First Report of Antimicrobial Susceptibility and Virulence Gene Characterization Associated with Staphylococcus aureus Carriage in Healthy Camels from Tunisia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Global Carriage of Staphylococcus spp. and S. aureus in Camels
2.2. Resistance Genes and Virulence Markers among S. aureus Isolates
2.3. Characteristics of MSSA Detected in This Study
3. Discussion
4. Conclusions
5. Material and Methods
5.1. Study Area and Sampling
5.2. Bacterial Isolation and Identification
5.3. Antimicrobial Susceptibility Testing
5.4. Detection of Staphylococcal Virulence Genes
5.5. Typing of S. aureus Isolates
5.5.1. Spa Typing
5.5.2. Pulsed-Field Gel-Electrophoresis (PFGE)
5.5.3. Multi-Locus Sequence Typing (MLST)
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Ethics Approval
References
- FAOSTAT. 2020. Available online: http://www.fao.org/faostat/en/#data/QA (accessed on 12 April 2020).
- OIE. World Organization for Animal Health. Animal Health Situation, Country: Tunisia, Year: 2018. World Animal Health Information Database (WAHIS Interface)—Version 1. 2018. Available online: http://weboieint/wahis (accessed on 30 December 2018).
- Salmi, C.; Jaouad, M.; Faye, B.; Haouat, F. Typologie des éleveurs camelin au sud-est tunisien en vue de leurs performances économiques. Revue Régions Arides. 2018, 44, 209–214. [Google Scholar]
- Abdurahman, O.A.S. Udder health and milk quality among camels in the Errer valley of eastern Ethiopia. In Livestock Research for Rural Development; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2006; Volume 18, p. 8. [Google Scholar]
- El Harrak, M.; Faye, B.; Bengoumi, M. Main Pathologies of Camels, Breeding of Camels, Constraints, Benefits and Perspectives. Conf. OIE. 2011. Available online: https://www.oie.int/doc/ged/D12812.PDF (accessed on 17 August 2021).
- Jaradat, Z.; Al Aboudi, A.; Shatnawi, M.; Ababneh, Q. Staphylococcus aureus isolates from camels differ in coagulase production, genotype and methicillin resistance gene profiles. J. Microbiol. Biotechnol. Food Sci. 2013, 2, 2455–2461. [Google Scholar]
- Iverson, S.A.; Brazil, A.M.; Ferguson, J.M.; Nelson, K.; Lautenbach, E.; Rankin, S.C.; Morris, D.O.; Davis, M.F. Anatomical patterns of colonization of pets with staphylococcal species in homes of people with methicillin-resistant Staphylococcus aureus (MRSA) skin or soft tissue infection (SSTI). Vet. Microbiol. 2015, 176, 202–208. [Google Scholar] [CrossRef]
- Weese, J.S.; van Duijkeren, E. Methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius in veterinary medicine. Vet. Microbiol. 2010, 140, 418–429. [Google Scholar] [CrossRef]
- Monecke, S.; Ehricht, R.; Slickers, P.; Wernery, R.; Johnson, B.; Jose, S.; Wernery, U. Microarray-based genotyping of Staphylococcus aureus isolates from camels. Vet. Microbiol. 2011, 150, 309–314. [Google Scholar] [CrossRef]
- Fitzgerald, J.R. Livestock-associated Staphylococcus aureus: Origin, evolution and public health threat. Trends Microbiol. 2012, 20, 192–198. [Google Scholar] [CrossRef]
- Zidan, K.H.; Mazloum, K.; Saran, M.A.; Hatem, M.E. Abscesses in dromedary camels, sheep and goats etiology and pathology. In Proceedings of the 1st International Scientific Conference of Pathology Department, Faculty of Veterinary Medicine, Giza, Egypt, 25–27 April 2013; pp. 47–59. [Google Scholar]
- Ali, A.; Derar, R.; Al-Sobayil, F.; Al-Hawas, A.; Hassanein, K. A retrospective study on clinical findings of 7300 cases (2007–2014) of barren female dromedaries. Theriogenology 2015, 84, 452–456. [Google Scholar] [CrossRef]
- Bani Ismail, Z. Pneumonia in Dromedary Camels (Camelus dromedarius): A Review of Clinico-Pathological and Etiological Characteristics. J. Camel Pract. Res. 2017, 24, 49–54. [Google Scholar] [CrossRef]
- Gharsa, H.; Ben Slama, K.; Gomez-Sanz, E.; Lozano, C.; Zarazaga, M.; Messadi, L.; Boudabous, A.; Torres, C. Molecular characterization of Staphylococcus aureus from nasal samples of healthy farm animals and pets in Tunisia. Vector-Borne Zoonotic Dis. 2015, 15, 109–115. [Google Scholar] [CrossRef]
- Gharsa, H.; Ben Slama, K.; Lozano, C.; Gomez-Sanz, E.; Klibi, N.; Ben Sallem, R.; Gomez, P.; Zarazaga, M.; Boudabous, A.; Torres, C. Prevalence, antibiotic resistance, virulence traits and genetic lineages of Staphylococcus aureus in healthy sheep in Tunisia. Vet. Microbiol. 2012, 156, 367–373. [Google Scholar] [CrossRef]
- Daaloul-Jedidi, M.; Soudani, A.; Messadi, L. Nasal and rectal carriage of coagulase positive Staphylococcus in healthy goats. J. New Sci. Agric. Biotechnol. 2016, 33, 1910–1913. [Google Scholar]
- Gharsa, H.; Slama, K.B.; Gómez-Sanz, E.; Gómez, P.; Klibi, N.; Zarazaga, M.; Boudabous, A.; Torres, C. Characterisation of nasal Staphylococcus delphini and Staphylococcus pseudintermedius isolates from healthy donkeys in Tunisia. Equine Vet. J. 2015, 47, 463–466. [Google Scholar] [CrossRef]
- Muna, E.; Tibin, M.; Mohammed, A.E. Bacteria Associated with Pneumonia in Camels (Camelus Dromedarius) in the Sudan and Sensitivity of Some Isolates to Antibiotics using Vitek 2 Compact. Glob. J. Sci. Front. Res. C Biol. Sci. 2015, 15, 11–20. [Google Scholar]
- Azizollah, E.; Bentol-hoda, M.; Raziah, K. The aerobic bacterial population of the respiratory passageway of healthy Dromedariusin Najaf-Abbad abattoir central Iran. J. Camelid Sci. 2009, 2, 26–29. [Google Scholar]
- Mutua, J.M.; Gitao, C.G.; Bebora, L.C.; Mutua, F.K. Antimicrobial Resistance Profiles of Bacteria Isolated from the Nasal Cavity of Camels in Samburu, Nakuru, and Isiolo Counties of Kenya. J. Vet. Med. 2017, 2017, 1216283. [Google Scholar] [CrossRef] [Green Version]
- Gebru, M.; Tefera, G.; Dawo, F.; Tessema, T.S. Aerobic bacteriological studies on the respiratory tracts of apparently healthy and pneumonic camels (Camelus dromedaries) in selected districts of Afar Region, Ethiopia. Trop. Anim. Health Prod. 2018, 50, 603–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Thani, R.F.; Al-Ali, F. Incidences and antimicrobial susceptibility profile of Staphylococcus species isolated from animals in different Qatari farms. Afr. J. Microbiol. 2012, 6, 7454–7458. [Google Scholar]
- McAdow, M.; Missiakas, D.M.; Schneewind, O. Staphylococcus aureus Secretes Coagulase and von Willebrand Factor Binding Protein to Modify the Coagulation Cascade and Establish Host Infections. J. Innate Immun. 2012, 4, 141–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, T.; Tsubakishita, S.; Tanaka, Y.; Sakusabe, A.; Ohtsuka, M.; Hirotaki, S.; Kawakami, T.; Fukata, T.; Hiramatsu, K. Multiplex-PCR method for species identification of coagulase-positive staphylococci. J. Clin. Microbiol. 2010, 48, 765–769. [Google Scholar] [CrossRef] [Green Version]
- Lozano, C.; Gharsa, H.; Ben Slama, K.; Zarazaga, M.; Torres, C. Staphylococcus aureus in Animals and Food: Methicillin Resistance, Prevalence and Population Structure. A Review in the African Continent. Microorganisms 2016, 4, 12. [Google Scholar] [CrossRef] [Green Version]
- Foster, T.J.; Geoghegan, J.A.; Ganesh, V.K.; Höök, M. Adhesion, invasion and evasion: The many functions of the surface proteins of Staphylococcus aureus. Nat. Rev. Microbiol. 2014, 12, 49–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moroni, P.; Pisoni, G.; Vimercati, C.; Rinaldi, M.; Castiglioni, B.; Cremonesi, P.; Boettcher, P. Characterization of Staphylococcus aureus isolated from chronically infected dairy goats. J. Dairy Sci. 2005, 88, 3500–3509. [Google Scholar] [CrossRef] [Green Version]
- Mohammadpour, R.; Champour, M.; Tuteja, F.; Mostafavi, E. Zoonotic implications of camel diseases in Iran. Vet. Med. Sci. 2020, 6, 359–381. [Google Scholar] [CrossRef] [PubMed]
- Gharsa, H.; Ben Sallem, R.; Ben Slama, K.; Gómez-Sanz, E.; Lozano, C.; Jouini, A.; Klibi, N.; Zarazaga, M.; Boudabous, A.; Torres, C. High diversity of genetic lineages and virulence genes in nasal Staphylococcus aureus isolates from donkeys destined to food consumption in Tunisia with predominance of the ruminant associated CC133 lineage. BMC Vet. Res. 2012, 8, 203. [Google Scholar] [CrossRef] [Green Version]
- Ben Said, M.; Abbassi, M.S.; Gómez, P.; Ruiz-Ripa, L.; Sghaier, S.; El Fekih, O.; Hassen, A.; Torres, C. Genetic characterization of Staphylococcus aureus isolated from nasal samples of healthy ewes in Tunisia. High prevalence of CC130 and CC522 lineages. Comp. Immunol. Microbiol. Infect. Dis. 2017, 51, 37–40. [Google Scholar] [CrossRef]
- Laux, C.; Peschel, A.; Krismer, B. Staphylococcus aureus Colonization of the Human Nose and Interaction with Other Microbiome Members. Microbiol. Spectr. 2019, 7, 2–7. [Google Scholar] [CrossRef]
- Krismer, B.; Weidenmaier, C.; Zipperer, A.; Peschel, A. The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nat. Rev. Microbiol. 2017, 15, 675–687. [Google Scholar] [CrossRef]
- Abdulsalam, A.; Alhendi, B. Nasal microflora of camels (Camelus dromedarius) under two different conditions. Pak. Vet. J. 1999, 19, 164–167. [Google Scholar]
- Alzohairy, M.A. Colonization and antibiotic susceptibility pattern of methicillin resistance Staphylococcus aureus (MRSA) among farm animals in Saudi Arabia. Afr. J. Bacteriol. Res. 2011, 3, 63–68. [Google Scholar]
- Mai-siyama, I.; Okon, O.; Adamu, N.; Askira, M.; Isyaka, T.; Adamu, G.; Mohammed, A. Methicllin-resistant Staphylococcus aureus (MRSA) colonization rate among ruminant animals slaughtered for human consumption and contact persons in Maiduguri, Nigeria. Afr. J. Microbiol. Res. 2014, 8, 2643–2649. [Google Scholar] [CrossRef] [Green Version]
- Agabou, A.; Ouchenane, Z.; Ngba Essebe, C.; Khemissi, S.; Chehboub, M.T.E.; Chehboub, I.B.; Sotto, A.; Dunyach-Remy, C.; Lavigne, J.P. Emergence of Nasal Carriage of ST80 and ST152 PVL+ Staphylococcus aureus Isolates from Livestock in Algeria. Toxins 2017, 9, 303. [Google Scholar] [CrossRef] [Green Version]
- Yusuf, S.T.; Kwaga, J.K.P.; Okolocha, E.C.; Bello, M. Phenotypic occurrence of methicillin-resistant Staphylococcus aureus in camels slaughtered at Kano abattoir, Kano, Nigeria. Sokoto J. Vet. Sci. 2017, 15, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Al-Doughaym, A.M.; Mustafa, K.M.; Mohammad, G.E. Aetiological Study on Pneumonia in Camel (Camelus dromedarius) and in vitro Antibacterial Sensitivity Pattern of the Isolates. Pak. J. Biol. Sci. 1999, 2, 1102–1105. [Google Scholar] [CrossRef]
- Kluytmans, J.; van Belkum, A.; Verbrugh, H. Nasal carriage of Staphylococcus aureus: Epidemiology, underlying mechanisms, and associated risks. Clin. Microbiol. Rev. 1997, 10, 505–520. [Google Scholar] [CrossRef]
- Tadesse, B.T.; Ashley, E.A.; Ongarello, S.; Havumaki, J.; Wijegoonewardena, M.; González, I.J.; Dittrich, S. Antimicrobial resistance in Africa: A systematic review. BMC Infect. Dis. 2017, 17, 616. [Google Scholar] [CrossRef]
- Reyes-Robles, T.; Alonzo, F.; Kozhaya, L.; Lacy, D.B.; Unutmaz, D.; Torres, V.J. Staphylococcus aureus Leukotoxin ED Targets the Chemokine Receptors CXCR1 and CXCR2 to Kill Leukocytes and Promote Infection. Cell Host Microbe 2013, 14, 453–459. [Google Scholar] [CrossRef] [Green Version]
- Dinges, M.M.; Orwin, P.M.; Schlievert, P.M. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 2000, 13, 16–34. [Google Scholar] [CrossRef] [PubMed]
- Raji, M.A.; Garaween, G.; Ehricht, R.; Monecke, S.; Shibl, A.M.; Senok, A. Genetic Characterization of Staphylococcus aureus Isolated from Retail Meat in Riyadh, Saudi Arabia. Front. Microbiol. 2016, 7, 911. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.M.; Lloyd, D.H.; Lindsay, J.A. Staphylococcus aureus host specificity: Comparative genomics of human versus animal isolates by multi-strain microarray. Microbiology 2008, 154, 1949–1959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koop, G.; Vrieling, M.; Storisteanu, D.M.L.; Lok, L.S.C.; Monie, T.; van Wigcheren, G.; Raisen, C.; Ba, X.; Gleadall, N.; Hadjirin, N.; et al. Identification of LukPQ, a novel, equid-adapted leukocidin of Staphylococcus aureus. Sci. Rep. 2017, 7, 40660. [Google Scholar] [CrossRef] [PubMed]
- Alonzo, F.; Torres, V.J. The Bicomponent Pore-Forming Leucocidins of Staphylococcus aureus. Microbiol. Mol. Biol. Rev. MMBR 2014, 78, 199–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spaan, A.N.; van Strijp, J.A.; Torres, V.J. Leukocidins: Staphylococcal bi-component pore-forming toxins find their receptors. Nat. Rev. Microbiol. 2017, 15, 435–447. [Google Scholar] [CrossRef]
- Sutra, L.; Rainard, P.; Poutrel, B. Phagocytosis of mastitis isolates of Staphylococcus aureus and expression of type 5 capsular polysaccharide are influenced by growth in the presence of milk. J. Clin. Microbiol. 1990, 28, 2253–2258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shuiep, E.S.; Kanbar, T.; Eissa, N.; Alber, J.; Lammler, C.; Zschock, M.; El Zubeir, I.E.; Weiss, R. Phenotypic and genotypic characterization of Staphylococcus aureus isolated from raw camel milk samples. Res. Vet. Sci. 2009, 86, 211–215. [Google Scholar] [CrossRef]
- McCarthy, A.J.; Lindsay, J.A. Genetic variation in Staphylococcus aureus surface and immune evasion genes is lineage associated: Implications for vaccine design and host-pathogen interactions. BMC Microbiol. 2010, 10, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacey, K.A.; Mulcahy, M.E.; Towell, A.M.; Geoghegan, J.A.; McLoughlin, R.M. Clumping factor B is an important virulence factor during Staphylococcus aureus skin infection and a promising vaccine target. PLoS Pathog. 2019, 15, e1007713. [Google Scholar] [CrossRef]
- Yehia, H.M.; Ismail, E.A.; Hassan, Z.K.; Al-masoud, A.H.; Al-Dagal, M.M. Heat resistance and presence of genes encoding staphylococcal enterotoxins evaluated by multiplex-PCR of Staphylococcus aureus isolated from pasteurized camel milk. Biosci. Rep. 2019, 39, BSR20191225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, A.O.; Hyah, M. Epidemiological studies based on multi-locus sequence typing genotype of methicillin susceptible Staphylococcus aureus isolated from camel’s milk. Onderstepoort J. Vet. Res. 2017, 84, e1–e5. [Google Scholar] [CrossRef] [Green Version]
- Kpeli, G.; Buultjens, A.H.; Giulieri, S.; Owusu-Mireku, E.; Aboagye, S.Y.; Baines, S.L.; Seemann, T.; Bulach, D.; da Silva, A.G.; Monk, I.R.; et al. Genomic analysis of ST88 community-acquired methicillin resistant Staphylococcus aureus in Ghana. PeerJ 2017, 5, e3047. [Google Scholar] [CrossRef] [Green Version]
- Fall, C.; Seck, A.; Richard, V.; Ndour, M.; Sembene, M.; Laurent, F. Epidemiology of Staphylococcus aureus in pigs and farmers in the largest farm in Dakar, Senegal. Foodborne Pathog. Dis. 2012, 9, 962–965. [Google Scholar] [CrossRef] [Green Version]
- Schaumburg, F.; Pauly, M.; Anoh, E.; Mossoun, A.; Wiersma, L.; Schubert, G.; Flammen, A.; Alabi, A.; Muyembe-Tamfum, J.J.; Grobusch, M.P.; et al. Staphylococcus aureus complex from animals and humans in three remote African regions. Clin. Microbiol. Infect. 2014, 21, 345.e1–345.e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otalu, O.J.; Kwaga, J.K.P.; Okolocha, E.C.; Islam, M.Z.; Moodley, A. High Genetic Similarity of MRSA ST88 Isolated from Pigs and Humans in Kogi State, Nigeria. Front. Microbiol. 2018, 9, 3098. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, G.; Xia, X.; Yang, B.; Xi, M.; Meng, J. Antimicrobial susceptibility and molecular typing of methicillin-resistant staphylococcus aureus in retail foods in Shaanxi, China. Foodborne Pathog. Dis. 2014, 11, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Wang, X.; Fan, Y.; Peng, Y.; Li, L.; Li, S.; Huang, J.; Yao, Z.; Chen, S. Genotypic and Phenotypic Markers of Livestock-Associated Methicillin-Resistant Staphylococcus aureus CC9 in Humans. Appl. Environ. Microbiol. 2016, 82, 3892–3899. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Xie, S. Genotypes, Enterotoxin Gene Profiles, and Antimicrobial Resistance of Staphylococcus aureus Associated with Foodborne Outbreaks in Hangzhou, China. Toxins 2019, 11, 307. [Google Scholar] [CrossRef] [Green Version]
- OEP. Office D’elevage et de Paturage. Données Sectorielles, Effectif du Cheptel, Tunisie 2018. Available online: https://www.oep.nat.tn (accessed on 20 April 2021).
- Brown, D.F.; Edwards, D.I.; Hawkey, P.M.; Morrison, D.; Ridgway, G.L.; Towner, K.J.; Wren, M.W. Guidelines for the laboratory diagnosis and susceptibility testing of methicillin-resistant Staphylococcus aureus (MRSA). J. Antimicrob. Chemother. 2005, 56, 1000–1018. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.Y.; Kim, S.H.; Jang, E.J.; Kwon, N.H.; Park, Y.K.; Koo, H.C.; Jung, W.K.; Kim, J.M.; Park, Y.H. Novel multiplex PCR for the detection of the Staphylococcus aureus superantigen and its application to raw meat isolates in Korea. Int. J. Food Microbiol. 2007, 117, 99–105. [Google Scholar] [CrossRef]
- Thompson, T.A.; Brown, P.D. Association between the agr locus and the presence of virulence genes and pathogenesis in Staphylococcus aureus using a Caenorhabditis elegans model. Int. J. Infect. Dis. 2017, 54, 72–76. [Google Scholar] [CrossRef] [Green Version]
- Rossato, A.M.; Reiter, K.C.; d’Azevedo, P.A. Coexistence of virulence genes in methicillin-resistant Staphylococcus aureus clinical isolates. Rev. Soc. Bras. Med. Trop. 2018, 51, 361–363. [Google Scholar] [CrossRef]
- Harmsen, D.; Claus, H.; Witte, W.; Rothgänger, J.; Claus, H.; Turnwald, D.; Vogel, U. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J. Clin. Microbiol. 2003, 41, 5442–5448. [Google Scholar] [CrossRef] [Green Version]
- Bouzaiane, O.; Abbassi, M.; Gtari, M.; Belhaj, O.; Jedidi, N.; Ben Hassen, A.; Hassen, A. Molecular typing of staphylococcal communities isolated during municipal solid waste composting process. Ann. Microbiol. 2008, 58, 387–394. [Google Scholar] [CrossRef]
- Tenover, F.C.; Arbeit, R.D.; Goering, R.V.; Mickelsen, P.A.; Murray, B.E.; Persing, D.H.; Swaminathan, B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: Criteria for bacterial strain typing. J. Clin. Microbiol. 1995, 33, 2233–2239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enright, M.C.; Day, N.P.; Davies, C.E.; Peacock, S.J.; Spratt, B.G. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 2000, 38, 1008–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
CODE | Hemolysins | Leucocidins | Adhesin Factor | Binding Proteins | Capsular Type |
---|---|---|---|---|---|
SA1 | hla, hlb, hld | lukDE | clfA, clfB | ebp, lamin | 8 |
SA2 | hld, hlg2 | lukDE | clfB | ebp, lamin | 8 |
SA3 | hla, hlb, hld, hlg2 | lukDE | clfB | fib, ebp, lamin | 8 |
SA4 | hlb, hld, hlg2 | lukDE | clfA, clfB | fib, ebp, lamin | 8 |
SA5 | hla, hlb, hld, hlg2 | lukDE | clfB | fib, lamin | 8 |
SA6 | hla, hlb, hld, hlg2 | lukDE | clfB | fib, ebp, lamin | 8 |
SA7 | hla, hlb, hld, hlg2 | lukDE | clfB | cbp, lamin, ebp | 8 |
SA8 | hla, hlb, hld, hlg2 | lukDE | clfB, fnbB | cbp, lamin, ebp | 8 |
SA9 | hla, hlb, hld, hlg2 | lukDE | clfA, clfB, fnbB | lamin | 8 |
SA10 | hla, hlb, hld, hlg2 | lukDE | clfB | lamin | 8 |
SA11 | hla, hlb, hld, hlg2 | lukDE | clfA, clfB | ebp, lamin | 8 |
SA12 | hla, hlb, hld, hlg2 | lukDE | clfB | ebp, lamin | 8 |
SA13 | hla, hlb, hld, hlg2 | lukDE | clfB, fnbB | ebp, lamin | 8 |
SA14 | hla, hlb, hld | lukDE | clfB | lamin | 8 |
SA15 | hla, hlb, hld, hlg2 | lukDE | clfB, fnbB | lamin | 8 |
SA16 | hla, hlb, hld, hlg2 | lukDE | clfA, clfB | lamin | 8 |
Code | Animal | Sites | Geographic Origin | Spa Type | Pulsotype | ST | Virulence Genes |
---|---|---|---|---|---|---|---|
SA1 | 1 | Nasal | Hamam Sousse | t19687 | P1 | 3583 | clfA, clfB, lukDE, hla, hlb, hld, lamin, ebp, cap8 |
SA2 | 2 | Nasal | Hamam Sousse | t19687 | P1 | 3583 | clfB, lukDE, hld, hlg2, lamin, ebp, cap8 |
SA3 | 3 | Nasal | Hamam Sousse | t19687 | P1 | 3583 | clfB, lukDE, hla, hlb, hld, hlg2, fib, lamin, ebp, cap8 |
SA4 | 4 | Rectal | Hamam Sousse | t19687 | P1 | 3583 | clfA, clfB, lukDE, hlb, hld, hlg2, fib, lamin, ebp, cap8 |
SA5 | 5 | Nasal | Hamam Sousse | t19687 | P1 | 3583 | clfB, lukDE, hla, hlb, hld, hlg2, fib, lamin, cap8 |
SA6 | 5 | Rectal | Hamam Sousse | t19687 | P1 | 3583 | clfB, lukDE, hla, hlb, hld, hlg2, fib, lamin, ebp, cap8 |
SA7 | 6 | Nasal | Hamam Sousse | t4013 | P2 | 6 | clfB, lukDE, hla, hlb, hld, hlg2, cbp, lamin, ebp, cap8 |
SA8 | 7 | Nasal | Hamam Sousse | t4013 | P2 | 6 | clfB, lukDE, hla, hlb, hld, hlg2, fnbB, cbp, lamin, ebp, cap8 |
SA9 | 8 | Nasal | Hamam Sousse | t729 | P3 | 6504 | clfA, clfB, lukDE, hla, hlb, hld, hlg2, fnbB, lamin, cap8 |
SA10 | 9 | Nasal | Hamam Sousse | t729 | P4 | 6506 | clfB, lukDE, hla, hlb, hld, hlg2, lamin, cap8 |
SA11 | 10 | Nasal | Hamam Sousse | t19687 | P1 | 3583 | clfA, clfB, lukDE, hla, hlb, hld, hlg2, lamin, ebp, cap8 |
SA12 | 10 | Rectal | Hamam Sousse | t19687 | P1 | 36551 | clfB, lukDE, hla, hlb, hld, hlg2, lamin, ebp, cap8 |
SA13 | 11 | Rectal | Hamam Sousse | t4013 | P6 | 6 | clfB, lukDE, hla, hlb, hld, hlg2, fnbB, lamin, ebp, cap8 |
SA14 | 12 | Nasal | Bouficha | t4013 | P7 | 88 | clfB, lukDE, hla, hlb, hld, lamin, cap8 |
SA15 | 13 | Nasal | Bouficha | t4013 | P1 | 3583 | clfB, lukDE, hla, hlb, hld, hlg2, fnbB, lamin, cap8 |
SA16 | 14 | Nasal | Bouficha | t4013 | P5 | 3583 | clfA, clfB, lukDE, hla, hlb, hld, hlg2, lamin, cap8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Chehida, F.; Gharsa, H.; Tombari, W.; Selmi, R.; Khaldi, S.; Daaloul, M.; Ben Slama, K.; Messadi, L. First Report of Antimicrobial Susceptibility and Virulence Gene Characterization Associated with Staphylococcus aureus Carriage in Healthy Camels from Tunisia. Animals 2021, 11, 2754. https://doi.org/10.3390/ani11092754
Ben Chehida F, Gharsa H, Tombari W, Selmi R, Khaldi S, Daaloul M, Ben Slama K, Messadi L. First Report of Antimicrobial Susceptibility and Virulence Gene Characterization Associated with Staphylococcus aureus Carriage in Healthy Camels from Tunisia. Animals. 2021; 11(9):2754. https://doi.org/10.3390/ani11092754
Chicago/Turabian StyleBen Chehida, Faten, Haythem Gharsa, Wafa Tombari, Rachid Selmi, Sana Khaldi, Monia Daaloul, Karim Ben Slama, and Lilia Messadi. 2021. "First Report of Antimicrobial Susceptibility and Virulence Gene Characterization Associated with Staphylococcus aureus Carriage in Healthy Camels from Tunisia" Animals 11, no. 9: 2754. https://doi.org/10.3390/ani11092754
APA StyleBen Chehida, F., Gharsa, H., Tombari, W., Selmi, R., Khaldi, S., Daaloul, M., Ben Slama, K., & Messadi, L. (2021). First Report of Antimicrobial Susceptibility and Virulence Gene Characterization Associated with Staphylococcus aureus Carriage in Healthy Camels from Tunisia. Animals, 11(9), 2754. https://doi.org/10.3390/ani11092754