Sedation of Wild Pyrenean Capercaillie (Tetrao urogallus aquitanicus) Using Intramuscular Midazolam
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Captured and Sedated Animals
2.2. Capture and Handling
2.3. Sedation and Handling
2.4. Reversal and Release
2.5. GPS Devices and Post-Procedure Monitoring
2.6. Statistics
3. Results
3.1. Sedated Pyrenean Capercaillies: Captures, Doses, and Cloacal Temperatures
3.2. Capture Time, Induction Time, Ht
3.3. Sedation Parameters and Physical Examination
3.4. Sedation Reversal
3.5. Losses
3.6. GPS Devices and Post-Capture Follow-Up
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Evaluation of body or nutritional condition: performed by palpation of the pectoral muscles. The profile of the muscles in an imaginary cross section at the mid-keel range from very thin muscles that barely cover the keel bone (condition 1 = emaciated) to pectoral muscles that almost cover the highest point of the keel crest (condition 5 = obese). In wild birds, a nutritional condition ranging from 3 to 4 is most commonly observed and indicates normal (good) physical conditions, i.e., a healthy bird.
- Muscle and bone palpation: the Pyrenean capercaillies where palpated and observed from the tip of the beak to the toes, looking for lesions (i.e., open wounds, scars, hematomas, swelling, fractures, luxations. A normal palpation of the body implies the absence of all these wounds and lesions). The normal results of the systematic examination of birds is included in Reference [35] (chapter 2, page 23).
- Observation of the feathers, skin, and appendages: a thorough observation was performed looking for abnormalities, such as broken or missing feathers, abnormal colored feathers, or feathers with abnormal growth (i.e., stress lines—thinned cross-section lines in the feather that may be related to nutritional deficiencies during growth or to parasite problems, for example). A normal appearance of flight, body, and covert feathers implied the absence of all the abnormalities mentioned above. The normal appearance of feathers in birds is well known and reported in many ornithology books.
- 4.
- Heart and lung auscultation: The normal respiratory and heart rates depending on weight or species (ranging from a 25 g bird to an ostrich) are summarized in Reference [35] (pages 24 and 25). Checking the absence of respiratory obstruction, constant deepness and rhythm of respiratory rate, as well as heart rhythm, are the most common types of cardiorespiratory evaluation steps. Most of the times, heart rate is too fast to be measured using a stethoscope in field conditions.
- 5.
- Temperature: cloacal temperature was recorded in most of the sedated capercaillies; a normal bird range may vary from 40 to 42 °C.
References
- BirdLife International. European Red List of Birds. Office for Official Publications of the European Communities: Luxembourg, 2015. Available online: http://datazone.birdlife.org/userfiles/file/Species/erlob/supplementarypdfs/22679487_tetrao_urogallus.pdf (accessed on 29 April 2022).
- Canut, J.; Garcia-Ferrer, D.; Afonso-Jordana, I. Pyrenean capercaillie (Tetrao urogallus). In Catalan Breeding Bird Atlas. Distribution and Abundance 2015–2018 and Change since 1980, Cossetània Editions; Cossetània and ICO: Barcelona, Spain, 2021; pp. 112–113. [Google Scholar]
- Bal, G.; Bacon, L.; Ménoni, E.; Calenge, C.; Millon, A.; Besnard, A. Modélisation De la Dynamique Du Grand Tétras Des Pyrénées Françaises Pour Sa Gestion Adaptative; Office Français de la Biodiversité, Techical Report Muséum national d’Histoire naturelle (MNHN) et OFB, 2021; p. 35. Available online: https://www.researchgate.net/publication/354150226_Modelisation_de_la_dynamique_du_grand_tetras_des_Pyrenees_francaises_pour_sa_gestion_adaptative (accessed on 19 April 2022).
- Moss, R.; Oswald, J. Climate change and breeding success: Decline of the capercaillie in Scotland. J. Anim. Ecol. 2001, 70, 47–61. [Google Scholar] [CrossRef]
- Bañuelos, M.J.; Quevedo, M.; Obeso, J.R. Habitat partitioning in endangered Cantabrian Capercaillie Tetrao urogallus cantabricus. J. Ornithol. 2004, 149, 245–252. [Google Scholar] [CrossRef]
- Arlettaz, R.; Patthey, P.; Baltic, M.; Leu, T.; Schaub, M.; Palme, R.; Jenni-Eiermann, S. Spreading free-riding snow sports represent a novel serious threat for wildlife. Proc. R. Soc. B Biol. Sci. 2007, 274, 1219–1224. [Google Scholar] [CrossRef] [PubMed]
- Baltic, M.; Jenni-Eiermann, S.; Arlettaz, R.; Palme, R. A Noninvasive Technique to Evaluate Human-Generated Stress in the Black Grouse. Ann. N. Y. Acad. Sci. 2005, 1046, 81–95. [Google Scholar] [CrossRef]
- Fraser, K.C.; Davies, K.T.A.; Davy, C.M.; Ford, A.T.; Flockhart, D.T.T.; Martins, E.G. Tracking the conservation promise of movement ecology. Front. Ecol. Evol. 2018, 6, 150. [Google Scholar] [CrossRef] [Green Version]
- Helle, P.; Jokimäki, J.; Lindén, H. Habitat selection of the male capercaillie in northern Finland: A study based on radiotelemetry. Suom. Riista 1990, 36, 72–81. [Google Scholar]
- Höfle, U.; Millán, J.; Gortázar, C.; Buenestado, F.; Marco, I.; Villafuerte, R. Self-injury and capture myopathy in net-captured juvenile Red-legged Partridge with necklace radiotags. Wildl. Soc. Bull. 2004, 32, 344–350. [Google Scholar] [CrossRef]
- Ruder, M.; Noel, B.; Bednarz, J.; Kevin Keel, M. Exertional myopathy in pileated woodpeckers (Dryocopus pileatus) subsequent to capture. J. Wildl. Dis. 2012, 48, 514–516. [Google Scholar] [CrossRef] [Green Version]
- Marco, I.; Mentaberre, G.; Ponjoan, A.; Bota, G.; Mañosa, S.; Lavín, S. Capture myopathy in Little bustards after trapping and marking. J. Wildl. Dis. 2006, 42, 889–891. [Google Scholar] [CrossRef] [Green Version]
- Novoa, C.; Bech, N.; Resseguier, J.; Martinez-Vidal, R.; Garcia Ferré, D.; Sola de la Torre, J.; Boissier, J. A translocation experiment for improving the genetic diversity of an isolated population of Pyrenean rock ptarmigan (Lagopus muta pyrenaica). Grouse News: Newsletter of the Grouse Group of the IUCN-SSC Galliformes Specialist Group. 2014, pp. 11–18. Available online: https://www.researchgate.net/publication/271701872 (accessed on 9 June 2022).
- Spraker, T.R.; Adrian, W.J.; Lance, W.R. Capture myopathy in wild turkeys (Meleagris gallopavo) following trapping, handling and transportation in Colorado. J. Wildl. Dis. 1987, 23, 447–453. [Google Scholar] [CrossRef]
- Businga, N.; Langenberg, J.; Carlson, V.D. Successful treatment of capture myopathy in three wild greater sandhill cranes (Grus canadensis tabida). J. Avian Med. Surg. 2007, 21, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Deguchi, T.; Suryan, R.M.; Ozaki, K. Muscle damage and behavioral consequences from prolonged handling of albatross chicks for transmitter attachment. J. Wildl. Manag. 2014, 78, 1302–1309. [Google Scholar] [CrossRef]
- Abbott, W.; Dabbert, B.; Lucia, D.; Mitchell, R. Does muscular damage during capture and handling handicap radiomarked northern bobwhites? J. Wildl Manag. 2005, 69, 664–670. [Google Scholar] [CrossRef]
- Guthery, F.S.; Lusk, J.J. Radiotelemetry Studies: Are we radio-handicapping northern bobwhites? Wildl. Soc. Bull. 2004, 32, 194–201. [Google Scholar] [CrossRef]
- Paterson, J. Capture Myopathy. In Zoo Animal & Wildlife Immobilization and Anesthesia; West, G., Heard, D., Caulkett, N., Eds.; Blackwell Publishing: Oxford, UK, 2007; pp. 115–121. Available online: https://hal.archives-ouvertes.fr/tel-00337937/ (accessed on 22 March 2022).
- Dickens, M.J.; Delehanty, D.J.; Michael Romero, L. Stress: An inevitable component of animal translocation. Biol. Conserv. 2010, 143, 1329–1341. [Google Scholar] [CrossRef]
- Breed, D.; Meyer, L.C.R.; Steyl, J.C.A.; Goddard, A.; Burroughs, R.; Kohn T, A. Conserving wildlife in a changing world: Understanding capture myopathy—A malignant outcome of stress during capture and translocation. Conserv. Physiol. 2019, 7, 7,1–21. [Google Scholar] [CrossRef] [Green Version]
- Day, T.K.; Roge, C.K. Evaluation of sedation in quail induced by use of midazolam and reversed by use of flumazenil. J. Am. Vet. Med. Assoc. 1996, 209, 969–971. [Google Scholar]
- Kubiak, M.; Roach, L.; Eatwell, K. The influence of a combined butorphanol and midazolam premedication on anesthesia in psittacid species. J. Avian Med. Surg. 2016, 30, 317–323. [Google Scholar] [CrossRef]
- Nordt, S.P.; Clark, R.F. Midazolam. A review of therapeutic uses and toxicity. J. Emerg. Med. 1997, 15, 357–365. [Google Scholar] [CrossRef]
- Doss, G.; Mans, C. Avian sedation. JAMS 2021, 35, 253–268. [Google Scholar] [CrossRef]
- Zamani Moghadam, A.; Bigham Sadegh, A.; Sharifi, S.; Habibian, S. Comparison of intranasal administration of diazepam, midazolam and xylazine in pigeons: Clinical evaluation. Iran. J. Vet. Sci. 2009, 1, 19–26. [Google Scholar]
- Prather, J.F. Rapid and reliable sedation induced by diazepam and antagonized by flumazenil in zebra finches (Taeniopygia guttata). J. Avian Med. Surg. 2012, 26, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, I.H.; Vaadia, G.; Landau, S.; Yanco, E.; Lublin, A. Butorphanol-midazolam combination injection for sedation of great white pelicans (Pelecanus onocrotalus). Isr. J. Vet. Med. 2014, 69, 35–39. [Google Scholar]
- Heatley, J.J.; Cary, J.; Kingsley, L.; Beaufrere, H.; Russell, K.E.; Voelker, G. Midazolam sedates Passeriformes for field sampling but affects multiple venous blood analytes. Vet. Med. Res. Rep. 2015, 6, 61–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araghi, M.; Azizi, S.; Vesal, N.; Dalir-Naghade, B. Evaluation of the sedative effects of diazepam, midazolam, and xylazine after intranasal administration in juvenile ostriches (Struthio camelus). J. Avian Med. Surg. 2016, 30, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Nicolas de Francisco, O.; Afonso Jordana, I.; Sacristán, I.; Garcia Ferré, D.; Ewbank, A.C.; Sacristán, C. Use of sedation to reduce avian stress during handling and translocation: Grey partridge (Perdix perdix) as a model for wild galliforms. JZWM 2022. submitted. [Google Scholar]
- Vesal, N.; Zare, P. Clinical evaluation of intranasal benzodiazepines, alpha-agonists and their antagonists in canaries. Vet. Anaesth. Analg 2006, 33, 143–148. [Google Scholar] [CrossRef]
- Bigham, A.S.; Zamani Moghaddam, A.K. Finch (Taeneopygia guttata) sedation with intranasal administration of diazepam, midazolam or xylazine. J. Vet. Pharmacol. Therap. 2009, 36, 102–104. [Google Scholar] [CrossRef]
- Montadert, M. Fonctionnement Démographique et Sélection De L’habitat D’une Population En Phase D’expansion Géographique. Cas de la GÉLINOTTE Des Bois Dans Les ALPES Du Sud, France; Ecologie, Environnement, Université de Franche-Comté: Besançon, France, 2005. [Google Scholar]
- Samour, J. Clinical examination. In Avian Medicine, 2nd ed.; Samour, J., Ed.; Mosby Elseviewer: London, UK, 2008; pp. 15–30. [Google Scholar]
- Pollock, C. Body Condition Scoring in Birds. 2012. Available online: https://lafeber.com/vet/body-condition-scoring/ (accessed on 26 April 2022).
- Clippinger, T.L.; Bennett, R.A.; Platt, S.R. The avian neurologic examination and ancillary neurodiagnostic techniques: A review update. Veter Clin. N. Am. Exot. Anim. Pract. 2007, 10, 803–836. [Google Scholar] [CrossRef]
- Hunt, C. Neurological examination and diagnostic testing in birds and reptiles. J. Exot. Pet Med. 2015, 24, 34–51. [Google Scholar] [CrossRef]
- Mushi, E.Z.; Isa, J.F.; Chabo, R.G.; Binta, M.G.; Nyange, J.; Modisa, L. Selenium-vitamin E responsive myopathy in farmed ostriches (Struthio camelus) in Botswana. Avian Pathol. 1998, 27, 326–328. [Google Scholar] [CrossRef] [Green Version]
- Schutz, T.P.; Breeden, J.B.; Mueller, J.M.; Wittie, R. An evaluation of vitamin E and selenium as a treatment for capture myopathy in Rio Grande wild turkeys. In Proceedings of the Annual Conference, Southeastern Association of Fish and Wildlife Agencies; Tarleton University: Stephenville, TX, USA, 1 March 2009. [Google Scholar]
- Heniff, M.S.; Moore, G.P.; Trout, A.; Cordell, W.H.; Nelson, D.R. Comparison of routes of flumazenil administration to reverse midazolam-induced respiratory depression in a canine model. Acad. Emerg. Med. 1997, 4, 1115–1118. [Google Scholar] [CrossRef] [PubMed]
- Mans, C.; Sanchez-Migallon, D.; Lahner, L.L.; Paul-Murphy, J.; Sladky, K.K. Sedation and physiologic response to manual restraint after intranasal administration of midazolam in Hispaniolan Amazon parrots (Amazona ventralis). J. Avian Med. Surg. 2012, 26, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Mans, C. Sedation of pet birds. J. Exot. Pet Med. 2014, 23, 152–157. [Google Scholar] [CrossRef]
- Thaxter, C.B.; Ross-Smith, V.H.; Clark, J.A.; Clark, N.A.; Conway, G.J.; March, M.; Leat, E.H.; Burton, N.H. A trial of three harness attachment methods and their suitability for long-term use on Lesser Black-backed Gulls and Great Skuas. Ringing Migr. 2014, 29, 65–76. [Google Scholar] [CrossRef]
- Mallory, M.L.; Gilbert, C.D. Leg-loop harness design for attaching external transmitters to seabirds. Mar. Ornithol. 2008, 36, 183–188. [Google Scholar]
- Wakamatsu-Utsuki, N.; Pollock, C.A. Guide to Avian Necropsy. LafeberVet Web Site. Available online: https://lafeber.com/vet/a-guide-to-avian-necropsy/ (accessed on 25 August 2019).
- Ward, J.M.; Gartrell, B.D.; Conklin, J.R.; Battley, P.F. Midazolam as an adjunctive therapy for capture myopathy in Bar-tailed Godwits (Limosa lapponica baueri) with prognostic indicators. J. Wildl. Dis. 2011, 47, 925–935. [Google Scholar] [CrossRef]
- Gering, A.P.; Cavalcante, M.J.S.; Junior, J.J.P.; Ruivo, L.V.P. Paradoxical effect on midazolam in Amazonica amazonica—Case report. J. LAVECC 2017, 9, 8–10. [Google Scholar]
- Lemke, K.A. Anticholinergics and sedatives. In Lumb & Jones’ Veterinary Anesthesia and Analgesia, 4th ed.; Tranquilli, W.J., Thurmon, J.C., Grimm, K.A., Eds.; Blackwell Publishing: Ames, IA, USA, 2007; pp. 229–230. [Google Scholar]
- Cortright, K.A.; Wetzlich, S.E.; Graigmill, A.L. Plasma pharmacokinetics of midazolam in chickens, turkeys, pheasants and bobwhite quail. J. Vet. Pharmacol. Ther. 2007, 30, 429–436. [Google Scholar] [CrossRef]
- Spraker, T.R. Stress and capture myopathy in artiodactyls. In Zoo and Wild Animal Medicine, Current Therapy, 3rd ed.; Fowler, M.E., Ed.; W.B. Saunders Company: Philadelphia, PA, USA, 1993; pp. 481–488. [Google Scholar]
Case Number | Year | Weight | Sex | Sedative Volume (mL) | Sedative Dose (mg/kg) | Cloacal Temperature (°C) | Reversal Dose (mg/kg) | Reversal Time (min) 1 |
---|---|---|---|---|---|---|---|---|
1 | 2018 | 3400 | M | 5.5 | 8.09 | 40.3 | 0.09 | 35 |
2 | 2018 | 3750 | M | 5.8 | 7.73 | - | 0.10 | 32 |
3 | 2018 | 3650 | M | 5 | 6.85 | - | 0.10 | 30 |
4 | 2018 | 1850 | F | 1.5 | 4.05 | - | 0.10 | 26 |
5 | 2018 | 3550 | M | 3.5 | 4.93 | - | 0.10 | 33 |
6 | 2018 | N.R.* | M | 5 | - | - | - | NR |
7 | 2019 | 3080 | M | 2.9 | 4.71 | 40 | 0.10 | 35 |
8 | 2019 | 2900 | M | 3.5 | 6.03 | 41.1 | 0.10 | 56 |
9 | 2019 | 3900 | M | 3.5 | 4.49 | - | 0.09 | 35 |
10 | 2019 | 3650 | M | 3.5 | 4.79 | 39.9 | 0.08 | 43 |
11 | 2019 | 3770 | M | 5 | 6.63 | - | 0.08 | 26 |
12 | 2020 | 3600 | M | 3.5 | 4.86 | - | 0.09 | 25 |
13 | 2020 | 3700 | M | 3.5 | 4.73 | - | 0.08 | 28 |
14 | 2020 | 3700 | M | 3.5 | 4.73 | - | - 2 | - |
15 | 2020 | 1750 | F | 2.1 | 6 | - | 0.12 | 39 |
16 | 2020 | 2750 | M | 3 | 5.45 | 41.2 | 0.11 | 30 |
17 | 2021 | 3750 | M | 3 | 4 | - | 0.09 | 20 |
18 | 2021 | 3700 | M | 3 | 4.05 | 40.8 | 0.08 | 22 |
19 | 2021 | N.R. | F | 1.5 | - | 40.9 | - | 30 |
20 | 2021 | N.R. | M | 2 | - | 41.9 | - | 24 |
21 | 2021 | 3500 | M | 2 | 2.86 | 41.3 | 0.06 | 25 |
22 | 2021 | N.R. | M | 2 | - | 41.1 | - | 23 |
23 | 2021 | 2600 | M | 1.5 | 2.88 | 40.7 | 0.08 | 30 |
Case Number | Sex | Sedative Dose (mg/kg) | Palpebral Reflex | Wing and Leg Withdrawal Reflexes | Upright Head Position * | Deep Pain | Rigidity, Body Arching | Open-Mouth Breathing | Sporadic Wing Flapping or Tremors |
---|---|---|---|---|---|---|---|---|---|
1 | M | 8.09 | no | no | no | no | no | yes | no |
2 | M | 7.73 | no | no | yes | no | no | yes | no |
3 | M | 6.85 | no | no | no | no | no | yes | no |
4 | F | 4.05 | yes | yes | yes | yes | no | no | no |
5 | M | 4.93 | no | no | no | no | yes | no | no |
6 | M | - | - | - | no | - | yes | no | no |
7 | M | 4.71 | yes | yes | yes | no | no | no | yes |
8 | M | 6.03 | no | no | no | no | no | no | yes |
9 | M | 4.49 | - | - | no | - | no | no | no |
10 | M | 4.79 | - | - | yes | - | no | yes | no |
11 | M | 6.63 | - | - | yes | - | - | - | no |
12 | M | 4.86 | no | no | yes | no | no | no | no |
13 | M | 4.73 | no | no | yes | no | no | no | no |
14 | M | - | no | no | no | no | no | no | no |
15 | F | 6.00 | no | yes | yes | no | no | no | no |
16 | M | 5.45 | no | no | yes | no | no | no | no |
17 | M | 4.00 | no | no | yes | no | no | no | no |
18 | M | 4.05 | no | no | yes | no | no | no | no |
19 | F | - | no | no | yes | no | no | no | no |
20 | M | - | no | no | yes | no | yes | yes | no |
21 | M | 2.86 | no | no | yes | no | no | no | no |
22 | M | - | no | no | yes | no | no | no | no |
23 | M | 2.88 | no | no | yes | no | no | no | no |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicolás Francisco, O.; Afonso Jordana, I.; Garcia Ferré, D.; Roig Simón, J.; Ewbank, A.C.; Margalida, A.; Sacristán, I.; Foulché, K.; Ménoni, E.; Sacristán, C. Sedation of Wild Pyrenean Capercaillie (Tetrao urogallus aquitanicus) Using Intramuscular Midazolam. Animals 2022, 12, 1773. https://doi.org/10.3390/ani12141773
Nicolás Francisco O, Afonso Jordana I, Garcia Ferré D, Roig Simón J, Ewbank AC, Margalida A, Sacristán I, Foulché K, Ménoni E, Sacristán C. Sedation of Wild Pyrenean Capercaillie (Tetrao urogallus aquitanicus) Using Intramuscular Midazolam. Animals. 2022; 12(14):1773. https://doi.org/10.3390/ani12141773
Chicago/Turabian StyleNicolás Francisco, Olga, Ivan Afonso Jordana, Diego Garcia Ferré, Job Roig Simón, Ana Carolina Ewbank, Antoni Margalida, Irene Sacristán, Kévin Foulché, Emmanuel Ménoni, and Carlos Sacristán. 2022. "Sedation of Wild Pyrenean Capercaillie (Tetrao urogallus aquitanicus) Using Intramuscular Midazolam" Animals 12, no. 14: 1773. https://doi.org/10.3390/ani12141773
APA StyleNicolás Francisco, O., Afonso Jordana, I., Garcia Ferré, D., Roig Simón, J., Ewbank, A. C., Margalida, A., Sacristán, I., Foulché, K., Ménoni, E., & Sacristán, C. (2022). Sedation of Wild Pyrenean Capercaillie (Tetrao urogallus aquitanicus) Using Intramuscular Midazolam. Animals, 12(14), 1773. https://doi.org/10.3390/ani12141773