Antibiotic Resistance Carriage Causes a Lower Survivability Due to Stress Associated with High-Pressure Treatment among Strains from Starter Cultures
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains
2.2. High-Pressure Processing
2.3. Survival Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morales-de la Peña, M.; Welti-Chanes, J.; Martín-Belloso, O. Novel technologies to improve food safety and quality. Curr. Opin. Food Sci. 2019, 30, 1–7. [Google Scholar] [CrossRef]
- Nabi, B.G.; Mukhtar, K.; Arshad, R.N.; Radicetti, E.; Tedeschi, P.; Shahbaz, M.U.; Walayat, N.; Nawaz, A.; Inam-Urraheem, M.; Aadil, R.M. High-pressure processing for sustainable food supply. Sustainability 2021, 13, 13908. [Google Scholar] [CrossRef]
- Tabanelli, G.; Patrignani, F.; Vinderola, G.; Reinheimer, J.A.; Gardini, F.; Lanciotti, R. Effect of sub-lethal high pressure homogenization treatments on the in vitro functional and biological properties of lactic acid bacteria. LWT-Food Sci. Technol. 2013, 53, 580–586. [Google Scholar] [CrossRef]
- Balamurugan, S.; Gemmell, C.; Lau, A.T.Y.; Arvaj, L.; Strange, P.; Gao, A.; Barbut, S. High pressure processing during drying of fermented sausages can enhance safety and reduce time required to produce a dry fermented product. Food Cont. 2020, 113, 107224. [Google Scholar] [CrossRef]
- Bucka-Kolendo, J.; Sokołowska, B. Lactic acid bacteria stress response to preservation processes in the beverage and juice industry. Acta Biochim. Pol. 2017, 64, 459–464. [Google Scholar] [CrossRef]
- Nuñez, M.; Calzada, J.; Olmo, A. High pressure processing of cheese: Lights, shadows and prospects. Int. Dairy J. 2020, 100, 104558. [Google Scholar] [CrossRef]
- Pottier, L.; Villamonte, G.; de Lamballerie, M. Applications of high pressure for healthier foods. Curr. Opin. Food Sci. 2017, 16, 21–27. [Google Scholar] [CrossRef]
- Fam, S.N.; Khosravi-Darani, K.; Massoud, R.; Massoud, A. High-pressure processing in food. Biointer. Res. Appl. Chem. 2021, 11, 11553–11561. [Google Scholar]
- García-Díez, J.; Saraiva, C. Use of starter cultures in foods from animal origin to improve their safety. Int. J. Environ. Res. Pub. Health 2021, 18, 2544. [Google Scholar] [CrossRef]
- Laranjo, M.; Elias, M.; Fraqueza, M.J. The use of starter cultures in traditional meat products. J. Food Qual. 2017, 2017, 9546026. [Google Scholar] [CrossRef] [Green Version]
- Ojha, K.S.; Kerry, J.P.; Duffy, G.; Beresford, T.; Tiwari, B.K. Technological advances for enhancing quality and safety of fermented meat products. Trends Food Sci. Technol. 2015, 44, 105–116. [Google Scholar] [CrossRef]
- Toldrá, F. The storage and preservation of meat. Lawrie’s Meat Sci. 2017, 9, 265–296. [Google Scholar]
- Zarzecka, U.; Zadernowska, A.; Chajęcka-Wierzchowska, W. Starter cultures as a reservoir of antibiotic resistant microorganisms. LWT–Food Sci. Technol. 2020, 127, 109424. [Google Scholar] [CrossRef]
- Bucka-Kolendo, J.; Sokołowska, B.; Winiarczyk, S. Influence of high hydrostatic pressure on the identification of Lactobacillus by MALDI-TOF MS-preliminary study. Microorganisms 2020, 8, 813. [Google Scholar] [CrossRef]
- Giannoglou, M.; Katsaros, G.; Moatsou, G.; Taoukis, P. Effect of high hydrostatic pressure treatment on the viability and acidification ability of lactic acid bacteria. Int. Dairy J. 2019, 96, 50–57. [Google Scholar] [CrossRef]
- Siroli, L.; Braschi, G.; Rossi, S.; Gottardi, D.; Patrignani, F.; Lanciotti, R. Lactobacillus paracasei A13 and high-pressure homogenization stress response. Microorganisms 2020, 8, 439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Sun, X.; Liao, X.; Gänzle, M. Control of pathogenic and spoilage bacteria in meat and meat products by high pressure: Challenges and future perspectives. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3476–3500. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, Y.; Zhao, L.; Wang, Y.; Rao, L.; Liao, X. Pressure-resistant acclimation of lactic acid bacteria from a natural fermentation product using high pressure. Innov. Food Sci. Emerg. Technol. 2021, 69, 102660. [Google Scholar] [CrossRef]
- Gayán, E.; Govers, S.K.; Aertsen, A. Impact of high hydrostatic pressure on bacterial proteostasis. Biophys. Chem. 2017, 231, 3–9. [Google Scholar] [CrossRef]
- Vogwill, T.; Maclean, R.C. The genetic basis of the fitness costs of antimicrobial resistance: A meta-analysis approach. Evol. Appl. 2015, 8, 284. [Google Scholar] [CrossRef]
- San Millan, A. Evolution of plasmid-mediated antibiotic resistance in the clinical context. Trends Microbiol. 2018, 26, 978–985. [Google Scholar] [CrossRef] [Green Version]
- Melnyk, A.H.; Wong, A.; Kassen, R.; Anita Melnyk, C.H. The fitness costs of antibiotic resistance mutations. Evol. Appl. 2014, 8, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Petersen, A.; Aarestrup, F.M.; Olsen, J.E. The in vitro fitness cost of antimicrobial resistance in Escherichia coli varies with the growth conditions. FEMS Microbiol. Lett. 2009, 299, 53–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bengtsson-Palme, J.; Jonsson, V.; Heß, S. What is the role of the environment in the emergence of novel antibiotic resistance genes? A modeling approach. Environ. Sci. Technol. 2021, 55, 15734–15743. [Google Scholar] [CrossRef] [PubMed]
- Zarzecka, U.; Chajęcka-Wierzchowska, W.; Zadernowska, A. Microorganisms from starter and protective cultures-occurrence of antibiotic resistance and conjugal transfer of tet genes in vitro and during food fermentation. LWT–Food Sci. Technol. 2022, 153, 112490. [Google Scholar] [CrossRef]
- Zarzecka, U.; Zadernowska, A.; Chajęcka-Wierzchowska, W. Effects of osmotic and high pressure stress on expression of virulence factors among Enterococcus spp. isolated from food of animal origin. Food Microbiol. 2022, 102, 103900. [Google Scholar] [CrossRef]
- Huang, H.W.; Hsu, C.P.; Wang, C.Y. Healthy expectations of high hydrostatic pressure treatment in food processing industry. J. Food Drug Anal. 2020, 28, 1–13. [Google Scholar] [CrossRef]
- Pega, J.; Denoya, G.I.; Castells, M.L.; Sarquis, S.; Aranibar, G.F.; Vaudagna, S.R.; Nanni, M. Effect of high-pressure processing on quality and microbiological properties of a fermented beverage manufactured from sweet whey throughout refrigerated storage. Food Bioprocess Technol. 2018, 11, 1101–1110. [Google Scholar] [CrossRef]
- Li, L.; Feng, L.; Yi, J.; Hua, C.; Chen, F.; Liao, X.; Wang, Z.; Hu, X. High hydrostatic pressure inactivation of total aerobic bacteria, lactic acid bacteria, yeasts in sour Chinese cabbage. Int. J. Food Microbiol. 2010, 142, 180–184. [Google Scholar] [CrossRef]
- Lee, J.W.; Cha, D.S.; Hwang, K.T.; Park, H.J. Effects of CO2 absorbent and high-pressure treatment on the shelf-life of packaged kimchi products. Int. J. Food Sci. Technol. 2003, 38, 519–524. [Google Scholar] [CrossRef]
- Schottroff, F.; Fröhling, A.; Zunabovic-Pichler, M.; Krottenthaler, A.; Schlüter, O.; Jäger, H. Sublethal injury and viable but non-culturable (VBNC) state in microorganisms during preservation of food and biological materials by non-thermal processes. Front. Microbiol. 2018, 9, 2773. [Google Scholar] [CrossRef]
- Lenormand, T.; Harmand, N.; Gallet, R. Cost of resistance: An unreasonably expensive concept. Reth. Ecol. 2018, 3, 51–70. [Google Scholar] [CrossRef]
- Hall, J.P.J.; Wright, R.C.T.; Harrison, E.; Muddiman, K.J.; Wood, A.J.; Paterson, S.; Brockhurst, M.A. Plasmid fitness costs are caused by specific genetic conflicts enabling resolution by compensatory mutation. PLoS Biol. 2021, 19, e3001225. [Google Scholar] [CrossRef] [PubMed]
- Duffy, G.; Walsh, C.; Blair, I.S.; McDowell, D.A. Survival of antibiotic resistant and antibiotic sensitive strains of E. coli O157 and E. coli O26 in food matrices. Int. J. Food Microbiol. 2006, 109, 179–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramadhan, A.A.; Hegedus, E. Survivability of vancomycin resistant enterococci and fitness cost of vancomycin resistance acquisition. J. Clin. Pathol. 2005, 58, 744–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Touati, A.; Bellil, Z.; Barache, D.; Mairi, A. Fitness cost of antibiotic resistance in Staphylococcus aureus: A systematic review. Microb. Drug Resist. 2021, 27, 1218–1231. [Google Scholar] [CrossRef]
- Hernando-Amado, S.; Sanz-García, F.; Blanco, P.; Martínez, J.L. Fitness costs associated with the acquisition of antibiotic resistance. Essays Biochem. 2017, 61, 37–48. [Google Scholar]
- Porse, A.; Schønning, K.; Munck, C.; Sommer, M.O.A. Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts. Mol. Biol. Evol. 2016, 33, 2860–2873. [Google Scholar] [CrossRef]
- Carroll, A.C.; Wong, A. Plasmid persistence: Costs, benefits, and the plasmid paradox. Can. J. Microb. 2018, 64, 293–304. [Google Scholar] [CrossRef]
- Bottery, M.J.; Pitchford, J.W.; Friman, V.P. Ecology and evolution of antimicrobial resistance in bacterial communities. ISME J. 2020, 15, 939–948. [Google Scholar] [CrossRef]
- Millan, A.S.; MacLean, R.C. Fitness costs of plasmids: A limit to plasmid transmission. Microbiol. Spectr. 2017, 5, 0016-2017. [Google Scholar] [CrossRef] [Green Version]
Strain | Identification | Antibiotic MICs | Resistance Genes | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AMP | CN | C | TE | E | DA | K | S | VA | |||
Carrying more than 1 Resistance Gene | |||||||||||
LAB-14 | L. lactis ssp. lactis | 0.19 | 0.19 | 12 | 48 | 0.125 | 1.5 | 12 | 0.125 | 0.19 | tetK, aph(3’)-IIIa, aac(6′)-Ie-aph(2″)-Ia, cat |
LAB-16 | 0.19 | 1 | 8 | 32 | 0.125 | 0.25 | 8 | 0.125 | 0.094 | tetM, aph(3’)-IIIa, aac(6′)-Ie-aph(2″)-Ia, aac(6′)-Ia | |
LAB-37 | 3 | 0.75 | 6 | 24 | 0.125 | 0.023 | 16 | 0.125 | 0.19 | tetM, aph(3’)-IIIa, aac(6′)-Ie-aph(2″)-Ia | |
LAB-39 | 0.25 | 0.25 | 8 | 12 | 0.19 | 0.125 | 6 | 0.19 | 0.25 | tetM, tetO, aph(3’)-IIIa, aac(6′)-Ie-aph(2″)-Ia, aac(6′)-Ia | |
LAB-43 | L. curvatus | 0.125 | 0.5 | 16 | 64 | 0.125 | 0.38 | 6 | 0.125 | - | tetM, tetO, aph(3’)-IIIa, aac(6′)-Ie-aph(2″)-Ia, cat |
LAB-41 | L. paracasei | 1 | 0.38 | 32 | 32 | 0.125 | 0.023 | 4 | 0.125 | - | tetW, aph(3’)-IIIa, aac(6′)-Ie-aph(2″)-Ia, aac(6′)-Ia, cat |
LAB-1 | L. paraplantarum | 0.5 | 0.75 | 8 | 12 | 0.19 | 0.5 | 6 | 0.19 | - | tetM, tetW, aph(3’)-IIIa, aac(6′)-Ie-aph(2″)-Ia, aac(6′)-Ia, blaOXA |
LAB-11 | L. paraplantarum | 0.25 | 0.38 | 32 | >256 | 0.25 | 0.25 | 8 | 0.25 | - | tetM, aph(3’)-IIIa, aac(6′)-Ie-aph(2′′)-Ia, aph(2′)-Ic, cat |
Carrying up to 1 resistance gene | |||||||||||
LAB-44 | L. lactis ssp. lactis | 1.5 | 1 | 6 | 12 | 0.19 | 0.032 | 24 | 0.19 | 0.19 | - |
LAB-59 | 3 | 1.5 | 8 | 24 | 0.094 | 0.023 | 32 | 0.094 | 0.125 | - | |
LAB-68 | 3 | 1.5 | 16 | 24 | 0.125 | 0.023 | 24 | 0.125 | 0.19 | - | |
LAB-15 | 3 | 1 | 8 | 1.5 | 0.125 | 0.047 | 32 | 0.125 | 0.25 | - | |
LAB-42 | L. delbrueckii | 1.5 | 0.75 | 6 | 24 | 0.25 | 0.023 | 16 | 0.25 | - | msrA/B |
LAB-20 | L. paracasei | 0.5 | 6 | 6 | 1.5 | 0.064 | 0.032 | 48 | 0.064 | - | cat |
LAB-64 | Lactobacillus sp. | 0.25 | 0.5 | 24 | 32 | 0.094 | 0.25 | 8 | 0.094 | - | cat |
LAB-71 | Lactobacillus sp. | 0.38 | 0.75 | 6 | 32 | 0.19 | 0.094 | 4 | 0.19 | - | aph(2′)-Ic |
Strain | log CFU/mL ± SD | ||||
---|---|---|---|---|---|
Control Sample | 300 MPa/3 min | 300 MPa/ 5 min | 400 MPa/1 min | 400 MPa/3 min | |
Carrying more than 1 resistance gene | |||||
LAB-14 | 9.13 a ± 0.08 | 8.75 a ± 0.2 | 8.23 b ± 0.07 | 3.00 c ± 0.13 | 1.08 d ± 0.13 |
LAB-16 | 8.91 a ± 0.08 | 8.46 a ± 0.41 | 8.12 b ± 0.05 | 3.78 c ± 0.14 | 1.38 d ± 0.27 |
LAB-37 | 8.99 a ± 0.10 | 8.48 a ± 0.05 | 8.34 b ± 0.16 | 4.23 c ± 0.10 | 1.26 d ± 0.07 |
LAB-39 | 8.92 a ± 0.16 | 8.68 a ± 0.23 | 8.13 b ± 0.13 | 3.00 c ± 0.13 | 1.32 d ± 0.26 |
LAB-43 | 9.33 a ± 0.15 | 8.93 a ± 0.15 | 8.69 b ± 0.21 | 3.08 c ± 0.07 | 1.00 d ± 0.07 |
LAB-41 | 8.88 a ± 0.10 | 8.48 a ± 0.08 | 8.17 b ± 0.31 | 3.76 c ± 0.16 | 1.30 d ± 0.33 |
LAB-1 | 8.92 a ± 0.10 | 8.39 a ± 0.22 | 8.24 b ± 0.23 | 4.11 c ± 0.04 | 1.30 d ± 0.33 |
LAB-11 | 8.91 a ± 0.11 | 8.52 a ± 0.21 | 8.20 b ± 0.21 | 3.00 c ± 0.20 | 1.32 d ± 0.13 |
Carrying up to 1 resistance gene | |||||
LAB-15 | 8.74 a ± 0.15 | 8.56 a ± 0.29 | 8.28 a ± 0.17 | 5.36 b ± 0.08 | 4.18 c ± 0.17 |
LAB-44 | 9.19 a ± 0.13 | 9.04 a ± 0.07 | 8.81 a ± 0.20 | 5.53 b ± 0.11 | 4.01 c ± 0.05 |
LAB-59 | 9.32 a ± 0.09 | 9.15 a ± 0.10 | 8.88 a ± 0.23 | 5.25 b ± 0.05 | 3.66 c ± 0.09 |
LAB-68 | 8.90 a ± 0.22 | 8.72 a ± 0.13 | 8.45 a ± 0.25 | 5.44 b ± 0.10 | 3.51 c ± 0.05 |
LAB-42 | 8.79 a ± 0.12 | 8.70 a ± 0.11 | 8.62 a ± 0.09 | 5.32 b ± 0.06 | 4.08 c ± 0.04 |
LAB-20 | 9.31 a ± 0.11 | 9.23 a ± 0.15 | 9.16 a ± 0.15 | 5.45 b ± 0.09 | 4.05 c ± 0.05 |
LAB-64 | 9.34 a ± 0.12 | 9.24 a ± 0.09 | 9.18 a ± 0.07 | 5.12 b ± 0.05 | 3.62 c ± 0.11 |
LAB-71 | 8.90 a ± 0.18 | 8.82 a ± 0.19 | 8.74 a ± 0.23 | 5.45 b ± 0.17 | 3.50 c ± 0.06 |
Time (h) | Genus | HPP Conditions | No of ARGs | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lactococcus | Lactobacillus | 300 MPa /3 min | 300 MPa /5 min | 400 MPa /1 min | 400 MPa /3 min | ≤1 | >1 | G | HPP | No of ARGs | HPP*ARGs | |
0 | 6.62 ± 2.75 | 6.67 ± 2.81 | 8.75 a ± 0.28 | 8.51 a ± 0.35 | 4.42 b ± 1.01 | 2.5 c ± 1.31 | 7.18 ± 2.20 | 6.11 ± 3.17 | NS | *** | *** | *** |
72 | 6.33 ± 2.68 | 6.36 ± 2.73 | 8.89 a ± 0.26 | 8.69 a ± 0.29 | 4.87 b ± 1.04 | 2.92 c ± 1.42 | 7.02 ± 2.05 | 5.67 ± 3.09 | NS | *** | *** | *** |
Strain | log CFU/mL ± SD | ||||
---|---|---|---|---|---|
Control Sample | 300 MPa/3 min | 300 MPa/5 min | 400 MPa/1 min | 400 MPa/3 min | |
Carrying more than 1 resistance gene | |||||
LAB-14 | 9.13 a ± 0.08 | 8.85 a ± 0.11 | 8.52 a ± 0.11 | 3.48 b ± 0.04 | 1.40 c ± 0.12 |
LAB-16 | 8.91 a ± 0.08 | 8.60 a ± 0.09 | 8.45 a ± 0.06 | 4.01 b ± 0.01 | 1.61 c ± 0.09 |
LAB-37 | 8.99 a ± 0.10 | 8.74 a ± 0.09 | 8.52 a ± 0.03 | 4.71 b ± 0.03 | 1.51 c ± 0.16 |
LAB-39 | 8.92 a ± 0.16 | 8.80 a ± 0.06 | 8.44 a ± 0.15 | 3.46 b ± 0.07 | 1.70 c ± 0.08 |
LAB-43 | 9.33 a ± 0.15 | 8.95 a ± 0.05 | 8.72 a ± 0.21 | 3.49 b ± 0.04 | 1.40 c ± 0.18 |
LAB-41 | 8.88 a ± 0.10 | 8.61 a ± 0.07 | 8.42 a ± 0.07 | 4.12 b ± 0.08 | 1.60 c ± 0.08 |
LAB-1 | 8.92 a ± 0.10 | 8.65 a ± 0.11 | 8.49 a ± 0.05 | 4.70 b ± 0.05 | 1.56 c ± 0.10 |
LAB-11 | 8.91 a ± 0.11 | 8.76 a ± 0.13 | 8.33 a ± 0.07 | 3.30 b ± 0.08 | 1.60 c ± 0.07 |
Carrying up to 1 resistance gene | |||||
LAB-15 | 8.74 a ± 0.15 | 8.07 a ± 0.05 | 8.63 a ± 0.09 | 5.89 b ± 0.15 | 4.71 c ± 0.06 |
LAB-44 | 9.19 a ± 0.13 | 9.11 a ± 0.07 | 8.97 a ± 0.09 | 5.91 b ± 0.05 | 4.67 c ± 0.13 |
LAB-59 | 9.32 a ± 0.09 | 9.24 a ± 0.09 | 8.97 a ± 0.13 | 5.75 b ± 0.12 | 3.93 c ± 0.04 |
LAB-68 | 8.90 a ± 0.22 | 8.85 a ± 0.07 | 8.73 a ± 0.11 | 5.90 b ± 0.06 | 3.95 c ± 0.12 |
LAB-42 | 8.79 a ± 0.12 | 8.72 a ± 0.05 | 8.64 a ± 0.11 | 5.73 b ± 0.07 | 4.71 c ± 0.03 |
LAB-20 | 9.31 a ± 0.11 | 9.29 a ± 0.15 | 8.98 a ± 0.09 | 5.92 b ± 0.13 | 4.70 c ± 0.06 |
LAB-64 | 9.34 a ± 0.12 | 9.26 a ± 0.13 | 8.99 a ± 0.21 | 5.71 b ± 0.07 | 3.83 c ± 0.23 |
LAB-71 | 8.90 a ± 0.18 | 8.86 a ± 0.07 | 8.78 a ± 0.06 | 5.93 b ± 0.02 | 3.94 c ± 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarzecka, U.; Zadernowska, A.; Chajęcka-Wierzchowska, W.; Wiśniewska, K.; Modzelewska-Kapituła, M. Antibiotic Resistance Carriage Causes a Lower Survivability Due to Stress Associated with High-Pressure Treatment among Strains from Starter Cultures. Animals 2022, 12, 1460. https://doi.org/10.3390/ani12111460
Zarzecka U, Zadernowska A, Chajęcka-Wierzchowska W, Wiśniewska K, Modzelewska-Kapituła M. Antibiotic Resistance Carriage Causes a Lower Survivability Due to Stress Associated with High-Pressure Treatment among Strains from Starter Cultures. Animals. 2022; 12(11):1460. https://doi.org/10.3390/ani12111460
Chicago/Turabian StyleZarzecka, Urszula, Anna Zadernowska, Wioleta Chajęcka-Wierzchowska, Krystyna Wiśniewska, and Monika Modzelewska-Kapituła. 2022. "Antibiotic Resistance Carriage Causes a Lower Survivability Due to Stress Associated with High-Pressure Treatment among Strains from Starter Cultures" Animals 12, no. 11: 1460. https://doi.org/10.3390/ani12111460
APA StyleZarzecka, U., Zadernowska, A., Chajęcka-Wierzchowska, W., Wiśniewska, K., & Modzelewska-Kapituła, M. (2022). Antibiotic Resistance Carriage Causes a Lower Survivability Due to Stress Associated with High-Pressure Treatment among Strains from Starter Cultures. Animals, 12(11), 1460. https://doi.org/10.3390/ani12111460