Fatty Acid Composition of Muscle and Adipose Tissue in Pigs Fed with Addition of Natural Sorbents
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Experimental Design, Animals, Diet and Sampling
2.3. Fatty Acid Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- OECD-FAO. Agricultural Outlook 2016–2025; OECD Publishing: Paris, France, 2016; ISBN 9789264253223. [Google Scholar]
- Ruiz-Capillas, C.; Herrero, A.M. Development of Meat Products with Healthier Lipid Content: Vibrational Spectroscopy. Foods 2021, 10, 341. [Google Scholar] [CrossRef] [PubMed]
- Olmedilla-Alonso, B.; Jiménez-Colmenero, F.; Sánchez-Muniz, F.J. Development and assessment of healthy properties of meat and meat products designed as functional foods. Meat Sci. 2013, 95, 919–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mersmann, H.J.; Smith, S.B. Growth of meat animals. Adipose tissue development. In Encyclopedia of Meat Sciences; Jensen, W.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 530–538. [Google Scholar] [CrossRef]
- EFSA FEEDAP Panel. EFSA Panel on Additives and Products or Substances used in Animal Feed. Guidance on the renewal of the authorisation of feed additives. EFSA J. 2021, 19, 6340. [Google Scholar] [CrossRef]
- Papaioannou, D.; Katsoulos, P.D.; Panousis, N.; Karatzias, H. The role of natural and synthetic zeolites as feed additives on the prevention and/or the treatment of certain farm animal diseases: A review. Micropor. Mesopor. Mat. 2005, 84, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.; Tabasum, A.S.; Seong-Gyun, K.; Hong-Seok, M.; Chul-Ju, Y. Dietary effect of artificial zeolite on performance, immunity, faecal microflora concentration and noxious gas emissions in pigs. Ital. J. Anim. Sci. 2014, 13, 830–835. [Google Scholar] [CrossRef] [Green Version]
- Chu, G.M.; Kim, J.H.; Kang, S.N.; Song, Y.M. Effects of Dietary Bamboo Charcoal on the Carcass Characteristics and Meat Quality of Fattening Pigs. Korean J. Food Sci. Anim. Resour. 2013, 33, 348–355. [Google Scholar] [CrossRef] [Green Version]
- Rocha, G.C.; Donzele, J.L.; de Oliveira, R.F.M.; de Oliveira Silva, F.C.; Kiefer, C.; Brustolini, P.C.; Carlos Pereira, C.M.; Alebrante, L. Evaluation of zeolite levels in diets for swine in the growing and finishing phases. R. Bras. Zootec. 2012, 41, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Shurson, G.C.; Ku, P.K.; Miller, E.R.; Yokoyama, M.T. Effects of zeolite A or clinoptilolite in diets of growing swine. J. Anim. Sci. 1984, 59, 1536–1545. [Google Scholar] [CrossRef] [Green Version]
- EFSA FEEDAP Panel. EFSA Panel on Additives and Products or Substances used in Animal Feed. Scientific Opinion on the safety and efficacy of bentonite as a technological feed additive for all species. EFSA J. 2012, 10, 2787. [Google Scholar] [CrossRef]
- Shi, Y.H.; Xu, Z.R.; Wang, C.Z.; Sun, Y. Efficacy of two different types of montmorillonite to reduce the toxicity of aflatoxin in pigs. N. Z. J. Agric. Res. 2007, 50, 473–478. [Google Scholar] [CrossRef]
- Trckova, M.; Prikrylova Vondruskova, H.; Zraly, Z.; Sramkova Zajacova, Z.; Kummer, V.; Alexa, P. The effect of dietary bentonite on post-weaning diarrhoea, growth performance and blood parameters of weaned piglets. Appl. Clay Sci. 2014, 90, 35–42. [Google Scholar] [CrossRef]
- EFSA FEEDAP Panel. EFSA Panel on Additives, Products or Substances used in Animal Feed. Scientific Opinion on the safety and efficacy of a feed additive consisting of sodium aluminosilicate, synthetic, for all animal species (European Zeolites Producers Association (EUZEPA) & Association of Synthetic Amorphous Silica Producers (ASASP)). EFSA J. 2021, 19, 6976. [Google Scholar] [CrossRef]
- European Parliament and the Council of the European Union. Regulation (EC) No 1831/2003 of 22 September 2003 on additives for use in animal nutrition. Off. J. Eur. Union L 2003, 268, 1–29. [Google Scholar]
- Ossowski, M.; Wlazło, Ł.; Nowakowicz-Dębek, B.; Florek, M. Effect of Natural Sorbents in the Diet of Fattening Pigs on Meat Quality and Suitability for Processing. Animals 2021, 11, 2930. [Google Scholar] [CrossRef]
- Council of the European Union. Council Regulation (EC) No 1/2005 of 22 December 2004 on the protection of animals during transport and related operations and amending Directives 64/432/EEC and 93/119/EC and Regulation (EC) No 1255/97. Off. J. Eur. Union L 3 2005, 48, 1–44. [Google Scholar]
- Council of the European Union. Council Regulation (EC) No 1099/2009 of 24 September 2009 on the protection of animals at the time of killing. Off. J. Eur. Union L 303 2009, 52, 1–30. [Google Scholar]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- AOCS. Official Method Ce 2–66. Preparation of Methyl Esters of Fatty Acids; American Oil Chemists’ Society: Champaign, IL, USA, 2000. [Google Scholar]
- Domaradzki, P.; Florek, M.; Skałecki, P.; Litwińczuk, A.; Kędzierska-Matysek, M.; Wolanciuk, A.; Tajchman, K. Fatty acid composition, cholesterol content and lipid oxidation indices of intramuscular fat from skeletal muscles of beaver (Castor fiber L.). Meat Sci. 2019, 150, 131–140. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Kutlu, H.R.; Ünsal, I. Effects of dietary wood charcoal on performance and fatness of broiler chicks. Br. Poult. Sci. 1998, 39, S31–S32. [Google Scholar] [CrossRef]
- Kim, S.-H.; Lee, I.-C.; Kang, S.-S.; Moon, C.; Kim, S.-H.; Shin, D.-H.; Kim, H.-C.; Yoo, J.-C.; Kim, J.-C. Effects of Bamboo Charcoal and Bamboo Leaf Supplementation on Performance and Meat Quality in Chickens. J. Life Sci. 2011, 21, 805–810. [Google Scholar] [CrossRef] [Green Version]
- Park, C.I.; Kim, Y.J. Effect of additions of supplemental activated carbon on the fatty acid, meat color and minerals of chicken meat. Korean J. Food Sci. Anim. Resour. 2001, 21, 285–291. [Google Scholar]
- Islam, M.M.; Ahmed, S.T.; Kim, Y.J.; Mun, H.S.; Kim, Y.J.; Yang, C.J. Effect of Sea Tangle (Laminaria japonica) and Charcoal Supplementation as Alternatives to Antibiotics on Growth Performance and Meat Quality of Ducks. Asian Australas. J. Anim. Sci. 2014, 27, 217–224. [Google Scholar] [CrossRef] [Green Version]
- FAO. Fats and Fatty Acids in Human Nutrition; Report of an expert consultation. Food and Nutrition Paper 91; FAO: Rome, Italy, 2010; pp. 11–17. [Google Scholar]
- Safaeikatouli, M.; Boldaji, F.; Dastar, B.; Hassani, S. The effect of dietary silicate minerals supplementation on apparent ileal digestibility of energy and protein in broiler chickens. Int. J. Agric. Biol. 2012, 14, 299–302. [Google Scholar]
- Xia, M.; Hu, C.; Xu, Z. Effects of copper-bearing montmorillonite on growth performance, digestive enzyme activities, and intestinal microflora and morphology of male broilers. Poult. Sci. 2004, 83, 1868–1875. [Google Scholar] [CrossRef]
- Zhang, J.; Lv, Y.; Tang, C.; Wang, X. Effects of dietary supplementation with palygorskite on intestinal integrity in weaned piglets. Appl. Clay Sci. 2013, 86, 185–189. [Google Scholar] [CrossRef]
- Oguz, H.; Kurtoglu, V. Effect of clinoptilolite on performance of broiler chickens during experimental aflatoxicosis. Br. Poult. Sci. 2000, 41, 512–517. [Google Scholar] [CrossRef]
- Lv, Y.; Tang, C.; Wang, X.; Zhao, Q.; Zhang, J. Effects of dietary supplementation with palygorskite on nutrient utilization in weaned piglets. Livest. Sci. 2015, 174, 82–86. [Google Scholar] [CrossRef]
- Trckova, M.; Matlova, L.; Dvorska, L.; Pavlik, I. Kaolin, bentonite, and zeolites as feed supplements for animals: Health advantages and risks. Vet. Med. 2004, 49, 389–399. [Google Scholar] [CrossRef] [Green Version]
- Mannu, A.; Vlahopoulou, G.; Urgeghe, P.; Ferro, M.; Del Caro, A.; Taras, A.; Garroni, S.; Rourke, J.P.; Cabizza, R.; Petretto, G.L. Variation of the Chemical Composition of Waste Cooking Oils upon Bentonite Filtration. Resources 2019, 8, 108. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, F.M.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Enser, M.; Richardson, R.I.; Wood, J.D.; Gill, B.P.; Sheard, P.R. Feeding linseed to increase the n-3 PUFA of pork: Fatty acid composition of muscle, adipose tissue, liver and sausages. Meat Sci. 2000, 55, 201–212. [Google Scholar] [CrossRef]
- Ruusunen, M.; Puolanne, E. Histochemical properties of fibre types in muscles of wild and domestic pigs and the effect of growth rate on muscle fibre properties. Meat Sci. 2004, 67, 533–539. [Google Scholar] [CrossRef] [Green Version]
- Essén-Gustavsson, B.; Karlström, K.; Lundström, K.; Enfält, A.-C. Intramuscular fat and muscle fibre lipid contents in halothane-gene-free pigs fed high or low protein diets and its relation to meat quality. Meat Sci. 1994, 38, 269–277. [Google Scholar] [CrossRef]
- Larzul, C.; Lefaucheur, L.; Ecolan, P.; Gogué, J.; Talmant, A.; Sellier, P.; Le Roy, P.; Monin, G. Phenotypic and genetic parameters for longissimus muscle fiber characteristics in relation to growth, carcass, and meat quality traits in large white pigs. J. Anim. Sci. 1997, 75, 3126–3137. [Google Scholar] [CrossRef] [PubMed]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs. II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
Fatty Acid (%) and Indices | Musculus Longissimus Lumborum | Musculus Semimembranosus | ||||||
---|---|---|---|---|---|---|---|---|
Control (1) | Sorbent D | SEM | Significance | Control (1) | Sorbent D | SEM | Significance | |
16:0 | 25.61 | 25.73 | 0.25 | ns | 23.00 | 23.37 | 0.17 | ns |
18:0 | 12.43 | 12.83 | 0.11 | <0.10 | 10.45 A | 11.37 B | 0.20 | <0.01 |
∑SFA | 40.03 | 40.45 | 0.31 | ns | 35.25 | 36.52 | 0.35 | <0.10 |
16:1 n-7 | 3.39 | 3.38 | 0.10 | ns | 3.67 B | 3.31 A | 0.07 | <0.01 |
18:1 n-9 | 37.81 | 37.69 | 0.20 | ns | 37.78 B | 35.04 A | 0.53 | <0.01 |
∑MUFA cis | 47.27 | 47.06 | 0.26 | ns | 48.96 B | 45.81 A | 0.53 | <0.01 |
18:2 n-6 LA | 9.14 | 8.58 | 0.36 | ns | 10.75 | 11.66 | 0.32 | ns |
18:3 n-3 ALA | 0.61 | 0.51 | 0.03 | ns | 0.59 | 0.56 | 0.01 | ns |
20:4 n-6 AA | 1.15 a | 1.45 b | 0.07 | <0.05 | 2.00 a | 2.69 b | 0.16 | <0.05 |
20:5 n-3 EPA | 0.17 | 0.19 | 0.01 | ns | 0.26 | 0.32 | 0.02 | ns |
22:5 n-3 DPA | 0.33 | 0.39 | 0.02 | ns | 0.47 | 0.58 | 0.03 | ns |
22:6 n-3 DHA | 0.23 | 0.26 | 0.01 | ns | 0.30 | 0.37 | 0.02 | ns |
∑PUFA | 12.46 | 12.25 | 0.48 | ns | 15.51 | 17.40 | 0.58 | <0.10 |
∑n-3 | 1.41 | 1.42 | 0.07 | ns | 1.71 | 1.89 | 0.07 | ns |
∑n-6 | 10.95 | 10.72 | 0.42 | ns | 13.67 | 15.37 | 0.51 | <0.10 |
n-6/n-3 | 7.83 | 7.62 | 0.14 | ns | 7.98 | 8.17 | 0.08 | ns |
PUFA/SFA | 0.31 | 0.30 | 0.01 | ns | 0.44 | 0.48 | 0.02 | ns |
TI | 1.18 | 1.20 | 0.02 | ns | 0.95 | 0.99 | 0.02 | ns |
AI | 0.43 | 0.44 | 0.01 | ns | 0.36 | 0.37 | 0.01 | ns |
h/H | 1.85 | 1.83 | 0.03 | ns | 2.18 | 2.11 | 0.02 | ns |
Fatty Acid (%) and Indices | Kidney Fat | Back Fat | ||||||
---|---|---|---|---|---|---|---|---|
Control (1) | Sorbent D | SEM | Significance | Control (1) | Sorbent D | SEM | Significance | |
16:0 | 29.69 | 29.90 | 0.41 | ns | 26.88 | 26.36 | 0.49 | ns |
18:0 | 16.84 A | 18.33 B | 0.33 | <0.01 | 14.87 | 14.82 | 0.30 | ns |
∑SFA | 48.80 | 50.48 | 0.61 | ns | 43.92 | 43.36 | 0.67 | ns |
16:1 n-7 | 2.26 | 2.12 | 0.07 | ns | 2.31 | 2.07 | 0.07 | <0.10 |
18:1 n-9 | 33.19 B | 31.07 A | 0.46 | <0.01 | 35.61 | 35.97 | 0.28 | ns |
∑MUFA cis | 38.61 b | 36.12 a | 0.56 | <0.05 | 41.54 | 41.67 | 0.33 | ns |
18:2 n-6 LA | 10.37 | 11.21 | 0.38 | ns | 11.84 | 12.20 | 0.43 | ns |
18:3 n-3 ALA | 1.00 | 0.99 | 0.03 | ns | 1.13 | 1.12 | 0.02 | ns |
20:4 n-6 AA | 0.12 | 0.15 | 0.01 | <0.10 | 0.15 | 0.15 | 0.01 | ns |
20:5 n-3 EPA | 0.04 | 0.04 | 0.00 | ns | 0.05 | 0.05 | 0.00 | ns |
22:5 n-3 DPA | 0.14 | 0.14 | 0.01 | ns | 0.17 | 0.17 | 0.01 | ns |
22:6 n-3 DHA | 0.14 | 0.14 | 0.01 | ns | 0.16 B | 0.14 A | 0.01 | <0.01 |
∑PUFA | 12.34 | 13.18 | 0.44 | ns | 14.22 | 14.59 | 0.50 | ns |
∑n-3 | 1.42 | 1.43 | 0.04 | ns | 1.66 | 1.63 | 0.04 | ns |
∑n-6 | 10.92 | 11.76 | 0.40 | ns | 12.55 | 12.96 | 0.46 | ns |
n-6/n-3 | 7.66 A | 8.24 B | 0.12 | <0.01 | 7.53 | 7.95 | 0.15 | ns |
PUFA/SFA | 0.25 | 0.26 | 0.01 | ns | 0.32 | 0.34 | 0.02 | ns |
TI | 1.65 | 1.76 | 0.04 | ns | 1.34 | 1.32 | 0.04 | ns |
AI | 0.59 | 0.61 | 0.01 | ns | 0.49 | 0.47 | 0.01 | ns |
h/H | 1.45 | 1.40 | 0.04 | ns | 1.76 | 1.82 | 0.06 | ns |
Fatty Acid (%) and Indices | Musculus Longissimus Lumborum | Musculus Semimembranosus | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Control (2) | Sorbent A | Sorbent B | SEM | Sig. | Control (2) | Sorbent A | Sorbent B | SEM | Sig. | |
16:0 | 24.48 | 24.73 | 24.98 | 0.30 | ns | 23.06 | 23.62 | 24.73 | 0.34 | ns |
18:0 | 11.22 | 11.70 | 11.48 | 0.18 | ns | 10.27 | 10.74 | 11.32 | 0.27 | ns |
∑SFA | 37.71 | 38.34 | 38.31 | 0.41 | ns | 35.21 | 36.23 | 37.89 | 0.60 | <0.10 |
16:1 n-7 | 3.56 | 3.46 | 3.24 | 0.13 | ns | 3.61 | 3.65 | 3.25 | 0.11 | ns |
18:1 n-9 | 37.61 | 36.28 | 37.45 | 0.88 | ns | 38.89 a | 42.15 b | 38.96 a | 0.63 | <0.05 |
∑MUFA cis | 48.72 | 47.15 | 47.99 | 0.89 | ns | 50.19 | 52.40 | 49.31 | 0.63 | <0.10 |
18:2 n-6 LA | 9.17 | 9.27 | 9.83 | 0.69 | ns | 9.92 | 7.88 | 9.30 | 0.46 | <0.10 |
18:3 n-3 ALA | 0.46 | 0.43 | 0.44 | 0.03 | ns | 0.58 | 0.54 | 0.48 | 0.03 | ns |
20:4 n-6 AA | 1.80 | 1.89 | 1.79 | 0.18 | ns | 1.86 | 1.19 | 1.40 | 0.13 | <0.10 |
20:5 n-3 EPA | 0.21 | 0.23 | 0.18 | 0.03 | ns | 0.21 | 0.15 | 0.12 | 0.02 | <0.10 |
22:5 n-3 DPA | 0.41 | 0.40 | 0.43 | 0.05 | ns | 0.41 | 0.28 | 0.28 | 0.03 | ns |
22:6 n-3 DHA | 0.16 | 0.29 | 0.18 | 0.04 | ns | 0.18 | 0.20 | 0.11 | 0.02 | ns |
∑PUFA | 13.27 | 14.19 | 13.34 | 1.07 | ns | 14.28 | 11.13 | 12.63 | 0.69 | <0.10 |
∑n-3 | 1.32 | 1.40 | 1.28 | 0.14 | ns | 1.47 | 1.26 | 1.07 | 0.09 | ns |
∑n-6 | 11.77 | 12.64 | 11.93 | 0.94 | ns | 12.64 | 9.75 | 11.46 | 0.62 | <0.10 |
n-6/n-3 | 8.94 | 9.76 | 9.24 | 0.38 | ns | 8.60 AB | 7.77 A | 11.01 B | 0.58 | <0.01 |
PUFA/SFA | 0.35 | 0.38 | 0.35 | 0.03 | ns | 0.41 | 0.31 | 0.36 | 0.02 | <0.10 |
TI | 1.08 | 1.11 | 1.11 | 0.03 | ns | 0.96 | 1.02 | 1.11 | 0.03 | ns |
AI | 0.40 | 0.41 | 0.41 | 0.01 | ns | 0.36 | 0.38 | 0.40 | 0.01 | ns |
h/H | 1.95 | 1.93 | 1.92 | 0.04 | ns | 2.16 | 2.12 | 1.98 | 0.04 | ns |
Fatty Acid (%) and Indices | Control (2) | Sorbent A | Sorbent B | SEM | Significance |
---|---|---|---|---|---|
16:0 | 29.55 A | 29.63 A | 31.26 B | 0.30 | <0.01 |
18:0 | 21.32 | 20.53 | 21.87 | 0.37 | ns |
∑SFA | 52.96 a | 52.51 a | 55.53 b | 0.64 | <0.05 |
16:1 n-7 | 1.37 | 1.43 | 1.49 | 0.04 | ns |
18:1 n-9 | 32.10 | 29.08 | 28.66 | 0.63 | <0.10 |
∑MUFA cis | 36.10 | 33.12 | 32.59 | 0.66 | ns |
18:2 n-6 LA | 9.06 | 11.92 | 9.99 | 0.56 | <0.10 |
18:3 n-3 ALA | 0.88 a | 1.18 b | 0.94 ab | 0.06 | <0.05 |
20:4 n-6 AA | 0.10 | 0.14 | 0.11 | 0.01 | <0.10 |
20:5 n-3 EPA | 0.03 | 0.05 | 0.02 | 0.01 | ns |
22:5 n-3 DPA | 0.11 | 0.14 | 0.11 | 0.01 | ns |
22:6 n-3 DHA | 0.07 A | 0.13 B | 0.07 A | 0.01 | <0.01 |
∑PUFA | 10.76 a | 14.23 b | 11.74 ab | 0.68 | <0.05 |
∑n-3 | 1.18 a | 1.62 b | 1.22 a | 0.08 | <0.05 |
∑n-6 | 9.58 | 12.61 | 10.52 | 0.60 | <0.10 |
n-6/n-3 | 8.13 ab | 7.77 a | 8.62 b | 0.16 | <0.05 |
PUFA/SFA | 0.20 a | 0.27 b | 0.21 ab | 0.01 | <0.05 |
TI | 1.97 a | 1.86 a | 2.16 b | 0.06 | <0.05 |
AI | 0.63 a | 0.63 a | 0.71 b | 0.02 | <0.05 |
h/H | 1.38 b | 1.38 b | 1.22 a | 0.03 | <0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domaradzki, P.; Nowakowicz-Dębek, B.; Wlazło, Ł.; Ossowski, M.; Dmoch, M.; Florek, M. Fatty Acid Composition of Muscle and Adipose Tissue in Pigs Fed with Addition of Natural Sorbents. Animals 2022, 12, 1681. https://doi.org/10.3390/ani12131681
Domaradzki P, Nowakowicz-Dębek B, Wlazło Ł, Ossowski M, Dmoch M, Florek M. Fatty Acid Composition of Muscle and Adipose Tissue in Pigs Fed with Addition of Natural Sorbents. Animals. 2022; 12(13):1681. https://doi.org/10.3390/ani12131681
Chicago/Turabian StyleDomaradzki, Piotr, Bożena Nowakowicz-Dębek, Łukasz Wlazło, Mateusz Ossowski, Małgorzata Dmoch, and Mariusz Florek. 2022. "Fatty Acid Composition of Muscle and Adipose Tissue in Pigs Fed with Addition of Natural Sorbents" Animals 12, no. 13: 1681. https://doi.org/10.3390/ani12131681
APA StyleDomaradzki, P., Nowakowicz-Dębek, B., Wlazło, Ł., Ossowski, M., Dmoch, M., & Florek, M. (2022). Fatty Acid Composition of Muscle and Adipose Tissue in Pigs Fed with Addition of Natural Sorbents. Animals, 12(13), 1681. https://doi.org/10.3390/ani12131681