Effects of a Ceiling Fan Ventilation System and THI on Young Limousin Bulls’ Social Behaviour
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Housing and Management
- One pen was provided with a ceiling fan ventilation system (V);
- One pen without ceiling fans as the control treatment (C).
2.2. Diets, Feed Samples and Analyses
2.3. Animals’ Behaviour, Health and Status Cleanliness
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernstein, L.; Bosch, P.; Canziani, O.; Chen, Z.; Christ, R.; Davidson, O.; Hare, W.; Huq, S.; Karoly, D.; Kattsov, V.; et al. Climate Change 2007: Synthesis Report: An Assessment of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2008; ISBN 9789291691227. [Google Scholar]
- Cozzi, G.; Brscic, M.; Gottardo, F. Main Critical Factors Affecting the Welfare of Beef Cattle and Veal Calves Raised under Intensive Rearing Systems in Italy: A Review. Ital. J. Anim. Sci. 2009, 8, 67–80. [Google Scholar] [CrossRef] [Green Version]
- Morignat, E.; Gay, E.; Vinard, J.-L.; Calavas, D.; Hénaux, V. Quantifying the Influence of Ambient Temperature on Dairy and Beef Cattle Mortality in France from a Time-Series Analysis. Environ. Res. 2015, 140, 524–534. [Google Scholar] [CrossRef] [PubMed]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of Climate Changes on Animal Production and Sustainability of Livestock Systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- Magrin, L.; Brscic, M.; Lora, I.; Rumor, C.; Tondello, L.; Cozzi, G.; Gottardo, F. Effect of a Ceiling Fan Ventilation System on Finishing Young Bulls’ Health, Behaviour and Growth Performance. Animal 2017, 11, 1084–1092. [Google Scholar] [CrossRef] [PubMed]
- Segnalini, M.; Nardone, A.; Bernabucci, U.; Vitali, A.; Ronchi, B.; Lacetera, N. Dynamics of the Temperature-Humidity Index in the Mediterranean Basin. Int. J. Biometeorol. 2011, 55, 253–263. [Google Scholar] [CrossRef] [PubMed]
- LCI. L.C.I. Patterns of Transit Losses 1970; LCI: La Guerche-de-Bretagne, France, 1970. [Google Scholar]
- Martin, P.; Bateson, P.P.G. Measuring Behaviour: An Introductory Guide, 3rd ed.; Cambridge University Press: Cambridge, NY, USA, 2007; ISBN 9780521828680. [Google Scholar]
- Brown-Brandl, T.M.; Eigenberg, R.A.; Nienaber, J.A.; Hahn, G.L. Dynamic Response Indicators of Heat Stress in Shaded and Non-Shaded Feedlot Cattle, Part 1: Analyses of Indicators. Biosyst. Eng. 2005, 90, 451–462. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Animal Health and Welfare (AHAW) Scientific Opinion on the Welfare of Cattle Kept for Beef Production and the Welfare in Intensive Calf Farming Systems. EFSA J. 2012, 10, 2669. [CrossRef]
- Chang-Fung-Martel, J.; Harrison, M.T.; Brown, J.N.; Rawnsley, R.; Smith, A.P.; Meinke, H. Negative Relationship between Dry Matter Intake and the Temperature-Humidity Index with Increasing Heat Stress in Cattle: A Global Meta-Analysis. Int. J. Biometeorol. 2021, 65, 2099–2109. [Google Scholar] [CrossRef]
- Rusche, W.C.; Blom, E.J.; DiConstanzo, A.; Erickson, G.E.; Gentry, W.W.; Smith, Z.K.; VanDerWal, A.J.; Winders, T.M.; Cassady, J.P. Heat Stress Mitigation Strategies Used by Midwestern Cattle Feeders. Appl. Anim. Sci. 2021, 37, 614–625. [Google Scholar] [CrossRef]
- Pereira, A.M.F.; Baccari, F.; Titto, E.A.L.; Almeida, J.A.A. Effect of Thermal Stress on Physiological Parameters, Feed Intake and Plasma Thyroid Hormones Concentration in Alentejana, Mertolenga, Frisian and Limousine Cattle Breeds. Int. J. Biometeorol. 2008, 52, 199–208. [Google Scholar] [CrossRef]
- Polsky, L.; von Keyserlingk, M.A.G. Invited Review: Effects of Heat Stress on Dairy Cattle Welfare. J. Dairy Sci. 2017, 100, 8645–8657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mader, T.L. Environmental Stress in Confined Beef Cattle1. J. Anim. Sci. 2003, 81, E110–E119. [Google Scholar] [CrossRef]
- Herbut, P.; Angrecka, S.; Godyń, D.; Hoffmann, G. The Physiological and Productivity Effects of Heat Stress in Cattle—A Review. Ann. Anim. Sci. 2019, 19, 579–593. [Google Scholar] [CrossRef] [Green Version]
- Edwards-Callaway, L.N.; Cramer, M.C.; Cadaret, C.N.; Bigler, E.J.; Engle, T.E.; Wagner, J.J.; Clark, D.L. Impacts of Shade on Cattle Well-Being in the Beef Supply Chain. J. Anim. Sci. 2020, 99, skaa375. [Google Scholar] [CrossRef] [PubMed]
- Lambertz, C.; Sanker, C.; Gauly, M. Climatic Effects on Milk Production Traits and Somatic Cell Score in Lactating Holstein-Friesian Cows in Different Housing Systems. J. Dairy Sci. 2014, 97, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Mazzenga, A.; Gottardo, F.; Cozzi, G. Effect of Hot Season and Type of Floor on the Microclimate Conditions in the Pens of the Beef Cattle Intensive Farms. Acta Agric. Scand. 2006, 10, 121–125. [Google Scholar]
- Calegari, F.; Calamari, L.; Frazzi, E. Cooling Systems of the Resting Area in Free Stall Dairy Barn. Int. J. Biometeorol. 2016, 60, 605–614. [Google Scholar] [CrossRef]
- Wechsler, B. Floor Quality and Space Allowance in Intensive Beef Production: A Review. Animal Welfare 2011, 20, 493–503. [Google Scholar]
- Mitlöhner, F.M.; Morrow, J.; Dailey, J.; Wilson, S.; Galyean, M.; Miller, M.; McGlone, J. Shade and Water Misting Effects on Behavior, Physiology, Performance, and Carcass Traits of Heat-Stressed Feedlot Cattle. J. Anim. Sci. 2001, 79, 2327–2335. [Google Scholar] [CrossRef]
- Giro, A.; Pezzopane, J.R.M.; Barioni Junior, W.; de Faria Pedroso, A.; Lemes, A.P.; Botta, D.; Romanello, N.; do Nascimento Barreto, A.; Garcia, A.R. Behavior and Body Surface Temperature of Beef Cattle in Integrated Crop-Livestock Systems with or without Tree Shading. Sci. Total Environ. 2019, 684, 587–596. [Google Scholar] [CrossRef]
- Gottardo, F.; Ricc, R.; Fregolent, G.; Ravarotto, L.; Cozzi, G. Welfare and Meat Quality of Beef Cattle Housed on Two Types of Floors with the Same Space Allowance. Ital. J. Anim. Sci. 2003, 2, 243–253. [Google Scholar] [CrossRef] [Green Version]
- Brouk, M.; Smith, J.F.; Harner, J. Effectiveness of Cow Cooling Strategies Under Different Environmental Conditions. In Proceedings of the 6th Western Dairy Management Conference, Reno, NV, USA, 12–14 March 2003. [Google Scholar]
- Neville, B.W.; Moore, R.L.; Rodehorst, W.J. Effects of Pen Cleaning on Feedlot Performance and Carcass Characteristics of Beef Steers Fed during the Winter in the Northern Great Plains. Livest. Sci. 2020, 241, 104204. [Google Scholar] [CrossRef]
- Kibler, H.H. Environmental Physiology and Shelter Engineering with Special Reference to Domestic Animals. LXVII, Thermal Effects of Various Temperature-Humidity Combinations on Holstein Cattle as Measured by Eight Physiological Responses; University of Missouri: Columbia, MO, USA, 1964. [Google Scholar]
- Fustini, M.; Palmonari, A.; Canestrari, G.; Bonfante, E.; Mammi, L.; Pacchioli, M.T.; Sniffen, G.C.J.; Grant, R.J.; Cotanch, K.W.; Formigoni, A. Effect of Undigested Neutral Detergent Fiber Content of Alfalfa Hay on Lactating Dairy Cows: Feeding Behavior, Fiber Digestibility, and Lactation Performance. J. Dairy Sci. 2017, 100, 4475–4483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brogna, N.; Pacchioli, M.T.; Immovilli, A.; Ruozzi, F.; Ward, R.; Formigoni, A. The Use of Near-Infrared Reflectance Spectroscopy (NIRS) in the Prediction of Chemical Composition and in Vitro Neutral Detergent Fiber (NDF) Digestibility of Italian Alfalfa Hay. Ital. J. Anim. Sci. 2009, 8, 271–273. [Google Scholar] [CrossRef] [Green Version]
- Council, N.R. Nutrient Requirements of Dairy Cattle: Seventh Revised Edition; National Academies Press: Washington, DC, USA, 2001; ISBN 9780309069977. [Google Scholar]
- Altmann, J. Observational Study of Behavior: Sampling Methods. Behaviour 1974, 49, 227–266. [Google Scholar] [CrossRef] [Green Version]
- R: The R Stats Package. Available online: https://stat.ethz.ch/R-manual//R-devel/library/stats/html/00Index.html?msclkid=c877d34ab01011eca5d6a1ed96683cb4 (accessed on 30 March 2022).
- PROC NPAR1WAY: PROC NPAR1WAY Statement: SAS/STAT(R) 9.3 User’s Guide. Available online: https://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#statug_npar1way_sect004.htm (accessed on 1 April 2022).
- Lenth, R.V. Least-Squares Means: The R Package Lsmeans. J. Stat. Softw. 2016, 69, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Bouquet, A.; Venot, E.; Laloë, D.; Forabosco, F.; Fogh, A.; Pabiou, T.; Moore, K.; Eriksson, J.-Å.; Renand, G.; Phocas, F. Genetic Structure of the European Charolais and Limousin Cattle Metapopulations Using Pedigree Analyses. J. Anim. Sci. 2011, 89, 1719–1730. [Google Scholar] [CrossRef]
- Fabbri, M.C.; Gonçalves de Rezende, M.P.; Dadousis, C.; Biffani, S.; Negrini, R.; Souza Carneiro, P.L.; Bozzi, R. Population Structure and Genetic Diversity of Italian Beef Breeds as a Tool for Planning Conservation and Selection Strategies. Animals 2019, 9, 880. [Google Scholar] [CrossRef] [Green Version]
- Aquilani, C.; Fabbri, M.C.; Confessore, A.; Pugliese, C.; Sirtori, F. Effects of THI Changes on Milk Production and Composition of Three Dairy Cattle Farms in Mugello from 2010 to 2018: A Preliminary Study. Acta Fytotech. Zootech. 2020, 23, 167–173. [Google Scholar] [CrossRef]
- Gaughan, J.B.; Mader, T.L.; Holt, S.M.; Lisle, A. A New Heat Load Index for Feedlot Cattle. J. Anim. Sci. 2008, 86, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Brown-Brandl, T.M. Understanding Heat Stress in Beef Cattle. Rev. Bras. Zootec. 2018, 47. [Google Scholar] [CrossRef] [Green Version]
- Lees, A.M.; Sejian, V.; Wallage, A.L.; Steel, C.C.; Mader, T.L.; Lees, J.C.; Gaughan, J.B. The Impact of Heat Load on Cattle. Animals 2019, 9, 322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curtis, A.K.; Scharf, B.; Eichen, P.A.; Spiers, D.E. Relationships between Ambient Conditions, Thermal Status, and Feed Intake of Cattle during Summer Heat Stress with Access to Shade. J. Therm. Biol. 2017, 63, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Hahn, G.; Mader, T.; Eigen, R. Perspectives on Development of Thermal Indices for Animal Studies and Management Publication: USDA ARS. Available online: https://www.ars.usda.gov/research/publications/publication/?seqNo115=148643 (accessed on 16 March 2022).
- Dewell, G. Heat Stress in Beef Cattle; Iowa State University: Ames, IA, USA, 2018. [Google Scholar]
- Baumgard, L.H.; Rhoads, R.P. Ruminant Nutrition Symposium: Ruminant Production and Metabolic Responses to Heat Stress1,2. J. Anim. Sci. 2012, 90, 1855–1865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansell, R. 16—Extreme Heat Stress in Dairy Cattle and Its Alleviation: A Case Report. In Environmental Aspects of Housing for Animal Production; Elsevier: Amsterdam, The Netherlands, 1981. [Google Scholar]
- O’Brien, M.D.; Rhoads, R.P.; Sanders, S.R.; Duff, G.C.; Baumgard, L.H. Metabolic Adaptations to Heat Stress in Growing Cattle. Domest. Anim. Endocrinol. 2010, 38, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Wheelock, J.B.; Rhoads, R.P.; Vanbaale, M.J.; Sanders, S.R.; Baumgard, L.H. Effects of Heat Stress on Energetic Metabolism in Lactating Holstein Cows. J. Dairy Sci. 2010, 93, 644–655. [Google Scholar] [CrossRef] [PubMed]
- Arias, R.A.; Mader, T.L. Environmental Factors Affecting Daily Water Intake on Cattle Finished in Feedlots. J. Anim. Sci. 2011, 89, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, K.F.; Mader, T.L. Managing Heat Stress Episodes in Confined Cattle. Vet. Clin. N. Am. Food Anim. Pract. 2018, 34, 325–339. [Google Scholar] [CrossRef]
- Borderas, T.F.; Pawluczuk, B.; Passillé, A.M.D.; Rushen, J. Claw Hardness of Dairy Cows: Relationship to Water Content and Claw Lesions. J. Dairy Sci. 2004, 87, 2085–2093. [Google Scholar] [CrossRef] [Green Version]
Item | Farm 1 | Farm 2 |
---|---|---|
TMR component | ||
Sorghum silage, % of DM | 1.8 | 3.2 |
Alfalfa, % of DM | 2.0 | 1.5 |
Italian ryegrass, % of DM | 2.0 | 1.0 |
Maize and barley meal, % of DM | 1.8 | 4.5 |
Concentrates, % of DM | 2.5 | 0.8 |
Soy meal, % of DM | 0 | 0.5 |
Chemical composition | ||
DM, % | 54.8 | 56.4 |
Ash, % of DM | 8.8 | 9.3 |
CP, % of DM | 11.7 | 11.6 |
aNDFom, 1 % of DM | 45.4 | 29.2 |
ADF, % of DM | 30.9 | 17.9 |
ADL, % of DM | 5.2 | 2.7 |
dNDF24 h, 2 % of aNDFom | 40.0 | 35.6 |
uNDF240 h, 3 % of aNDFom | 17.0 | 15.5 |
Starch, % DM | 12.9 | 32.3 |
Sugar, % DM | 4.8 | 2.9 |
Fat, % DM | 2.1 | 2.5 |
(NEL) 4, kgcal/kg DM | 1.356 | 1.496 |
Behaviour (min/h) | Ventilation System | THI | Farm p-Value | Ventilation System × Farm p-Value | Ventilation System × THI p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
C | V | p-Value | A | N | p-Value | ||||
Eating 1 | 10.70 | 7.46 | 0.023 | 7.46 | 10.70 | 0.027 | 0.014 | ns | ns |
Ruminating | 13.90 | 12.90 | ns | 14.80 | 12.01 | ns | ns | ns | ns |
Drinking 1 | 2.77 | 2.03 | 0.002 | 2.34 | 2.42 | ns | ns | ns | ns |
Inactivity | 9.58 | 12.87 | 0.001 | 11.00 | 11.40 | ns | <0.001 | 0.010 | ns |
Lying down | 15.70 | 15.80 | 0.041 | 18.10 | 13.40 | 0.010 | ns | 0.029 | ns |
Grooming 1 | 2.86 | 2.63 | ns | 2.62 | 2.90 | ns | 0.005 | ns | ns |
Moving 2 | 1.08 | 1.93 | Ns | 1.35 | 1.70 | ns | ns | <0.001 | <0.001 |
Rubbing 2 | 0.77 | 1.15 | 0.041 | 1.06 | 0.81 | ns | <0.001 | 0.01 | ns |
Other 2 activities | 0.29 | 1.24 | <0.001 | 0.60 | 0.98 | ns | ns | <0.001 | <0.001 |
Effect | Cleanliness | ||
---|---|---|---|
p-Value | |||
Ventilation system | C | 1.66 | ns |
V | 1.59 | ||
Farm | 1 | 1.71 | 0.02 |
2 | 1.54 | ||
Zone | Head | 1.60 | ns |
Hind limb | 1.73 | ||
Tail | 1.60 | ||
Ventral and side part | 1.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parrini, S.; Sirtori, F.; Fabbri, M.C.; Dal Prà, A.; Crovetti, A.; Bozzi, R. Effects of a Ceiling Fan Ventilation System and THI on Young Limousin Bulls’ Social Behaviour. Animals 2022, 12, 1259. https://doi.org/10.3390/ani12101259
Parrini S, Sirtori F, Fabbri MC, Dal Prà A, Crovetti A, Bozzi R. Effects of a Ceiling Fan Ventilation System and THI on Young Limousin Bulls’ Social Behaviour. Animals. 2022; 12(10):1259. https://doi.org/10.3390/ani12101259
Chicago/Turabian StyleParrini, Silvia, Francesco Sirtori, Maria Chiara Fabbri, Aldo Dal Prà, Alessandro Crovetti, and Riccardo Bozzi. 2022. "Effects of a Ceiling Fan Ventilation System and THI on Young Limousin Bulls’ Social Behaviour" Animals 12, no. 10: 1259. https://doi.org/10.3390/ani12101259
APA StyleParrini, S., Sirtori, F., Fabbri, M. C., Dal Prà, A., Crovetti, A., & Bozzi, R. (2022). Effects of a Ceiling Fan Ventilation System and THI on Young Limousin Bulls’ Social Behaviour. Animals, 12(10), 1259. https://doi.org/10.3390/ani12101259