Cryopreservation of Sperm from an Endangered Snake with Tests of Post-Thaw Incubation in Caffeine
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Animals and Location
2.2. Semen Collection Methods
2.3. Semen Analyses
2.4. Cryopreservation of Sperm
2.5. Post-Thaw Treatments
2.6. Statistical Analyses
3. Results
3.1. Semen Collection
3.2. Cryopreservation
3.3. Post-Thaw Additives
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Brondizio, E.S.; Settele, J.; Díaz, S.; Ngo, H.T. (Eds.) IPBES Secretariat: Bonn, Germany, 2019. [Google Scholar]
- Roth, T.L.; Swanson, W.F. From petri dishes to politics—A multi-pronged approach is essential for saving endangered species. Nat. Commun. 2018, 9, 2588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durrant, B.S. Semen collection, evaluation, and cryopreservation in exotic animal species: Maximizing reproductive potential. ILAR J. 1990, 32, 2–10. [Google Scholar] [CrossRef] [Green Version]
- Ballou, J.D. Potential contribution of cryopreserved germplasm to the preservation of genetic diversity and conservation of endangered species in captivity. Cryobiology 1992, 29, 19–25. [Google Scholar] [CrossRef]
- Wildt, D.E. Genome resource banking for wildlife research, management, and conservation. ILAR J. 2000, 41, 228–234. [Google Scholar] [CrossRef] [Green Version]
- Blesbois, E.; Seigneurin, F.; Grasseau, I.; Limouzin, C.; Besnard, J.; Gourichon, D.; Coquerelle, G.; Rault, P.; Tixier-Boichard, M. Semen cryopreservation for ex situ management of genetic diversity in chicken: Creation of the French avian cryobank. Poult. Sci. 2007, 86, 555–564. [Google Scholar] [CrossRef]
- Browne, R.; Li, H.; Robertson, H.; Uteshev, V.; Shishova, N.; McGinnity, D.; Nofs, S.; Figiel, C.; Mansour, N.; Lloyd, R. Reptile and amphibian conservation through gene banking and other reproduction technologies. Russ. J. Herpet. 2011, 18, 165–174. [Google Scholar]
- Wildt, D.E. The role of reproductive technologies in zoos: Past, present and future. Int. Zoo Yearb. 2003, 38, 111–118. [Google Scholar] [CrossRef]
- Pukazhenthi, B.; Comizzoli, P.; Travis, A.J.; Wildt, D.E. Applications of emerging technologies to the study and conservation of threatened and endangered species. Reprod. Fertil. Dev. 2005, 18, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.R.; Lima, G.; Peixoto, G.; Souza, A.L. Cryopreservation in mammalian conservation biology: Current applications and potential utility. Res. Rep. Biodivers. Stud. 2015, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Howard, J.; Lynch, C.; Santymire, R.; Marinari, P.; Wildt, D. Recovery of gene diversity using long-term cryopreserved spermatozoa and artificial insemination in the endangered black-footed ferret. Anim. Conserv. 2015, 19, 102–111. [Google Scholar] [CrossRef]
- Pahlawanian, A.M.; Savoie, M.L.; Peery, V.; Dresser, B.L.; Leibo, S. Mississippi Sandhill Crane Chicks Produced from Cryopreserved Semen; Hartup, B.K., Ed.; North American Crane Working Group: Wisconsin Dells, WI, USA, 2010; p. 212. [Google Scholar]
- O’Brien, J.K.; Steinman, K.J.; Montano, G.A.; Dubach, J.M.; Robeck, T.R. Chicks produced in the Magellanic penguin (Spheniscus magellanicus) after cloacal insemination of frozen-thawed semen. Zoo Biol. 2016, 35, 326–338. [Google Scholar] [CrossRef] [PubMed]
- Foote, R.H. Cryopreservation of spermatozoa and artificial insemination: Past, present, and future. J. Androl. 1982, 3, 85–100. [Google Scholar] [CrossRef]
- Curry, M.R. Cryopreservation of semen from domestic livestock. Rev. Reprod. 2000, 5, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Herrick, J.R. Assisted reproductive technologies for endangered species conservation: Developing sophisticated protocols with limited access to animals with unique reproductive mechanisms. Biol. Reprod. 2019, 100, 1158–1170. [Google Scholar] [CrossRef] [PubMed]
- Böhm, M.; Collen, B.; Baillie, J.E.; Bowles, P.; Chanson, J.; Cox, N.; Hammerson, G.; Hoffmann, M.; Livingstone, S.R.; Ram, M.; et al. The conservation status of the world’s reptiles. Biol. Conserv. 2013, 15, 372–385. [Google Scholar] [CrossRef] [Green Version]
- Cox, N.; Young, B.E.; Bowles, P.; Fernandez, M.; Marin, J.; Rapacciuolo, G.; Böhm, M.; Brooks, T.M.; Hedges, S.B.; Hilton-Taylor, C.; et al. A global reptile assessment highlights shared conservation needs of tetrapods. Nature 2022, 605, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Clulow, J.; Clulow, S. Cryopreservation and other assisted reproductive technologies for the conservation of threatened amphibians and reptiles: Bringing the arts up to speed. Reprod. Fertil. Dev. 2016, 28, 1116–1132. [Google Scholar] [CrossRef]
- Perry, S.M.; Mitchell, M.A. Reptile assisted reproductive technologies: Can ART help conserve 300 million years of evolution by preserving extant reptile biodiversity? Reprod. Fertil. Dev. 2022, 34, 385–400. [Google Scholar] [CrossRef]
- Millar, J.; Watson, P. Cryopreservation of gametes and embryos in reptiles and amphibians. In Cryobanking the Genetic Resource: Wildlife Conservation for the Future; Watson, P.F., Holt, W.V., Eds.; Taylor & Francis: London, UK, 2001; pp. 171–178. [Google Scholar]
- Mattson, K.M.; DeVries, A.T.; Krebs, J.; Loskutoff, N.M. Cryopreservation of corn snake, Elaphe gutatta, semen. Reprod. Fertil. Dev. 2008, 21, 179–180. [Google Scholar] [CrossRef]
- Johnston, S.D.; Qualischefski, E.; Cooper, J.; McLeod, R.; Lever, J.; Nixon, B.; Anderson, A.L.; Hobbs, R.; Gosálvez, J.; López-Fernández, C.; et al. Cryopreservation of saltwater crocodile (Crocodylus porosus) spermatozoa. Reprod. Fertil. Dev. 2017, 29, 2235–2244. [Google Scholar] [CrossRef]
- Zacariotti, R.; Guimares, M.; Jensen, T.; Durrant, B. Cryopreservation of snake semen: Are we frozen in time? Reprod. Fertil. Dev. 2011, 24, 171. [Google Scholar] [CrossRef]
- Young, C.; Ravida, N.; Rochford, M.; Durrant, B. Sperm cryopreservation in the Burmese python (Python bivitattus) as a model for endangered snakes. Reprod. Fertil. Dev. 2021, 30, 185–186. [Google Scholar] [CrossRef]
- Oliver, S.C.; Jamieson, B.G.M.; Scheltinga, D.M. The ultrastructure of spermatozoa of Squamata II. Agamidae, Varanidae, Colubridae, Elapidae, and Boidae (Reptilia). Herpetologica 1996, 52, 216–241. [Google Scholar]
- Fowler, A.; Toner, M. Cryo-injury and biopreservation. Ann. N. Y. Acad. Sci. 2006, 1066, 119–135. [Google Scholar] [CrossRef]
- Young, C.; Ravida, N.; Curtis, M.; Mazzotti, F.; Durrant, B. Development of a sperm cryopreservation protocol for the Argentine black and white tegu (Tupinambis merianae). Theriogenology 2017, 87, 55–63. [Google Scholar] [CrossRef]
- Young, C.; Ravida, N.; Durrant, B. Challenges in the development of sperm cryopreservation protocols for snakes. Reprod. Fertil. Dev. 2021, 33, 605–609. [Google Scholar] [CrossRef]
- Campbell, L.; Café, S.L.; Upton, R.; Doody, J.S.; Nixon, B.; Clulow, J.; Clulow, S. A model protocol for the cryopreservation and recovery of motile lizard sperm using the phosphodiesterase inhibitor caffeine. Conserv. Physiol. 2020, 8, coaa044. [Google Scholar] [CrossRef]
- Sandfoss, M.R.; Whittington, O.M.; Reichling, S.; Roberts, B.M. Toxicity of cryoprotective agents to semen from two closely related snake species: The endangered Louisiana pinesnake (Pituophis ruthveni) and bullsnake (Pituophis cantenifer). Cryobiology 2021, 101, 20–27. [Google Scholar] [CrossRef]
- [IUCN] International Union for Conservation of Nature. The IUCN Red List of Threatened Species: Pituophis ruthveni. 2022. Available online: https://www.iucnredlist.org/species/63874/12723685 (accessed on 14 July 2022).
- O’Connell, M.; McClure, N.; Lewis, S.E.M. The effects of cryopreservation on sperm morphology, motility and mitochondrial function. Hum. Reprod. 2002, 17, 704–709. [Google Scholar] [CrossRef]
- Elliott, G.D.; Wang, S.; Fuller, B.J. Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 2017, 76, 74–91. [Google Scholar] [CrossRef]
- Prakash, S.; Prithiviraj, E.; Suresh, S.; Lakshmi, N.V.; Ganesh, M.K.; Anuradha, M.; Ganesh, L.; Dinesh, P. Morphological diversity of sperm: A mini review. Iran J. Reprod. Med. 2014, 12, 239–242. [Google Scholar] [PubMed]
- Holt, W. Fundamental aspects of sperm cryobiology: The importance of species and individual differences. Theriogenology 2000, 53, 47–58. [Google Scholar] [CrossRef]
- Storey, B.T. Mammalian sperm metabolism: Oxygen and sugar, friend and foe. Int. J. Dev. Biol. 2008, 52, 427–437. [Google Scholar] [CrossRef] [Green Version]
- Reinhardt, K.; Breunig, H.G.; Uchugonova, A.; König, K. Sperm metabolism is altered during storage by female insects: Evidence from two-photon auto-fluorescence lifetime measurements in bedbugs. J. R. Soc. Interface 2015, 12, 20150609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maximov, N.A. Chemische Schutzmittel der Pflanzen gegen erfrieren. II. Ber. Dtsch. Bot. Ges. 1912, 30, 293–305. [Google Scholar]
- Leibo, S.P.; Songsasen, N. Cryopreservation of gametes and embryos of non-domestic species. Theriogenology 2002, 57, 303–326. [Google Scholar] [CrossRef]
- Aboagla, E.M.; Terada, T. Trehalose enhanced fluidity of the goat sperm membrane and its protection during freezing. Biol. Reprod. 2003, 69, 1245–1250. [Google Scholar] [CrossRef]
- Pappa, A.Z.; Moreira da Silva, H.; Valadão, L.; Moreira da Silva, F. Effect of fructose on thawed bull semen’s viability obtained by post-mortem collection. Biomed. J. Sci. Technol. Res. 2019, 19, 14319–14323. [Google Scholar]
- Halang, K.W.; Bohnensack, R.; Kunz, W. Interdependence of mitochondrial ATP production and extramitochondrial ATP utilization in intact spermatozoa. Biochem. Biophys. Acta 1985, 808, 316–322. [Google Scholar]
- Jones, A.R. Metabolism of lactate by mature boar spermatozoa. Reprod. Fertil. Dev. 1997, 9, 227–232. [Google Scholar] [CrossRef]
- Breininger, E.; Beconi, M.T. Ascorbic acid or pyruvate counteracts peroxidative damage in boar sperm cryopreserved with or without α-tocopherol. Anim. Sci. Papers Rep. 2014, 32, 15–23. [Google Scholar]
- Sikka, S.C. Oxidative stress and role of antioxidants in normal and abnormal sperm function. Front. Biosci. 1996, 1, e78–e86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atessahin, A.; Bucak, M.N.; Tuncer, P.B.; Kizil, M. Effects of anti-oxidant additives on microscopic and oxidative parameters of angora goat semen following the freeze-thawing process. Small Rumin. Res. 2008, 77, 38–44. [Google Scholar] [CrossRef]
- Mann, T.; Lutwak-Mann, C. Biochemistry of Seminal Plasma and Male Accessory Fluids; Application to andrological problems In Male Reproductive Function and Semen; Springer: London, UK, 1981; pp. 269–336. [Google Scholar]
- Li, Y.; Si, W.; Zhang, X.; Dinnyes, A.; Ji, W. Effect of amino acids on cryopreservation of cynomolgus monkey (Macaca fascicularis) sperm. Am. J. Primatol. 2003, 59, 159–165. [Google Scholar] [CrossRef]
- Heber, U.; Tyankova, L.; Santarius, K.A. Stabilization and inactivation of biological membranes during freezing in the presence of amino acids. BBA Biomembr. 1971, 241, 578–592. [Google Scholar] [CrossRef]
- Trimeche, A.; Yvon, J.M.; Vidament, M.; Palmer, E.; Magistrini, M. Effects of glutamine, proline, histidine and betaine on post-thaw motility of stallion spermatozoa. Theriogenology 1999, 52, 181–191. [Google Scholar] [CrossRef]
- Sangeeta, S.; Arangasamy, A.; Kulkarni, S.; Selvaraju, S. Role of amino acids as additives on sperm motility, plasma membrane integrity and lipid peroxidation levels at pre-freeze and post-thawed ram semen. Anim. Reprod. Sci. 2015, 161, 82–88. [Google Scholar] [CrossRef]
- Uysal, O.; Korkmaz, T.; Tosun, H. Effect of bovine serum albumine on freezing of canine semen. Indian Vet. J. 2005, 82, 97–98. [Google Scholar]
- Blank, M.H.; Silva, V.C.; Rui, B.R.; Novaes, G.A.; Castiglione, V.C.; Garcia Pereira, R.J. Beneficial influence of fetal bovine serum on in vitro cryosurvival of chicken spermatozoa. Cryobiology 2020, 95, 103–109. [Google Scholar] [CrossRef]
- Rota, A.; Sabatini, C.; Przybyl, A.; Ciaramelli, A.; Panzani, D.; Camillo, F. Post-thaw addition of caffeine and/or pentoxifylline affect differently motility characteristics of horse and donkey cryopreserved spermatozoa. J. Equine Vet. Sci. 2018, 66, 85–86. [Google Scholar] [CrossRef]
- Mengden, A.G.; Platz, C.G.; Hubbard, R.; Quinn, H. Semen collection, freezing and artificial insemination in snakes. In Contributions to Herpetology Reproductive Biology and Diseases of Captive Reptiles; Murphy, J.B., Collins, J.T., Eds.; St. Louis University: St. Louis, MO, USA, 1980; pp. 71–78. [Google Scholar]
- Lake, P.E.; Stewart, J.M. Preservation of fowl semen in liquid nitrogen–An improved method. Br. Poult. Sci. 1978, 19, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Jaskey, D.; Cohen, M. Twenty-four to ninety-six-hour storage of human spermatozoa in TEST-Yolk buffer. Fertil. Steril. 1981, 35, 205–208. [Google Scholar] [CrossRef]
- Sieme, H.; Oldenhof, H. Cryopreservation of domestic livestock semen. In Cryopreservation and Freeze–Drying Protocols, 3rd ed.; Wolkers, W.F., Oldenhof, H., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2015; Volume 1257, pp. 277–287. [Google Scholar]
- Uysal, O.; Bucak, M.N. Effects of oxidized glutathione, bovine serum albumin, cysteine and lycopene on the quality of frozen-thawed ram semen. Acta Vet. Brno 2007, 76, 383–390. [Google Scholar] [CrossRef]
- Santos, I.W.; Binsfeld, L.C.; Weiss, R.R.; Kozicki, L.E.; Rochadelli, R.; Resende, M.V.; Hossepian de Lima, V.F.M. Cryopreservation of dog spermatozoa: Effect of bovine serum albumin on acrosomal integrity and pregnancy rates after artificial insemination. Arch. Vet. Sci. 2007, 11, 47–54. [Google Scholar]
- van der Valk, J.; Brunner, D.; De Smet, K.; Fex Svenningsen, A.; Honegger, P.; Knudsen, L.E.; Lindl, T.; Noraberg, J.; Price, A.; Scarino, M.L.; et al. Optimization of chemically defined cell-culture media—Replacing fetal bovine serum in mammalian in vitro methods. Toxicol. Vitr. 2010, 24, 1053–1063. [Google Scholar] [CrossRef] [Green Version]
- Darr, C.R.; Varner, D.D.; Teague, S.; Cortopassi, G.A.; Datta, S.; Meyers, S.A. Lactate and pyruvate are major sources of energy for stallion sperm with dose effects on mitochondrial function, motility, and ROS production. Biol. Reprod. 2016, 95, 34. [Google Scholar] [CrossRef]
- Matsuoka, T.; Imai, H.; Kohno, H.; Fukui, Y. Effects of bovine serum albumin and trehalose in semen diluents for improvement of frozen-thawed ram spermatozoa. J. Reprod. Dev. 2006, 52, 675–683. [Google Scholar] [CrossRef] [Green Version]
- Barbas, J.P.; Mascarenhas, R.D. Cryopreservation of domestic animal sperm cells. Cell Tissue Bank 2009, 10, 49–62. [Google Scholar] [CrossRef]
- Wegener, J.; Bienefeld, K. Toxicity of cryoprotectants to honey bee semen and queens. Theriogenology 2012, 77, 600–607. [Google Scholar] [CrossRef]
- Hobbs, R.J.; Upton, R.; Keogh, L.; James, K.; Baxter-Gilbert, J.; Whiting, M.J. Sperm cryopreservation in an Australian skink (Eulamprus quoyii). Reprod. Fertil. Dev. 2022, 34, 428–437. [Google Scholar] [CrossRef]
- Patel, A.S.; Leong, J.Y.; Ramasamy, R. Prediction of male infertility by the World Health Organization laboratory for assessment of semen analysis: A systematic review. Arab J. Urol. 2018, 16, 96–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
CPA ID | Male Group | CPA Mixture Recipe (Final Conc. v/v) | Category | N |
---|---|---|---|---|
CPA control | All | Lake’s + 10% DMF + 2% Methanol + 5% Egg | Control Extender base | 16 |
2 | B | TEST + 10% DMF + 2% Methanol | CPA base in TEST | 4 |
3 | A | Lake’s + 10% DMF + 2% Methanol + 5% Egg + 5 mg/mL BSA | Extender Base + Additives | 4 |
4 | A | Lake’s + 10% DMF + 2% Methanol + 5% Egg + 10% FBS | Extender Base + Additives | 4 |
5 | A | Lake’s + 10% DMF + 2% Methanol + 5% Egg + 0.01 mM Glycine + 0.009 g/mL Fructose | Extender Base + Additives | 4 |
6 | C | Lake’s + 10% DMF + 2% Methanol + 5% Egg + 0.1 M Trehalose | Extender Base + Additives | 5 |
7 | A | Lake’s + 10% DMF + 2% Methanol + 5% Egg + 32.37 mM Na-Lactate + 0.50 mM Na-Pyruvate | Extender Base + Additives | 4 |
8 | D | Lake’s + 10% DMF + 2% Methanol + 5% Egg + 0.01 mM Glycine + 0.009 g/mL Fructose + 32.37 mM Na-Lactate + 0.50 mM Na-Pyruvate | Extender Base + Additives | 5 |
9 | D | Lake’s + 8% DMF + 2% Methanol + 2% DMA + 1% Glycerol + 5% Egg | Low glycerol addition | 5 |
10 | D | Lake’s + 8% DMF + 2% Methanol + 1% Glycerol + 5% Egg + 32.37 mM Na-Lactate + 0.50 mM Na-Pyruvate | Low glycerol addition | 5 |
11 | C | Lake’s + 6% DMF + 2% Methanol + 1% Glycerol + 5% Egg + 32.37 mM Na-Lactate + 0.50 mM Na-Pyruvate + 0.1M Trehalose | Low glycerol addition | 5 |
12 | C | Lake’s + 6% DMF + 2% Methanol + 1% Glycerol + 5% Egg + 32.37 mM Na-Lactate + 0.50 mM Na-Pyruvate | Low glycerol addition | 5 |
13 | C | Lake’s + 6% DMF + 6% Glycerol + 5% Egg | High glycerol addition | 5 |
14 | B | Lake’s + 16% Glycerol + 5% Egg + 32.27 mM Na-Lactate + 0.50 mM Na-Pyruvate | High glycerol addition | 4 |
15 | B | Lake’s + 16% Glycerol + 20% Egg | High glycerol addition | 4 |
16 | B | TEST+ 16% Glycerol | High glycerol addition | 4 |
17 | D | TEST + 8% Glycerol | High glycerol addition | 5 |
Male Group | N | Sperm Conc. 106 × mL | % M | % MF | % Motile MF | FPM | % Total Motility | % Viability |
---|---|---|---|---|---|---|---|---|
A | 4 | 744.3 ± 267.5 | 10 ± 3.7 | 61 ± 3.3 | 86.7 ± 4.8 | 4.3 ± 0.3 | 71 ± 4.0 | 67 ± 18.7 |
B | 4 | 443.3 ± 330.5 | 15 ± 10.5 | 58 ± 9.7 | 80 ± 12.9 | 3.6 ± 0.5 | 72 ± 7.3 | 56 ± 15 |
C | 5 | 1241.0 ± 1115.2 | 4 ± 1.3 | 76 ± 8.9 | 95 ± 1.1 | 4.2 ± 0.4 | 79 ± 10.2 | 74 ± 19.1 |
D | 5 | 1304.8 ± 863.6 | 11 ± 7.5 | 70 ± 19.8 | 85 ± 11.7 | 4.6 ± 0.4 | 81 ± 14.2 | 88 ± 6.4 |
H value | 3.5 | 7.3 | 6 | 7.4 | 7.6 | 3.7 | 8.7 | |
d.f. | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
p value | 0.317 | 0.062 | 0.11 | 0.061 | 0.055 | 0.3 | 0.034 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandfoss, M.R.; Cantrell, J.; Roberts, B.M.; Reichling, S. Cryopreservation of Sperm from an Endangered Snake with Tests of Post-Thaw Incubation in Caffeine. Animals 2022, 12, 1824. https://doi.org/10.3390/ani12141824
Sandfoss MR, Cantrell J, Roberts BM, Reichling S. Cryopreservation of Sperm from an Endangered Snake with Tests of Post-Thaw Incubation in Caffeine. Animals. 2022; 12(14):1824. https://doi.org/10.3390/ani12141824
Chicago/Turabian StyleSandfoss, Mark R., Jessica Cantrell, Beth M. Roberts, and Steve Reichling. 2022. "Cryopreservation of Sperm from an Endangered Snake with Tests of Post-Thaw Incubation in Caffeine" Animals 12, no. 14: 1824. https://doi.org/10.3390/ani12141824
APA StyleSandfoss, M. R., Cantrell, J., Roberts, B. M., & Reichling, S. (2022). Cryopreservation of Sperm from an Endangered Snake with Tests of Post-Thaw Incubation in Caffeine. Animals, 12(14), 1824. https://doi.org/10.3390/ani12141824