter (FDM %) | 31.72 a | 32.26 a | 33.03 a | 32.76 a | 32.66 a | 32.87 a | 32.91 a |
pH | 5.33 a | 5.31 a | 5.28 a | 5.32 a | 5.31 a | 5.29 a | 5.32 a |
Total N (TN %) | 31.01 a | 31.04 a | 30.96 a | 30.31 a | 31.18 a | 31.00 a | 31.02 a |
Cheese Model Variant | Parameter (%) | Time of Ripening (Weeks) | ||
---|---|---|---|---|
1 | 3 | 5 | ||
Control | SN/TN | 9.00 ± 0.14 a | 15.49 ± 0.15 a | 24.58 ± 0.11 a |
TCA-SN/TN | 6,69 ± 0,22 B | 8.74 ± 0.07 B | 16.06 ± 0.17 A | |
PTA-SN/TN | 0.14 ± 0.02 A | 0.29 ± 0.09 A | 1.03 ± 0.11 A | |
LHB01 | SN/TN | 8.74 ± 0.12 a | 21.16 ± 0.60 c | 30.56 ± 0.44 b |
TCA-SN/TN | 7.53 ± 0.23 C | 15.92 ± 0.13 E | 19.19 ± 0.18 E | |
PTA-SN/TN | 0.19 ± 0.03 A,b | 1.73 ± 0.12 C | 3.16 ± 0.16 B | |
XT–312 55 °C | SN/TN | 8.69 ± 0.13 a | 16.02 ± 0.14 a | 25.53 ± 0.75 a |
TCA-SN/TN | 6.11 ± 0.19 A | 7.57 ± 0.09 A | 16.43 ± 0.16 A | |
PTA-SN/TN | 0.11 ± 0.03 A | 0.25 ± 0.07 A | 1.13 ± 0.17 A | |
XT–312 60 °C | SN/TN | 9.82 ± 0.18 b | 16.23 ± 0.27 a | 25.45 ± 0.71 a |
TCA-SN/TN | 6.84 ± 0.16 BC | 8.48 ± 0.13 B | 16.99 ± 0.21 B | |
PTA-SN/TN | 0.16 ± 0.02 A | 0.62 ± 0.10 B | 1.27 ± 0.08 A | |
XT–312 65 °C | SN/TN | 10.02 ± 0.21 b | 15.28 ± 0.17 a | 24.20 ± 0.91 a |
TCA-SN/TN | 7.09 ± 0.20 B,C,D | 11.90 ± 0.08 D | 18.30 ± 0.11 D | |
PTA-SN/TN | 0.25 ± 0.02 B | 0.80 ± 0.10 B | 1.28 ± 0.08 A | |
XT–312 70 °C | SN/TN | 10.18 ± 0.21 b | 17.18 ± 0.14 b | 24.82 ± 0.36 a |
TCA-SN/TN | 7.11 ± 0.20 B,C,D | 10.37 ± 0.16 C | 17.82 ± 0.13 C | |
PTA-SN/TN | 0.13 ± 0.03 A | 0.76 ± 0.06 B | 1.34 ± 0.14 A | |
XT–312 75 °C | SN/TN | 10.62 ± 0.19 b,c | 17.68 ± 0.50 b | 24.53 ± 0.50 a |
TCA-SN/TN | 7.27 ± 0.14 C,D | 10.25 ± 0.28 C | 17.66 ± 0.15 C | |
PTA-SN/TN | 0.15 ± 0.04 A | 0.81 ± 0.14 B | 1.36 ± 0.09 A |
Cheese Model | ||||||||
---|---|---|---|---|---|---|---|---|
C | LHB01 | XT–312 55 °C | XT–312 60 °C | XT–312 65 °C | XT–312 70 °C | XT–312 75 °C | ||
Total bacteria count (TBC) (log CFU/g) | 1 day | 9.95 b | 10.28 b | 9.07 a | 8.91 a | 9.14 a | 8.99 a | 8.97 a |
2 week | 10.86 c | 10.22 b | 9.48 a | 9.39 a | 9.52 a | 9.53 a | 9.30 a | |
3 week | 9.96 bc | 10.30 c | 9.19 a,b | 9.16 a | 9.23 ab | 9.25 ab | 9.38 a,b | |
5 week | 9.42 b | 9.91 c | 8.92 a | 9.02 a | 8.92 a | 8.90 a | 8.96 a | |
Count of Lactococcus spp. (log CFU/g) | 1 day | 9.31 d,e | 9.48 e | 9.03 c,d | 8.72 b,c | 8.51 b | 8.70 bc | 8.09 a |
2 week | 9.55 b | 9.46 b | 8.73 a | 8.43 a | 8.67 a | 8.59 a | 8.53 a | |
3 week | 9.44 b | 9.63 c | 8.77 a | 8.88 a | 8.89 a | 8.86 a | 8.95 a | |
5 week | 8.07 a,b | 8.91 b | 7.96 a,b | 8.22 a,b | 8.23 a,b | 7.87 a | 7.85 a | |
Count of NSLAB (log CFU/g) | 1 day | 3.34 d | 3.93 e | 3.84 e | 2.77 c | 2.35 a,b | 2.13 a | 2.63 bc |
2 week | 6.04 a | 6.44 a | 5.35 a | 5.33 a | 5.56 a | 5.34 a | 5.49 a | |
3 week | 8.60 b | 8.79 b | 7.64 a | 7.63 a | 7.74 a | 7.51 a | 7.70 a | |
5 week | 9.01 b | 8.87 b | 8.17 a | 8.25 a | 7.96 a | 8.09 a | 7.87 a | |
Count of Lb. helveticus LH-B01 (log CFU/g) | 1 day | - | 6.53 | - | - | - | - | - |
2 week | - | 8.02 | - | - | - | - | - | |
3 week | - | 7.35 | - | - | - | - | - | |
5 week | - | 6.76 | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garbowska, M.; Berthold-Pluta, A.; Stasiak-Różańska, L.; Pluta, A. The Impact of the Adjunct Heat-Treated Starter Culture and Lb. helveticus LH-B01 on the Proteolysis and ACE Inhibitory Activity in Dutch-Type Cheese Model during Ripening. Animals 2021, 11, 2699. https://doi.org/10.3390/ani11092699
Garbowska M, Berthold-Pluta A, Stasiak-Różańska L, Pluta A. The Impact of the Adjunct Heat-Treated Starter Culture and Lb. helveticus LH-B01 on the Proteolysis and ACE Inhibitory Activity in Dutch-Type Cheese Model during Ripening. Animals. 2021; 11(9):2699. https://doi.org/10.3390/ani11092699
Chicago/Turabian StyleGarbowska, Monika, Anna Berthold-Pluta, Lidia Stasiak-Różańska, and Antoni Pluta. 2021. "The Impact of the Adjunct Heat-Treated Starter Culture and Lb. helveticus LH-B01 on the Proteolysis and ACE Inhibitory Activity in Dutch-Type Cheese Model during Ripening" Animals 11, no. 9: 2699. https://doi.org/10.3390/ani11092699
APA StyleGarbowska, M., Berthold-Pluta, A., Stasiak-Różańska, L., & Pluta, A. (2021). The Impact of the Adjunct Heat-Treated Starter Culture and Lb. helveticus LH-B01 on the Proteolysis and ACE Inhibitory Activity in Dutch-Type Cheese Model during Ripening. Animals, 11(9), 2699. https://doi.org/10.3390/ani11092699