Effect of Raw Chickpea in the Broiler Chicken Diet on Intestinal Histomorphology and Intestinal Microbial Populations
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds, Diets, and Experimental Design
2.2. Intestinal Tract Histomorphometrical Analysis
2.3. Microbiological Analysis of Intestinal Contents
2.4. Identification of Enterobacteriaceae Species from the Cecum and Cloaca
2.5. Analysis of Sensitivity to Chemotherapeutics
2.6. Statistical Analysis
3. Results
3.1. Gastrointestinal Tract Morphology
3.2. Concentration of Microorganisms in Intestinal Contents
3.3. Enterobacteriaceae Species in the Cecum and Cloaca of Broiler Chickens
3.4. Sensitivity of Enterobacteriaceae Strains to Chemotherapeutics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kowalczyk, D.; Wernicki, A.; Pejsak, Z.; Puchalski, A. Restriction endonuclease analysis of Salmonella enterica ser. Enteritidis full genome by means of pulsed-field gel electrophoresis in FIGE modification. Pol. J. Vet. Scien. 2001, 4, 95–101. [Google Scholar]
- Denton, M. Enterobacteriaceae. Int. J. Antimicrob. Agents 2007, 29, S9–S22. [Google Scholar] [CrossRef]
- Osman, K.M.; Kappell, A.D.; El Hadidy, M.; El Mougy, F.; El-Ghany, W.A.; Orabi, A.; El Mougy, F.; El-Ghany, W.A.; Orabi, A.; Mubarak, A.S.; et al. Poultry hatcheries as potential reservoirs for antimicrobial-resistant Escherichia coli: A risk to public health and food safety. Sci. Rep. 2018, 8, 5859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Luo, S.; Yan, C. Gut microbiota implications for health and welfare in farm animals: A review. Animals 2022, 12, 93. [Google Scholar] [CrossRef] [PubMed]
- Luise, D.; Correa, F.; Bosi, P.; Trevisi, P. A Review of the effect of formic acid and its salts on the gastrointestinal microbiota and performance of pigs. Animals 2020, 10, 887. [Google Scholar] [CrossRef] [PubMed]
- Biniek, M.; Cisek, A.A.; Rzewuska, M.; Chrobak-Chmiel, D.; Stefańska, I.; Kizerwetter-Świda, M. Chicken intestinal microbiome: Development and function. Med. Wet. 2017, 73, 618–625. [Google Scholar] [CrossRef] [Green Version]
- Sergeant, M.J.; Constantinidou, C.; Cogan, T.A.; Bedford, M.R.; Penn, C.W.; Pallen, M.J. Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS ONE 2014, 9, e91941. [Google Scholar]
- Puvača, N.; de Llanos Frutos, R. Antimicrobial Resistance in Escherichia coli Strains Isolated from Humans and Pet Animals. Antibiotics 2021, 10, 69. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Y.; Lin, J. Functional cloning and characterization of antibiotic resistance genes from the chicken gut microbiome. Appl. Environ. Microbiol. 2012, 78, 3028–3032. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.A.J.; Ashworth, C.; Willett, K.; Cook, A.; Upadhyay, P.R.; Owens, S.C.; Ricke, J.M.; DeBruyn Moore, P.A., Jr. Review of Antibiotic Resistance, Ecology, Dissemination, and Mitigation in U.S. Broiler Poultry Systems. Front. Microbiol. 2019, 10, 2639. [Google Scholar] [CrossRef]
- Zhai, W.; Peebles, E.D.; Zumwalt, C.D.; Mejia, L.; Corzo, A. Effects of dietary amino acid density regimens on growth performance and meat yield of Cobb × Cobb 700 broilers. J. Appl. Poult. Res. 2013, 22, 447–460. [Google Scholar] [CrossRef]
- Bampidis, V.A.; Christodoulou, V. Chickpeas (Cicer arietinum L.) in animal nutrition: A review. Anim. Feed Sci. Technol. 2011, 168, 1–20. [Google Scholar] [CrossRef]
- Muszyński, S.; Tomaszewska, E.; Dobrowolski, P.; Kwiecień, M.; Wiącek, D.; Świetlicka, I.; Skibińska, M.; Szymańska–Chargot, M.; Orzeł, J.; Świetlicka, I.; et al. Analysis of bone osteometry, mineralization, mechanical and histomorphometrical properties of tibiotarsus in broiler chickens demonstrates a influence of dietary chickpea seeds (Cicer arietinum L.) inclusion as a primary protein source. PLoS ONE 2018, 13, e0208921. [Google Scholar] [CrossRef] [PubMed]
- Danek–Majewska, A.; Kwiecień, M.; Winiarska–Mieczan, A.; Haliniarz, M.; Bielak, A. Raw Chickpea (Cicer arietinum L.) as a Substitute of Soybean Meal in Compound Feed for Broiler Chickens: Effects on Growth Performance, Lipid Metabolism, Fatty Acid Profile, Antioxidant Status, and Dietary Value of Muscles. Animals 2021, 11, 3367. [Google Scholar] [CrossRef] [PubMed]
- Olkowski, B.; Charuta, A.; Radzki, R.; Bieńko, M.; Toczko, R. Skeletal response to diet with soya bean seeds used as primary source of protein in growing broiler chickens. J. Anim. Physiol. Anim. Nutr. 2016, 100, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Bilić-Šobot, D.; Kubale, V.; Škrlep, M.; Čandek-Potokar, M.; Prevolnik Povše, M.; Fazarinc, G.; Škorjanc, D. Effect of hydrolysable tannins on intestinal morphology, proliferation and apoptosis in entire male pigs. Arch. Anim. Nutr. 2016, 70, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Gatel, F. Protein quality of legume seeds for non-ruminant animals: A literature review. Anim. Feed Sci. Technol. 1994, 45, 317–348. [Google Scholar] [CrossRef]
- King, T.P.; Begbie, R.; Cadenhead, A. Nutritional toxicity of raw kidney beans in pigs. Immunocyto chemical and cytopathological studies on the gut and the pancreas. J. Sci. Food Agric. 1983, 34, 1404–1412. [Google Scholar] [CrossRef]
- Moon, J.K.; Shibamoto, T. Antioxidant assays for plant and food components. J. Agr. Food Chem. 2009, 57, 1655–1666. [Google Scholar] [CrossRef]
- Torres-Fuentes, C.; Del Mar Contreras, M.; Recio, I.; Alaiz, J.; Vioque, M. Identification and characterization of antioxidant peptides from chickpea protein hydrolysates. Food Chem. 2015, 180, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Henry, M.A.; Nikolopoulou, D.; Alexis, M.N. In vitro effect of peas, Pisum pisum, and chickpeas, Cicer arietinum, on the immune system of gilthead seabream, Sparus aurata. Vitr. Cell Dev. Biol. Anim. 2012, 48, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Giraldo, I.; Megías, C.; Alaiz, M.; Girón-Calle, J.; Vioque, J. Purification of free arginine from chickpea (Cicer arietinum) seeds. Food Chem. 2016, 192, 114–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeghi, G.H.; Pourreza, J.; Samei, A.; Rahmani, H. Chemical composition and some antinutrient content of raw and processed bitter vetch (Vicia ervilia) seed for use as feeding stuff in poultry diet. Trop. Anim. Health Pro. 2009, 41, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Tapiero, H.; Mathe, G.; Couvreur, P.; Tew, K.D.L. Arginine. Biomed. Pharmacother. 2002, 56, 439–445. [Google Scholar] [CrossRef]
- Aviagen. Ross Broiler Management Handbook. Retrieved on 10 April 2016. Available online: http://en.aviagen.com/assets/Tech_Center/Ross_Broiler/Ross-Broiler-Handbook-2014i-EN.pdf (accessed on 10 September 2021).
- Aviagen. Ross 308 Broiler: Nutrition Specifications. Available online: http://en.aviagen.com/assets/Tech_Center/Ross_Broiler/Ross308BroilerNutritionSpecs2014-EN.pdf (accessed on 25 September 2019).
- Tomaszewska, E.; Dobrowolski, P.; Puzio, I. Postnatal administration of 2-oxoglutaric acid improves the intestinal barrier affected by the prenatal action of dexamethasone in pigs. Nutrition 2012, 28, 190–196. [Google Scholar] [CrossRef]
- Tomaszewska, E.; Dobrowolski, P.; Puzio, I.; Prost, Ł.; Kurlak, P.; Sawczuk, P.; Badzian, B.; Hulas-Stasiak, M.; Kostro, K. Acrylamide-induced prenatal programming intestine structure in guinea pig. J. Physiol. Pharmacol. 2014, 65, 107–115. [Google Scholar]
- Suvara, S.K.; Layton, C.; Bancroft, J.D. Bancroft’s Theory and Practice of Histological Techniques, 7th ed.; Churchill Livingstone: Edinburgh, UK, 2013. [Google Scholar]
- Tomaszewska, E.; Dobrowolski, P.; Kwiecień, M. Alterations in intestinal and liver histomorphology, and basal hematological and biochemical parameters in relation to different sources of dietary copper in adult rats. Ann. Anim. Sci. 2017, 17, 477–490. [Google Scholar] [CrossRef] [Green Version]
- Tomaszewska, E.; Winiarska-Mieczan, A.; Dobrowolski, P. The lack of protective effects of tea supplementation on liver and jejunal epithelium in adult rats exposed to cadmium and lead. Environ. Toxicol. Pharmacol. 2015, 40, 708–714. [Google Scholar] [CrossRef]
- Bauer, A.W. Antibiotic susceptibility testing by a standardized single disc method. Am. J. Clin. Pathol. 1966, 45, 149–158. [Google Scholar] [CrossRef]
- Diaz Carrasco, J.M.; Casanova, N.A.; Fernández Miyakawa, M.E. Microbiota, gut health and chicken productivity: What is the connection? Microorganisms 2019, 7, 374. [Google Scholar] [CrossRef] [Green Version]
- Kostadinović, L.; Lević, J. Effects of phytoadditives in poultry and pigs diseases. J. Agron. Technol. Eng. Manag. 2018, 1, 1–7. [Google Scholar]
- Kostadinović, L.; Popović, S.; Pelić, D.L.; Čabarkapa, I.; Đuragić, O.; Lević, J. Medicinal plants as natural alternative to coccidial synthetic drugs in broiler chicken production. J. Agron. Technol. Eng. Manag. 2019, 2, 325–334. [Google Scholar]
- Laudadio, V.; Passantino, L.; Perillo, A.; Lopresti, G.; Passantino, A.; Khan, R.U.; Tufarelli, V. Productive performance and histological features of intestinal mucosa of broiler chickens fed different dietary protein levels. Poult. Sci. 2012, 91, 265–270. [Google Scholar] [CrossRef]
- Maneewan, B.; Yamauchi, K. Effects of semi-purified pellet diet on the chicken intestinal villus histology. J. Poult. Sci. 2003, 40, 254–266. [Google Scholar] [CrossRef] [Green Version]
- Buwjoom, T.; Yamauchi, K.; Erikawa, T.; Goto, H. Histological intestinal alterations in chickens fed low-protein diet. J. Anim. Physiol. Anim. Nutr. 2010, 94, 354–361. [Google Scholar] [CrossRef]
- Tufarelli, V.; Desantis, S.; Zizza, S.; Laudadio, V. Performance, gut morphology and carcass characteristics of fattening rabbits as affected by particle size of pelleted diets. Arch. Anim. Nutr. 2010, 64, 373–382. [Google Scholar] [CrossRef]
- Wang, J.X.; Peng, K.M. Developmental morphology of the small intestine of African ostrich chicks. Poult. Sci. 2008, 87, 2629–2635. [Google Scholar] [CrossRef]
- Montagne, L.; Pluske, J.R.; Hampson, D.J. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim. Feed Sci. Technol. 2003, 108, 95–117. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, H.J.; Yu, S.H.; Wu, S.G.; Yoon, I.; Quigley, J.; Gao, Y.P.; Qi, G.H. Effects of yeast culture in broiler diets on performance and immunomodulatory functions. Poult. Sci. 2008, 87, 1377–1384. [Google Scholar] [CrossRef]
- Sharp, P.; Villano, J. The Laboratory Rat, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Tomaszewska, E.; Dobrowolski, P.; Klebaniuk, R.; Kwiecień, M.; Tomczyk-Warunek, A.; Szymańczyk, S.; Kowalik, S.; Milczarek, A.; Blicharski, T.; Muszyński, S. Gut-bone axis response to dietary replacement of soybean meal with raw low-tannin faba bean seeds in broiler chickens. PLoS ONE 2018, 13, e0194969. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Gong, J.; Brisbin, J.T.; Yu, H.; Sanei, B.; Sabour, P.; Sharif, S. Appropriate chicken sample size for identifying the composition of broiler intestinal microbiota affected by dietary antibiotics, using the polymerase chain reaction-denaturing gradient gel electrophoresis technique. Poult. Sci. 2007, 86, 2541–2549. [Google Scholar] [CrossRef]
- Cisek, A.A.; Binek, M. Chicken intestinal microbiota function with a special emphasis on the role of probiotic bacteria. Pol. J. Vet. Sci. 2014, 17, 385–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubio, L.A.; Peinado, M.J.; Ruiz, R.; Suárez-Pereira, E.; Ortiz Mellet, C.; García Fernández, J.M. Correlations between changes in intestinal microbiota composition and performance parameters in broiler chickens. J. Anim. Physiol. Anim. Nutr. 2015, 99, 418–423. [Google Scholar] [CrossRef]
- Gong, Y.; Yang, H.; Wang, X.; Xia, W.; Lv, W.; Xiao, Y.; Zou, X. Early intervention with cecal fermentation broth regulates the colonization and development of gut microbiota in broiler chickens. Front. Microbiol. 2019, 10, 1422. [Google Scholar] [CrossRef] [PubMed]
- Ciurescu, G.; Dumitru, M.; Sorescu, I. Effect of chickpea and probiotics on broiler chicks’ performance and gut microflora populations. Sci. P. Anim. Sci. Biotechnol. 2020, 53, 1–7. [Google Scholar]
- Fernando, W.; Hill, J.; Zello, G.; Tyler, R.; Dahl, W.; Van Kessel, A. Diets supplemented with chickpea or its main oligosaccharide component raffinose modify faecal microbial composition in healthy adults. Benef. Microbes 2010, 1, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Monk, J.M.; Lepp, D.; Wu, W.; Graf, D.; McGillis, L.H.; Hussain, A.; Carey, C.; Robinson, L.E.; Liu, R.; Tsao, R.; et al. Chickpea-supplemented diet alters the gut microbiome and enhances gut barrier integrity in C57Bl/6 male mice. J. Funct. Foods 2017, 38, 663–674. [Google Scholar] [CrossRef]
- Chi-Yu, C.; Yen-Hsu, C.; Po-Liang, L.; Wei-Ru, L.; Tun-Chieh, C.; Chun-Yu, L. Proteus mirabilis urinary tract infection and bacteremia: Risk factors, clinical presentation, and outcomes. J. Microbiol. Immunol. 2012, 45, 228–236. [Google Scholar]
- Grela, E.R.; Kiczorowska, B.; Samolińska, W.; Matras, J.; Kiczorowski, P.; Rybiński, W.; Hanczakowska, E. Chemical composition of leguminous seeds: Part I—content of basic nutrients, amino acids, phytochemical compounds, and antioxidant activity. Eur. Food Res. Technol. 2017, 243, 1385–1395. [Google Scholar] [CrossRef]
- Grela, E.R.; Samolińska, W.; Kiczorowska, B.; Klebaniuk, R.; Kiczorowski, P. Content of minerals and fatty acids and their correlation with phytochemical compounds and antioxidant activity of leguminous seeds. Biol. Trace Elem. Res. 2017, 180, 338–348. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.; Jha, R. Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. J. Anim. Sci. Biotechnol. 2019, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Carramiñana, J.J.; Rota, C.; Agustın, I.; Herrera, A. High prevalence of multiple resistance to antibiotics in Salmonella serovars isolated from a poultry slaughterhouse in Spain. Vet. Microbiol. 2004, 104, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Ojo, O.; Olatunde, G.O.; Michael, A.; James, O.; Olugbenga, O.K.; Mufutau, A.O. Antibiogram of Enterobacteriaceae from free-range chickens. Vet. Archiv. 2012, 82, 577–589. [Google Scholar]
Item | Diets 1 | |||||
---|---|---|---|---|---|---|
Starter (0 to 21 Days) | Grower (22 to 35 Days) | Finisher (36 to 42 Days) | ||||
SBM | CPR | SBM | CPR | SBM | CPR | |
Diet composition, % | ||||||
Maize | 20.00 | 20.00 | 23.26 | 10.00 | 25.65 | 10.00 |
Wheat | 42.87 | 42.87 | 44.00 | 35.80 | 44.00 | 40.45 |
Soybean meal, 46% crude protein | 29.95 | 29.95 | 24.94 | 13.00 | 22.98 | 11.50 |
Chickpea, 22.5% crude protein | - | - | - | 34.41 | - | 31.51 |
Soybean oil | 2.59 | 2.59 | 4.56 | 3.45 | 4.68 | 3.73 |
Dicalcium phosphate | 1.47 | 1.47 | 0.96 | 1.00 | 0.74 | 0.77 |
Limestone | 1.30 | 1.30 | 0.86 | 0.80 | 0.63 | 0.59 |
Na2SO4 | 0.23 | 0.23 | 0.17 | 0.11 | 0.16 | 0.10 |
L-Lys 78% | 0.39 | 0.39 | 0.24 | 0.32 | 0.20 | 0.29 |
DL-Met 99% | 0.35 | 0.35 | 0.25 | 0.26 | 0.21 | 0.22 |
L-Thr 99% | 0.15 | 0.15 | 0.06 | 0.15 | 0.05 | 0.14 |
NaCl | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Vitamin-mineral premix | 0.50 1 | 0.50 1 | 0.50 2 | 0.50 2 | 0.50 3 | 0.50 3 |
Values calculated | ||||||
Metabolizable energy, MJ⋅kg−1 | 12.355 | 12.355 | 13.150 | 13.149 | 13.319 | 13.317 |
Available P, % | 0.470 | 0.470 | 0.350 | 0.350 | 0.299 | 0.300 |
Total Ca/Available P | 2.017 | 2.017 | 2.000 | 1.997 | 2.000 | 2.000 |
Values analyzed | ||||||
Crude protein, % | 21.004 | 21.004 | 18.797 | 18.801 | 17.996 | 17.999 |
Crude fiber, % | 2.843 | 2.843 | 2.728 | 2.274 | 2.696 | 2.284 |
Lysine, % | 1.381 | 1.381 | 1.128 | 1.132 | 1.047 | 1.050 |
Methionine, % | 0.668 | 0.668 | 0.544 | 0.549 | 0.494 | 0.498 |
Methionine +cysteine, % | 1.031 | 1.031 | 0.879 | 0.879 | 0.821 | 0.819 |
Threonine, % | 0.925 | 0.925 | 0.756 | 0.756 | 0.716 | 0.716 |
Total Ca, % | 0.948 | 0.948 | 0.700 | 0.699 | 0.598 | 0.600 |
Antinutritional factors, total in feed mixture, mg⋅g−1 | ||||||
Tannins | 6.02 | 6.02 | 5.32 | 3.10 | 5.05 | 2.99 |
Trypsin inhibitors | 0.41 | 0.41 | 0.36 | 0.35 | 0.33 | 0.32 |
Item | SBM | CPR | SEM | p-Value |
---|---|---|---|---|
Myenteron thickness, μm | ||||
Longitudinal lamina | 33.6 | 36.8 | 0.61 | 0.057 |
Transversal lamina | 126.4 | 88.3 | 2.29 | <0.001 |
Submucosa thickness, μm | 18.1 | 15.8 | 0.54 | 0.021 |
Mucosa thickness, μm | 1790 | 1539 | 22.19 | <0.001 |
Villar epithelium thickness, μm | 37.4 | 52.6 | 1.27 | <0.001 |
The number of enterocytes | 18.7 | 26.1 | 1.35 | 0.001 |
Villus length, μm | 1492 | 1380 | 15.91 | <0.001 |
Villus thickness, μm | 117 | 146 | 2.38 | <0.001 |
Total number of villi/mm | 5.12 | 5.94 | 0.32 | 0.220 |
Crypt depth, μm | 102 | 103 | 3.45 | 0.519 |
Crypt width, μm | 48.3 | 51.3 | 0.91 | 0.073 |
Villus length/ Crypt depth | 20.0 | 14.7 | 2,16 | 0.115 |
Intestine absorptive surface, μm2 | 26.5 | 21.4 | 0.48 | <0.001 |
Number of crypts/mm | ||||
Active crypts | 4.92 | 4.23 | 0.24 | 0.154 |
Inactive crypts | 7.89 | 11.0 | 0.73 | 0.025 |
Total crypts | 12.8 | 15.3 | 0.68 | 0.066 |
Item | SBM | CPR | SEM | p-Value |
---|---|---|---|---|
Myenteron thickness, μm | ||||
Longitudinal lamina | 36.7 | 14.5 | 1.44 | <0.001 |
Transversal lamina | 235 | 112 | 7.86 | <0.001 |
Submucosa thickness, μm | 36.4 | 20.8 | 1.30 | <0.001 |
Mucosa thickness, μm | 1962 | 1568 | 23.7 | <0.001 |
Villar epithelium thickness, μm | 27.9 | 47.7 | 1.23 | <0.001 |
The number of enterocytes | 19.8 | 19.9 | 0.59 | 0.998 |
Villus length, μm | 1617 | 1115 | 29.3 | <0.001 |
Villus thickness, μm | 71.8 | 132.6 | 3.65 | <0.001 |
Total number of villi/mm | 8.48 | 8.13 | 0.51 | 0.211 |
Crypt depth, μm | 84.6 | 85.1 | 2.21 | 0.765 |
Crypt width, μm | 41.5 | 44.1 | 1.11 | 0.697 |
Villus length/ Crypt depth | 20.5 | 14.1 | 0.61 | <0.001 |
Intestine absorptive surface, μm2 | 37.7 | 19.7 | 1.08 | <0.001 |
Number of crypts/mm | ||||
Active crypts | 3.49 | 4.22 | 0.25 | 0.849 |
Inactive crypts | 11.1 | 9.34 | 0.67 | 0.318 |
Total crypts | 14.6 | 13.6 | 0.63 | 0.146 |
Item | SBM | CPR | SEM | p-Value |
---|---|---|---|---|
Auerbach plexus | ||||
Area, μm2 | 1836 | 1331 | 167.08 | 0.129 |
Perimeter, μm | 220 | 190 | 14.55 | 0.368 |
Mean Feret diameter, μm | 66.1 | 57.4 | 4.22 | 0.396 |
Min. diameter, μm | 22.7 | 20.3 | 1.40 | 0.368 |
Mean diameter, μm | 41. 5 | 35.5 | 1.96 | 0.117 |
Sphericity | 0.09 | 0.09 | 0.01 | 0.554 |
Meissner plexus | ||||
Area, μm2 | 1036 | 1380 | 128.14 | 0.187 |
Perimeter, μm | 220 | 244 | 16.04 | 0.459 |
Mean Feret diameter, μm | 64.9 | 72.2 | 4.68 | 0.452 |
Min. diameter, μm | 11.9 | 13.9 | 0.76 | 0.211 |
Mean diameter, μm | 26.3 | 31.5 | 1.59 | 0.102 |
Sphericity | 0.03 | 0.03 | 0.004 | 0.604 |
Item | SBM | CPR | SEM | p-Value |
---|---|---|---|---|
Auerbach plexus | ||||
Area, μm2 | 3289 | 1925 | 311.88 | 0.015 |
Perimeter, μm | 326 | 212 | 25.97 | 0.035 |
Mean Feret diameter, μm | 96.6 | 63.6 | 7.63 | 0.036 |
Min. diameter, μm | 31.3 | 24.3 | 1.43 | 0.014 |
Mean diameter, μm | 53.0 | 41.9 | 2.38 | 0.011 |
Sphericity | 0.16 | 0.12 | 0.02 | 0.996 |
Meissner plexus | ||||
Area, μm2 | 831 | 1114 | 72.25 | 0.115 |
Perimeter, μm | 176b | 246a | 11.92 | 0.003 |
Mean Feret diameter, μm | 52.1b | 73.4a | 3.58 | 0.003 |
Min. diameter, μm | 13.1 | 11.3 | 0.46 | 0.057 |
Mean diameter, μm | 26.8 | 27.1 | 0.86 | 0.842 |
Sphericity | 0.06 | 0.01 | 0.01 | <0.001 |
Item | SBM | CPR | SEM | p-Value |
---|---|---|---|---|
Total aerobic mesophilic bacteria count | 3.36 | 4.29 | 0.432 | 0.039 |
Total count of bacteria | 4.15 | 4.86 | 0.207 | 0.151 |
Total count of coliforms | 2.26 | 3.98 | 0.341 | 0.024 |
Total count of fungi | 1.50 | 1.56 | 0.105 | 0.752 |
Species | SBM | CPR |
---|---|---|
Cecum | ||
Citrobacter braakii | + | ++ |
Citrobacter freundii | + | - |
Escherichia coli 1 | + | - |
Escherichia coli 2 | + | - |
Enterobacter cloacae | + | - |
Proteus mirabilis | + | ++ |
Proteus vulgaris | + | - |
Providencia rettgeri | + | - |
Cloaca | ||
Citrobacter braakii | + | ++ |
Citrobacter freundii | + | - |
Escherichia coli 1 | + | - |
Escherichia coli 2 | - | - |
Enterobacter cloacae | - | - |
Proteus mirabilis | ++ | ++ |
Proteus vulgaris | + | - |
Providencia rettgeri | + | - |
Species | SBM | CPR | p-Value |
---|---|---|---|
Cecum | |||
Chloramphenicol (30 µg/mL) 2 | |||
S | 70 | 97 | |
MS | 15 | 3 | 0.834 |
R | 15 | 0 | |
Tetracycline (30 IU) 2 | |||
S | 27 | 100 | |
MS | 50 | 0 | 0.029 |
R | 23 | 0 | |
Trimethoprim/Sulfamethoxazole (1.25 + 23.75 µg/mL) 2 | |||
S | 87 | 100 | |
MS | 0 | 0 | 0.964 |
R | 13 | 0 | |
Streptomycin (10 IU) 2 | |||
S | 25 | 100 | |
MS | 0 | 0 | 0.011 |
R | 75 | 0 | |
Nitrofurantoin (300 IU) 2 | |||
S | 100 | 93 | |
MS | 0 | 7 | 0.936 |
R | 0 | 0 | |
Ampicillin (10 µg/mL) 2 | |||
S | 20 | 100 | |
MS | 50 | 0 | 0.013 |
R | 30 | 0 | |
Cloaca | |||
Chloramphenicol (30 µg/mL) 2 | |||
S3 | 75 | 100 | |
MS | 0 | 0 | 0.598 |
R | 25 | 0 | |
Tetracycline (30 IU) 2 | |||
S | 23 | 100 | |
MS | 47 | 0 | 0.019 |
R | 30 | 0 | |
Trimethoprim/Sulfamethoxazole (1.25 + 23.75 µg/mL2) | |||
S | 95 | 97 | |
MS | 0 | 0 | 0.659 |
R | 5 | 3 | |
Streptomycin (10 IU) 2 | |||
S | 10 | 77 | |
MS | 10 | 0 | 0.053 |
R | 80 | 23 | |
Nitrofurantoin (300 IU) 2 | |||
S | 55 | 100 | |
MS | 45 | 0 | 0.173 |
R | 0 | 0 | |
Ampicillin (10 µg/mL) 2 | |||
S | 13 | 100 | |
MS | 77 | 0 | 0.004 |
R | 10 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danek-Majewska, A.; Kwiecień, M.; Samolińska, W.; Kowalczyk-Pecka, D.; Nowakowicz-Dębek, B.; Winiarska-Mieczan, A. Effect of Raw Chickpea in the Broiler Chicken Diet on Intestinal Histomorphology and Intestinal Microbial Populations. Animals 2022, 12, 1767. https://doi.org/10.3390/ani12141767
Danek-Majewska A, Kwiecień M, Samolińska W, Kowalczyk-Pecka D, Nowakowicz-Dębek B, Winiarska-Mieczan A. Effect of Raw Chickpea in the Broiler Chicken Diet on Intestinal Histomorphology and Intestinal Microbial Populations. Animals. 2022; 12(14):1767. https://doi.org/10.3390/ani12141767
Chicago/Turabian StyleDanek-Majewska, Anna, Małgorzata Kwiecień, Wioletta Samolińska, Danuta Kowalczyk-Pecka, Bożena Nowakowicz-Dębek, and Anna Winiarska-Mieczan. 2022. "Effect of Raw Chickpea in the Broiler Chicken Diet on Intestinal Histomorphology and Intestinal Microbial Populations" Animals 12, no. 14: 1767. https://doi.org/10.3390/ani12141767
APA StyleDanek-Majewska, A., Kwiecień, M., Samolińska, W., Kowalczyk-Pecka, D., Nowakowicz-Dębek, B., & Winiarska-Mieczan, A. (2022). Effect of Raw Chickpea in the Broiler Chicken Diet on Intestinal Histomorphology and Intestinal Microbial Populations. Animals, 12(14), 1767. https://doi.org/10.3390/ani12141767