Relationship between the Composition of Lipids in Forages and the Concentration of Conjugated Linoleic Acid in Cow’s Milk: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. World Overview of Milk Production and Consumption
3. Importance of Milk in Human Diet
4. Fat Synthesis
4.1. Ruminal Biohydrogenation
4.2. Synthesis of Conjugated Linoleic Acid (CLA)
4.3. Factors That Affect Milk Composition
5. Influence of Diet on the Profile of Fatty Acids in Milk
5.1. Synthesis of Fatty Acids in Plants and Seeds
5.2. Effect of Incorporating Seeds and Vegetable Oils in the Diets on CLA Content in Milk
5.3. Effect of Animal Products on CLA Content in Milk
5.4. Effect of Grass Consumption (Grasses and Legumes) on CLA Concentration in Milk
Type | Linoleic C18:2 | Linolenic C18:3 | Authors |
---|---|---|---|
Ryegrass (Lolium perenne) | 15.1 | 49.8 | Aguilar et al. [13] |
Kikuyo (Pennisetum clandestinum) | 10.8 | 59.5 | |
Ryegrass (Lolium perenne) | 12.3 | 4.5 | León et al. [10] |
Kikuyo (Pennisetum clandestinum) | 21.1 | 30.0 | |
Chontalpo (Brachiaria decumbens) | 14.4 | 20.3 | |
Estrella (Cynodon nlemfuensis) | 21.8 | 27.9 | |
Alfalfa (Medicago sativa) | 21.1 | 30.0 | |
Alfalfa (Medicago sativa) | 17.7 | 30.74 | Toyes et al. [82] |
Huizache (Vachellia farnesiana) | 19.03 | 21.32 | |
Mezquite (Vachellia farnesiana) | 8.45 | 24.44 | |
Palo fierro (Olneya tesota) | 11.85 | 31.34 | |
Palo verde (Parkinsonia aculeata L.) | 13.33 | 37.34 | |
Amargo (Paspalum conjugatum) | 0.40 | 0.46 | Mojica et al. [12] |
Llanero (Andropogon gayanus) | 0.33 | 0.37 | |
Estrella (Cynodon nlemfuensis) | 0.39 | 0.11 | |
Humidícola (Brachiaria humidicola) | 0.32 | 0.12 | |
Mombaza (Panicum maximum) | 0.69 | 0.47 | |
Elefante (Pennisetum purpureum) | 0.23 | 0.35 | |
Mulato (Brachiaria ruziziensis) | 0.73 | 0.54 | Mojica et al. [81] |
Tanzania (Panicum maximum cv.) | 0.80 | 1.20 | |
Toledo (Brachiaria brizantha) | 0.99 | 1.08 |
Feeding Systems | Linoleic C18:2 | Linolenic C18:3 | CLA C18:2 Cis-9 Trans-11 | Author |
---|---|---|---|---|
Grass | ||||
Grasses | 0.67 | 0.53 | 1.55 | Mojica et al. [81] |
Legumes | 0.70 | 0.17 | 2.24 | Aguilar et al. [13] |
Silage | ||||
Alfalfa (Medicago sativa) | 4.51 | 1.11 | 1.30 | Castro et al. [62] |
Corn | 1.77 | 0.12 | 0.88 | Barletta et al. [83] |
Hay | ||||
Alfalfa (Medicago sativa) | 2.70 | 0.91 | 1.80 | Aprianita et al. [84] |
Oat | 0.87 | 0.81 | 0.87 | Caroprese et al. [85] |
TMR | ||||
Corn silage | 0.34 | 0.23 | 0.78 | Lucia et al. [86] |
Sorghum silage | 2.37 | 0.49 | 0.85 | Rego et al. [87] |
6. Effect of Agronomic Management of Pastures to Increase the Amount of CLA Precursors
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fernández Fernández, E.; Martínez Hernández, J.A.; Martínez Suárez, V.; Moreno Villares, J.M.; Collado Yurrita, L.R.; Hernández Cabria, M.; Morán Rey, F.J. Documento de Consenso: Importancia nutricional y metabólica de la leche. Nutr. Hosp. 2015, 31, 92–101. [Google Scholar] [CrossRef]
- Maza-Pastrana, M.; Legorreta-Cao, P. Generalidades de la leche y los productos lácteos. In El Libro Blanco de la Leche y Los Productos Lácteos, 1st ed.; CANILEC: Mexico City, Mexico, 2011; pp. 26–43. [Google Scholar]
- García, C.; Montiel, R.L.A.; Borderas, T.F. Grasa y proteína de la leche de vaca: Componentes, síntesis y modificación. Arch. Zootec. 2014, 63, 85–105. [Google Scholar] [CrossRef]
- Ortega-Pérez, R.; Espinoza-Villavicencio, J.L.; Palacios-Mechetnov, E.; Palacios-Espinosa, A.; Arjona-López, O.; Murillo-Amador, B.; Rivera-Acuña, F. Perfil de ácidos grasos en leche de vacas Chinampas (Bos taurus) alimentadas con forraje fresco de matorral sarcocaulescente o heno de alfalfa. Arch. Med. Vet. 2013, 45, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Granados-Rivera, L.D.; Hernández-Mendo, O.; Maldonado-Jaquez, J.A.; Bautista-Martínez, Y.; Granados-Zurita, L.; Quiroz-Valiente, J. The trans-10, cis-12 isomer of conjugated linoleic acid in the nutrition of lactating cows. Rev. Chapingo Ser. Zonas Áridas 2017, 16, 1–11. [Google Scholar] [CrossRef]
- Gutiérrez-Álvarez, L.F.; Martínez, J.C.; Barón-Núñez, M.R. Contenido de ácido linoleico conjugado (CLA) y composición de ácidos grasos en algunos yogures comerciales de Colombia. Rev. Fac. Nal. Agr. Medellín 2011, 63, 5685–5692. [Google Scholar]
- Kesek, M.; Szulc, T.; Zielak, A. Genetic, physiological and nutritive factors affecting the fatty acid profile in cows’milk-A review. Anim. Sci. Pap. Rep. 2014, 32, 95–105. [Google Scholar]
- Martínez, A.; Pérez, M.; Pérez, L.; Carrión, D.; Gómez, G.; Garzón, A. Efecto de los aceites y semillas en dietas para rumiantes sobre el perfil de ácidos grasos de la leche. Revisión. Rev. Mex. Cienc. Pec. 2013, 4, 319–338. [Google Scholar]
- Ángeles-Hernández, J.C.; Alberto, R.V.; Kebreab, E.; Appuhamy, J.A.R.N.; Dougherty, H.C.; Castelan-Ortega, O.; Gonzalez-Ronquillo, M. Effect of forage to concentrate ratio and fat supplementation on milk composition in dairy sheep: A meta-analysis. Livest. Sci. 2020, 238, 104069. [Google Scholar] [CrossRef]
- León-Caviedes, J.M.; Pabón-Restrepo, M.L.; Carulla-Fornaguera, J.E. Pasture traits and conjugated linoleic acid (CLA) content in milk. Rev. Colomb. Cienc. Pec. 2011, 24, 63–73. [Google Scholar]
- Walker, G.; Dunshea, F.; Doyle, P. Effects of nutrition and management on the production and composition of milk fat and protein: A review. Aust. J. Agric. Res. 2004, 55, 1009–1028. [Google Scholar] [CrossRef]
- Mojica-Rodríguez, J.; Castro-Rincón, E.; Carulla-Fornaguera, J.; Lascano-Aguilar, C. Efecto de la edad de rebrote sobre el perfil de ácidos grasos en gramíneas tropicales. Corpoica Cien. Tecnol. Agropecu. 2017, 18, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, O.X.; Moreno, B.M.; Pabón, M.L.; Carulla, J.E. Efecto del consumo de kikuyo (Pennisetum clandestinum) o raigrás (Lolium hibridum) sobre la concentración de ácido linoléico conjugado y el perfil de ácidos grasos de la grasa láctea. Lives Res. Rural Devel. 2009, 21, 1–21. [Google Scholar]
- Loera, J.; Banda, J. Industria lechera en México: Parámetros de la producción de leche y abasto del mercado interno. Rev. Investing. Altoandin. 2017, 19, 419–426. [Google Scholar] [CrossRef]
- Fideicomisos Instituidos en Relación Con la Agricultura. Panorama Agroalimentario. Leche y Lácteos. 2019. Available online: https://brioagropecuario.com/2019/06/18/fira-panorama-agroalimentario-leche-y-lacteos-2019/ (accessed on 12 October 2021).
- Food and Agriculture Organization of the United Nations. El Sector Lechero Mundial: Datos. 2017. Available online: http://www.dairydeclaration.org/Portals/153/FAO-Global-FactsSPANISHF.PDF?v=1 (accessed on 5 October 2021).
- Murillo-Godinez, G.; Pérez-Escamilla, L.M. Los mitos alimentarios y su efecto en la salud humana. Med. Int. Méx. 2017, 33, 392–402. [Google Scholar]
- Gagliostro, G.; Antonacci, L.; Carabajal, A.; Plaván, J.; Crujeira, Y. Obtención de leche bovina reducida en grasa saturada y naturalmente enriquecida en ácido linoleico conjugado. INNOTEC 2018, 15, 37–43. [Google Scholar] [CrossRef]
- Sánchez, M.A.; Murray, M.S.; Montero, J.; Marchini, M.; Iglesias, R.; Saad, G. Importancia de la leche y sus potenciales efectos en la salud humana. Actual. En Nutr. 2020, 21, 50–64. [Google Scholar]
- Gómez-Cortés, P.; de la Fuente, M.; Juárez, M. Ácidos grasos trans y ácido linoleico conjugado en alimentos: Origen y propiedades biológicas. Nut. Hosp. 2019, 36, 479–486. [Google Scholar] [CrossRef]
- Blanco, M.A.; Ricardo, I.D. Composición, Síntesis y Factores Que Afectan la Cantidad y Composición de la Leche. 2014. Available online: https://bmeditores.mx/ganaderia/composicion-sintesis-y-factores-que-afectan-la-cantidad-y-composicion-de-la-leche/ (accessed on 5 October 2021).
- Martínez-Marín, A.L.; Pérez-Hernández, M.; Pérez-Alba, L.; Gómez-Castro, G.; Carrión-Pardo, D. Metabolismo de los lípidos en los rumiantes. Interciencia 2010, 11, 1–21. [Google Scholar]
- Adame, H.J. Grasas Pasantes en Dietas Para Vacas Lecheras de Alta Producción y su Respuesta en Etapas Productivas y Reproductivas; Universidad Nacional Abierta y a Distancia, Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente: Bogota, Colombia, 2019; pp. 2–17. [Google Scholar]
- Castillo, J.; Olivera, M.; Carulla, J. Descripción del mecanismo bioquímico de la biohidrogenación en el rumen de ácidos grasos poliinsaturados: Una revisión. Rev. UDCA Act. Div. Cient. 2013, 16, 459–468. [Google Scholar] [CrossRef]
- Buccioni, A.; Decandia, M.; Minieri, S.; Molle, G.; Cabiddu, A. Lipid metabolism in the rumen: New insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim. Feed Sci. Technol. 2012, 174, 1–25. [Google Scholar] [CrossRef]
- Granados-Rivera, L.D.; Hernández-Mendo, O. Síndrome de depresión de grasa láctea provocado por el isómero trans-10, cis-12 del ácido linoleico conjugado en vacas lactantes. Rev. Mex. Cien. Pec. 2018, 9, 1–19. [Google Scholar] [CrossRef]
- Garcia, C.; Guillocheau, E.; Richard, L.; Drouin, G.; Catheline, D.; Legrand, P.; Rioux, V. Conversion of dietary trans-vaccenic acid to trans11, cis13-conjugated linoleic acid in the rat lactating mammary gland by Fatty Acid Desaturase 3-catalyzed methyl-end Δ13-desaturation. Biochem. Biophys. Res. Commun. 2018, 505, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Riobó, P.; Breton, I. Ingesta de grasas trans; situación en España. Nut. Hosp. 2014, 29, 704–711. [Google Scholar]
- Roca, A.I.; González, A.; Vázquez, O.P.; López, M.E. Efecto de la fuente de forraje y del tipo de concentrado sobre la producción y el perfil de ácidos grasos de la leche de vaca. In Proceedings of the 53 Reunión científica de la SEEP, La Coruña, Spain, 9–12 June 2014; pp. 453–460. [Google Scholar]
- Corzo, M.J.; Caballero, L.A.; Rivera, M.E. Factores que influyen en la composición y calidad microbiologica de la leche cruda almacenada en un centro de acopio. Cien. Tec. Aliment. 2018, 6, 86–106. [Google Scholar] [CrossRef]
- Giannuzzi, D.; Toscano, A.; Pegolo, S.; Gallo, L.; Tagliapietra, F.; Mele, M.; Minuti, A.; Trevesi, E.; Ajmone Marsan, P.; Schiavon, S. Associations between Milk Fatty Acid Profile and Body Condition Score, Ultrasound Hepatic Measurements and Blood Metabolites in Holstein Cows. Animals 2022, 12, 1202. [Google Scholar] [CrossRef]
- Hanschke, N.; Kankofer, M.; Ruda, L.; Höltershinken, M.; Meyer, U.; Frank, J.; Rehage, J. The effect of conjugated linoleic acid supplements on oxidative and antioxidative status of dairy cows. J. Dairy Sci. 2016, 99, 8090–8102. [Google Scholar] [CrossRef] [Green Version]
- Gallego-Castro, L.A.; Mahecha-Ledesma, L.; Angulo-Arizala, J. Potencial forrajero de Tithonia diversifolia Hemsl. A gray en la producción de vacas lecheras. Agron. Mesoam. 2014, 25, 393–403. [Google Scholar] [CrossRef]
- Ruiz, R. Producción de leche basada en pastos y forrajes tropicales. Cienc. y Tecnol. Ganad. 2011, 5, 1–21. [Google Scholar]
- Pérez-Lizaur, M. La Producción de leche. In El Libro Blanco de la Leche y Los Productos Lácteos; CANILEC: Mexico City, Mexico, 2011; pp. 10–25. [Google Scholar]
- Mella, F.C. Suplementación de Vacas Lecheras de Alta Producción a Pastoreo II; Facultad de Ciencias Agronómicas de la Universidad de Chile y Departamento de Producción Animal: Santiago, Chile, 2008. [Google Scholar]
- Moreno-Osorio, F.; Molina-Restrepo, D. Alimentación animal. In Buenas Prácticas Agropecuarias (BPA) En la Producción de Ganado de Doble Propósito Bajo Confinamiento Con Caña Panelera Como Parte de la Dieta; FAO: Bogotá, Colombia, 2007; pp. 45–51. [Google Scholar]
- Andreu, G.V. Caracterización Bioquímica, Molecular y Cellular de Las ω3 Desaturasas Plastidiales de Plantas y Análisis de Su Implicación en la Síntesis de Jasmonatos; Consejo Superior de Investigaciones Científicas: Zaragoza, Spain, 2010. [Google Scholar]
- Lagunas, C.B. Caracterización Molecular y Celular de la Biosíntesis de Ácidos Grasos Poliinsaturados en Plantas y SU Relación Con la producción de Oxilipinas; Universidad de Zaragoza: Zaragoza, Spain, 2013. [Google Scholar]
- Tafolla-Arellano, J.C.; González-León, A.; Tiznado-Hernández, M.E.; Zacarías García, L.; Báez-Sañudo, R. Composición, fisiología y biosíntesis de la cutícula en plantas. Rev. Fitotec. Mex. 2013, 36, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Sterk, A.; Van Vuuren, A.M.; Hendrik, W.H.; Dijkstra, J. Effects of different fat sources, technological forms and characteristics of the basal diet on milk fatty acid profile in lactating dairy cows—A meta-analysis. J. Agric. Sci. 2012, 150, 495–517. [Google Scholar] [CrossRef]
- Prieto-Manrique, E.; Mahecha-Ledesma, L.; Angulo-Arizala, J.; Vargas-Sánchez, L. Efecto de la suplementación lipídica sobre ácidos grasos en leche de vaca, énfasis en ácido ruménico. Agron. Mesoam. 2016, 27, 421–437. [Google Scholar] [CrossRef]
- Dhiman, T.; Helmink, E.D.; McMahon, D.J.; Fife, R.L.; Pariza, M.W. Conjugated linoleic acid content of milk and cheese from cows fed extruded oilseeds. J. Dairy Sci. 1999, 82, 412–419. [Google Scholar] [CrossRef]
- Ward, A.T.; Wittenberg, K.M.; Przybylski, R. Bovine milk fatty acid profiles produced by feeding dietscontaining solin, flax and canola. J. Dairy Sci. 2012, 85, 1191–1196. [Google Scholar] [CrossRef]
- Chichlowski, M.W.; Schroeder, J.W.; Park, C.S.; Keller, W.L.; Schimek, D.E. Altering the fatty acids in milk fat by including canola seed in dairy cattle diets. J. Dairy Sci. 2005, 88, 3084–3094. [Google Scholar] [CrossRef] [Green Version]
- Gonthier, C.; Mustafa, A.F.; Ouellet, D.R.; Chouinard, P.Y.; Berthiaume, R.; Petit, H.V. Feeding micronized and extruded flaxseed to dairy cows: Effects on blood parameters and milk fatty acid composition. J. Dairy Sci. 2005, 88, 748–756. [Google Scholar] [CrossRef] [Green Version]
- Egger, P.; Holzer, G.; Segato, S.; Werth, E.; Schwienbacher, F.; Peratoner, G.; Andrighetto, I.; Kasal, A. Effects of oilseed supplements on milk production and quality in dairy cows fed a hay-based diet. Italian Sci. J. Anim. Sci. 2007, 6, 395–405. [Google Scholar] [CrossRef] [Green Version]
- Silva, E.; Suarez, M.; Herrera, R.; Nakano, T.; Ozimek, L.; Verdalet, I. Alto contenido de ácido linoleico conjugado (CLA) en leche y productos derivados al incorporar semillas de girasol a la dieta vacuna: Implicaciones sobre el riesgo trombo/aterogénico. Arch. Latinoam. Nut. 2007, 57, 173–178. [Google Scholar]
- Liu, Z.L.; Yang, D.P.; Chen, P.; Lin, S.B.; Jiang, X.Y.; Zhao, W.S.; Lim, J.; Dong, W.X. Effect of dietary sources of roasted oilseeds on blood parameters and milk fatty acid composition. Czech J. Anim. Sci. 2008, 53, 219. [Google Scholar] [CrossRef] [Green Version]
- Chilliard, Y.; Martin, C.; Rouel, J.; Doreau, M. Milk fatty acids in dairy cows fed whole crude linseed, extruded linseed, or linseed oil, and their relationship with methane output. J. Dairy Sci. 2009, 92, 5199–5211. [Google Scholar] [CrossRef]
- Fuentes, M. Efecto de la Grasa de la Dieta Sobre la Grasa Láctea de Los Rumiantes: Una Revisión. Tesis, Universidad Autónoma de Barcelona, Bellaterra, Spain, 2009. [Google Scholar]
- Martínez-Borraz, A.; Moya-Camarena, S.Y.; González-Ríos, H.; Hernández, J.; Pinelli-Saavedra, A. Contenido de ácido linoleico conjugado (CLA) en leche de ganado lechero Holstein estabulado en el noroeste de México. Rev. Mex. Cienc. Pec. 2010, 1, 221–235. [Google Scholar]
- Siurana, A.; Calsamiglia, S. A metaanalysis of feeding strategies to increase the content of conjugated linoleic acid (CLA) in dairy cattle milk and the impact on daily human consumption. Anim. Feed Sci. Technol. 2016, 217, 13–26. [Google Scholar] [CrossRef]
- Kelly, M.; Berry, J.; Dwyer, D.; Griinari, M.; Chouinard, Y.; Van Amburgh, M.; Bauman, D. Dietary fatty acid sources affect conjugated linoleic acid concentrations in milk from lactating dairy cows. J. Nutr. 1998, 128, 881–885. [Google Scholar] [CrossRef]
- Zheng, R.; Mustafa, A.; Zhao, X. Effects of feeding oilseeds rich in linoleic and linolenic fatty acids to lactating ewes on cheese yield and on fatty acid composition of milk and cheese. Anim. Feed Sci. Technol. 2006, 127, 220–233. [Google Scholar] [CrossRef]
- Brzóska, F. Effect of dietary vegetable oils on milk yield, composition and CLA isomer profile in milk from dairy cows. J. Anim. Feed Sci. 2005, 14, 445. [Google Scholar] [CrossRef]
- Roy, A.; Ferlay, A.; Shingfield, K.J.; Chilliard, Y. Examination of the persistency of milk fatty acid composition responses to plant oils in cows given different basal diets, with particular emphasis on trans-C18: 1 fatty acids and isomers of conjugated linoleic acid. Anim. Sci. 2006, 82, 479–492. [Google Scholar] [CrossRef]
- Flowers, G.; Ibrahim, S.A.; AbuGhazaleh, A.A. Milk fatty acid composition of grazing dairy cows when supplemented with linseed oil. J. Dairy Sci. 2008, 91, 722–730. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Armentano, L.E. Effect of fatty acid profile in vegetable oils and antioxidant supplementation on dairy cattle performance and milk fat depression. J. Dairy Sci. 2011, 94, 2481–2491. [Google Scholar] [CrossRef]
- Welter, C.; Martins, C.; de Palma, S.; Martins, M.; Dos Reis, R.; Schmidt, L.; Saran, A. Canola oil in lactating dairy cow diets reduces milk saturated fatty acids and improves its omega-3 and oleic fatty acid content. PLoS ONE 2016, 11, e0151876. [Google Scholar] [CrossRef] [Green Version]
- Vieyra-Alberto, R.; Arriaga-Jordán, C.M.; Domínguez-Vara, I.A.; Bórquez-Gastelum, J.L.; Morales-Almaráz, E. Effect of soybean oil on the concentration of vaccenic and rumenic fatty acids in grazing cow milk. Agrociencia 2017, 51, 299–313. [Google Scholar]
- Castro, T.; Martínez, D.; Isabel, B.; Cabezas, A.; Jimeno, V. Vegetable oils rich in polyunsaturated fatty acids supplementation of dairy cows’ diets: Effects on productive and reproductive performance. Animals 2019, 9, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marín, A.L.M.; Hernández, M.P.; Alba, L.P.; Castro, G.G.; Sígler, A.I.G. Efecto de la grasa de la dieta sobre la grasa láctea de los rumiantes: Una revisión. Interciencia 2010, 35, 723–729. [Google Scholar]
- Boschini-Figueroa, C.; Salazar, J.A.E. Caracterización energética y proteica de materias primas de origen animal, empleadas en la formulación de alimentos balanceados para vacas lecheras. Agron. Mesoam. 2005, 16, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Chilliard, Y.; Ferlay, A.; Doreau, M. Effect of different types of forages, animal fat or marine oils in cow’s diet on milk fat secretion and composition, especially conjugated linoleic acid (CLA) and polyunsaturated fatty acids. Liv. Prod. Sci. 2001, 70, 31–48. [Google Scholar] [CrossRef]
- Juchem, S.; Santos, J.; Cerri, R.; Chebel, R.; Galvão, K.; Bruno, R.; DePeters, E.; Scott, T.; Thatcher, W.; Luchini, D. Effect of calcium salts of fish and palm oils on lactational performance of Holstein cows. Anim. Feed Sci. Technol. 2007, 140, 18–38. [Google Scholar] [CrossRef]
- Abughazahiet, A.; Schingoethe, D.; Hippen, A.; Kalscheur, K.; Whitlock, L. Fatty acid profiles of milk and rumen digesta from cows fed fish oil, extruded soybeans or their blend. J. Dairy Sci. 2002, 85, 2266–2276. [Google Scholar] [CrossRef]
- Donovan, D.C.; Schingoethe, D.J.; Baer, R.J.; Ryali, J.; Hippen, A.R.; Franklin, S.T. Influence of dietary fish oil on conjugated linoleic acid and other fatty acids in milk fat from lactating dairy cows. J. Dairy Sci. 2000, 83, 2620–2628. [Google Scholar] [CrossRef]
- Baer, R.J.; Ryali, J.; Schingoethe, D.J.; Kasperson, K.M.; Donovan, D.C.; Hippen, A.R.; Franklin, S.T. Composition and properties of milk and butter from cows fed fish oil. J. Dairy Sci. 2001, 84, 345–353. [Google Scholar] [CrossRef]
- Whitlock, L.A.; Schingoethe, D.J.; AbuGhazaleh, A.A.; Hippen, A.R.; Kalscheur, K.F. Milk production and composition from cows fed small amounts of fish oil with extruded soybeans. J. Dairy Sci. 2006, 89, 3972–3980. [Google Scholar] [CrossRef] [Green Version]
- Murphy, J.J.; Coakley, M.; Stanton, C. Supplementation of dairy cows with a fish oil containing supplement and sunflower oil to increase the CLA content of milk produced at pasture. Live Sci. 2008, 116, 332–337. [Google Scholar] [CrossRef]
- Toral, P.G.; Frutos, P.; Hervás, G.; Gómez-Cortés, P.; Juárez, M.; De la Fuente, M.A. Changes in milk fatty acid profile and animal performance in response to fish oil supplementation, alone or in combination with sunflower oil, in dairy ewes. J. Dairy Sci. 2010, 93, 1604–1615. [Google Scholar] [CrossRef] [Green Version]
- Kupczyński, R.; Szołtysik, M.; Janeczek, W.; Chrzanowska, J.; Kinal, S.; Króliczewska, B. Effect of dietary fish oil on milk yield, fatty acids content and serum metabolic profile in dairy cows. J. Anim. Physiol. Anim. Nutr. 2011, 95, 512–522. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, A.R.; Alikhani, M.; Ghorbani, G.R.; Rahmani, H.R.; Rashidi, L.; Loor, J.J. Effects of feeding roasted safflower seeds (variety IL-111) and fish oil on dry matter intake, performance and milk fatty acid profiles in dairy cattle. J. Anim. Physiol. Anim. Nutr. 2012, 96, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Walker, G.; Doyle, P.; Heard, J.; Francis, S. Fatty Acid Composition of Pastures. Anim. Prod. Aust. 2004, 25, 192–195. [Google Scholar]
- Morales-Almaráz, E.; Domínguez-Vara, I.; Mejía-Uribe, L.; Cruz-Monterrosa, R.; Jiménez-Gúzman, J.; Vieyra-Alberto, R. Effect of the diet type on the composition of fatty acids in cow milk. Agro. Product. 2018, 11, 21–26. [Google Scholar]
- Kalac, P.; Samkova, E. The effects of feeding various forages on fatty acid composition of bovine milk fat: A review. Czech J. Anim. Sci. 2010, 55, 521–537. [Google Scholar] [CrossRef] [Green Version]
- Granados-Rivera, L.D.; Hernández-Mendo, O.; Granados-Zurita, L.; Quiroz-Valiente, J.; Maldonado-Jaquez, J.A. Perfil de ácidos grasos de leche de vacas en pastoreo de cuatro regiones de Tabasco, México. In XVII Simposio Iberoamericano Sobre Conservación y Utilización de Recursos Zoogenéticos; Red CONBIAND: Corrientes, Argentina, 2016; p. 118. [Google Scholar]
- Morales-Almaráz, E.; Soldado, A.; González, A.; Martínez-Fernández, A.; Domínguez-Vara, I.; de la Roza-Delgado, B.; Vicente, F. Improving the fatty acid profile of dairy cow milk by combining grazing with feeding of total mixed ration. J. Dairy Res. 2010, 77, 225–230. [Google Scholar] [CrossRef]
- Botana, A.; Resch, C.; González, L.; Dagnac, T.; Pereira-Crespo, S.; Fernández-Lorenzo, B.; Valladares, J.; Flores-Calvete, M.V.Y.G. Efecto de la inclusión de ensilado de leguminosas anuales en la ración del Ganado vacuno sobre la producción y el perfil de ácidos grasos de la leche. Innov. Sost. Pastos. 2016, 1, 241–246. [Google Scholar]
- Mojica-Rodríguez, J.; Castro-Rincón, E.; Carulla-Fornaguera, J.; Lascano-Aguilar, C. Intensidad de pastoreo sobre perfil lipídico en leche bovina en el trópico seco colombiano. Agron. Mesoam. 2019, 30, 783–802. [Google Scholar] [CrossRef]
- Toyes-Vargas, E.; Murillo-Amador, B.; Espinoza-Villavicencio, J.; Carrión-Palau, L.; Palacios-Espinosa, A. Composición química y precursores de ácidos vaccénico y ruménico en especies forrajeras en Baja California Sur, México. Rev. Mex. Cienc. Pec. 2013, 4, 373–386. [Google Scholar]
- Barletta, R.V.; Gandra, J.R.; Bettero, V.P.; Araújo, C.E.; Del Valle, T.A.; de Almeida, G.F.; Mingoti, R.; Benevento, B.; Freitas, J.E.; Rennó, F.P. Ruminal biohydrogenation and abomasal flow of fatty acids in lactating cows: Oilseed provides ruminal protection for fatty acids. Anim. Feed Sci. Technol. 2016, 219, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Aprianita, A.; Donkor, O.N.; Moate, P.J.; Williams, S.R.O.; Auldist, M.J.; Greenwood, J.S.; Hannah, M.; Walles, W.J.; Vasiljevic, T. Effects of dietary cottonseed oil and tannin supplements on protein and fatty acid composition of bovine milk. J. Dairy Res. 2014, 81, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Caroprese, M.; Marzano, A.; Marino, R.; Gliatta, G.; Muscio, A.; Sevi, A. Flaxseed supplementation improves fatty acid profile of cow milk. J. Dairy Sci. 2010, 93, 2580–2588. [Google Scholar] [CrossRef]
- Grille, L.; Adrien, M.L.; Méndez, M.N.; Chilibroste, P.; Olazabal, L.; Damián, J.P. Milk Fatty Acid Profile of Holstein Cows When Changed from a Mixed System to a Confinement System or Mixed System with Overnight Grazing. Intern. J. Food Sci. 2022, 22, 5610079. [Google Scholar] [CrossRef] [PubMed]
- Rego, O.A.; Cabrita, A.R.; Rosa, H.J.; Alves, S.P.; Duarte, V.; Fonseca, A.J.; Vousela, C.F.; Pires, F.; Bessa, R.J. Changes in milk production and milk fatty acid composition of cows switched from pasture to a total mixed ration diet and back to pasture. Ital. J. Anim. Sci. 2016, 15, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Elgersma, A.; Maudet, P.; Witkowska, I.M.; Wever, A.C. Effects of Nitrogen fertilisation and regrowth period on fatty acid concentrations in perennial ryegrass (Lolium perenne L.). Ann. Appl. Biol. 2005, 147, 145–152. [Google Scholar] [CrossRef]
- Boufaïed, H.; Chouinard, P.Y.; Tremblay, G.F.; Petit, H.V.; Michaud, R.; Bélanger, G. Fatty acids in forages. I. Factors affecting concentrations. Can. J. Anim. Sci. 2003, 83, 501–511. [Google Scholar] [CrossRef]
Type | Inclusion (% DM of Diet) | Linoleic C18:2 | Linolenic C18:3 | CLA C18:2 Cis-9 Trans-11 | Authors |
---|---|---|---|---|---|
Seeds | |||||
Soybean (extruded) | 11.97 | 5.62 | 0.96 | 00.69 | Dhiman et al. [43] |
Cotton (extruded) | 11.97 | 4.38 | 0.50 | 0.60 | |
Flax | 41 | 2.25 | 1.21 | 1.16 | Ward et al. [44] |
Rapeseed | 41 | 2.16 | 0.48 | 1.41 | |
Canola | 14 | 1.72 | 0.52 | 0.39 | Cichlowski et al. [45] |
Flax (raw) | 12.5 | 2.7 | 1.3 | 1.4 | Gonthier et al. [46] |
Flax (micronized) | 12.7 | 2.9 | 1.3 | 1.4 | |
Flax (extruded) | 12.7 | 3.1 | 1.0 | 1.9 | |
Rapeseed (ground) | 41 | 1.99 | 0.56 | 0.68 | Egger et al. [47] |
Flaxseed (extruded) | 46 | 2.25 | 1.18 | 0.8 | |
Sunflower | 11.2 | ++ | ++ | 2.05 | Silva et al. [48] |
Soybean (toasted) | 7.5 | 3.46 | 0.34 | 8.85 | Liu et al. [49] |
Flax (toasted) | 7.5 | 3.05 | 0.41 | 8.82 | |
Sunflower (toasted) | 7.5 | 2.96 | 0.27 | 0.72 | |
Peanut (toasted) | 7.5 | 3.03 | 0.27 | 0.66 | |
Cotton (toasted) | 7.5 | 2.76 | 0.29 | 0.63 | |
Flax (raw) | 12.4 | 2.05 | 0.65 | 0.98 | Chilliard et al. [50] |
Flax (extruded) | 21.2 | 4.21 | 1.2 | 1.33 | |
Flax | 14 | ++ | ++ | 1.03 | Fuentes et al. [51] |
Cotton | 12 | ++ | ++ | 0.99 | |
Cotton | 12 | 2.98 | 0.51 | 1.04 | Roca et al. [29] |
Flax | 20 | 2.81 | 0.57 | 0.91 |
Type | Inclusion (% DM of Diet) | Linoleic C18:2 | Linolenic C18:3 | CLA C18:2 Cis-9 Trans-11 | Authors |
---|---|---|---|---|---|
Oils | |||||
Peanut | 5.3 | 2.36 | 0.18 | 1.33 | Kelly et al. [54] |
Sunflower | 5.3 | 2.78 | 0.19 | 2.44 | |
Flax | 5.3 | 3.27 | 0.44 | 1.67 | |
Cotton | 2 | 3.43 | ++ | 0.60 | Zheng et al. [55] |
Soybean | 2 | 3.87 | ++ | 1.02 | |
Corn | 2 | 2.95 | ++ | 0.69 | |
Rapeseed | 1.5 | 3.48 | 0.42 | 0.97 | Brzóska [56] |
Flaxseed | 1.5 | 3.16 | 0.35 | 0.81 | |
Soybean | 1.5 | 3.28 | 0.34 | 0.90 | |
Sunflower | 1.5 | 3.45 | 0.40 | 1.05 | |
Flaxseed | 5 | 3.50 | 0.95 | 2.02 | Roy et al. [57] |
Sunflower | 5.2 | 2.62 | 0.15 | 2.18 | |
Sunflower | 5.1 | 4.29 | 0.12 | 1.94 | |
Flaxseed | 2.57 | 2.62 | 0.78 | 1.18 | Flowers et al. [58] |
Flaxseed | 5.12 | 2.95 | 1.01 | 1.39 | |
Flaxseed | 7.67 | 3.33 | 1.03 | 1.65 | |
Palm oil | 5 | 2.22 | 0.53 | 1.51 | He y Armentano [59] |
Flaxseed | 5 | 2.57 | 0.82 | 2.67 | |
Corn | 5 | 2.99 | 0.55 | 3.68 | |
Safflower | 5 | 3.34 | 0.56 | 4.09 | |
Sunflower | 2 | 3.68 | 0.44 | 1.92 | Prieto et al. [42] |
Sunflower | 4 | 4.07 | 0.32 | 2.24 | |
Canola | 3 | 1.34 | 0.36 | 0.52 | Welter et al. [60] |
Canola | 6 | 1.33 | 0.35 | 0.60 | |
Soybean | 3 | ++ | ++ | 1.49 | Vieyra et al. [61] |
Soybean | 6 | ++ | ++ | 1.40 | |
Soybean | 2.3 | 5.01 | 0.82 | 0.65 | Castro et al. [62] |
Flax | 2.3 | 4.51 | 1.30 | 1.11 |
Inclusion (% DM of Diet) | Linoleic C18:2 | Linolenic C18:3 | CLA C18:2 Cis-9 Trans-11 | Author |
---|---|---|---|---|
3 | 2.64 | 0.55 | 1.90 | Donovan et al. [68] |
2 | 2.99 | 0.57 | 2.43 | Baer et al. [69] |
2 | 2.20 | 0.85 | 0.88 | Abughazahiet et al. [67] |
0.67 | 3.15 | 0.81 | 1.19 | Whitlock et al. [70] |
3.5 | 1.4 | 0.64 | 2.16 | Murphy et al. [71] |
1 | 2.47 | 0.34 | 1.66 | Toral et al. [72] |
2 | 1.88 | 0.71 | 2.45 | Kupczynski et al. [73] |
2 | 1.27 | 0.30 | 1.81 | Alizadeh et al. [74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acosta Balcazar, I.C.; Granados Rivera, L.D.; Salinas Chavira, J.; Estrada Drouaillet, B.; Albarrán, M.R.; Bautista Martínez, Y. Relationship between the Composition of Lipids in Forages and the Concentration of Conjugated Linoleic Acid in Cow’s Milk: A Review. Animals 2022, 12, 1621. https://doi.org/10.3390/ani12131621
Acosta Balcazar IC, Granados Rivera LD, Salinas Chavira J, Estrada Drouaillet B, Albarrán MR, Bautista Martínez Y. Relationship between the Composition of Lipids in Forages and the Concentration of Conjugated Linoleic Acid in Cow’s Milk: A Review. Animals. 2022; 12(13):1621. https://doi.org/10.3390/ani12131621
Chicago/Turabian StyleAcosta Balcazar, Isabel Cristina, Lorenzo Danilo Granados Rivera, Jaime Salinas Chavira, Benigno Estrada Drouaillet, Miguel Ruiz Albarrán, and Yuridia Bautista Martínez. 2022. "Relationship between the Composition of Lipids in Forages and the Concentration of Conjugated Linoleic Acid in Cow’s Milk: A Review" Animals 12, no. 13: 1621. https://doi.org/10.3390/ani12131621
APA StyleAcosta Balcazar, I. C., Granados Rivera, L. D., Salinas Chavira, J., Estrada Drouaillet, B., Albarrán, M. R., & Bautista Martínez, Y. (2022). Relationship between the Composition of Lipids in Forages and the Concentration of Conjugated Linoleic Acid in Cow’s Milk: A Review. Animals, 12(13), 1621. https://doi.org/10.3390/ani12131621