Betaine Alleviates LPS-Induced Chicken Skeletal Muscle Inflammation with the Epigenetic Modulation of the TLR4 Gene
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Quantitation of mRNA Expression via Real-Time PCR
2.3. Methylated DNA Immunoprecipitation Analysis
2.4. Statistical Analysis
3. Results
3.1. Betaine Alleviated LPS-Induced IL-6 Overexpression in Chicken Leg Muscle
3.2. Betaine Inhibited the LPS-Induced Down-Expression of TLR4 in Chicken Leg Muscle
3.3. Betaine Inhibited the LPS-Induced Overexpression of Tet2 in Chicken Leg Muscle
3.4. LPS Increased the Methylation Level in IL-6 Promoter
3.5. Betaine Blocks LPS-Induced Hyper-Methylation in the TLR4 Promoter
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gernat, A.A.; Santos, F.B.O.; Grimes, J.L. Alternative approaches to antimicrobial use in the turkey industry: Challenges and perspectives. Ger. J. Vet. Res. 2021, 1, 37–47. [Google Scholar] [CrossRef]
- Bonaldo, P.; Sandri, M. Cellular and molecular mechanisms of muscle atrophy. Dis. Model. Mech. 2013, 1, 25–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, G.; He, F.; Wu, C.; Li, P.; Li, N.; Deng, J.; Zhu, G.; Ren, W.; Peng, Y. Betaine in Inflammation: Mechanistic Aspects and Applications. Front. Immunol. 2018, 9, 1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Airaksinen, K.; Jokkala, J.; Ahonen, I.; Auriola, S.; Kolehmainen, M.; Hanhineva, K.; Tiihonen, K. High-Fat Diet, Betaine, and Polydextrose Induce Changes in Adipose Tissue Inflammation and Metabolism in C57BL/6J Mice. Mol. Nutr. Food Res. 2018, 62, e1800455. [Google Scholar] [CrossRef]
- Li, Q.; Qu, M.; Wang, N.; Wang, L.; Fan, G.; Yang, C. Betaine protects rats against ischemia/reperfusion injury-induced brain damage. J. Neurophysiol. 2022, 127, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.-Y.; Wang, M.-X.; Ge, C.-X.; Wang, X.; Li, J.-M.; Kong, L.-D. Betaine supplementation protects against high-fructose-induced renal injury in rats. J. Nutr. Biochem. 2014, 25, 353–362. [Google Scholar] [CrossRef]
- Chen, W.; Xu, M.; Xu, M.; Wang, Y.; Zou, Q.; Xie, S.; Wang, L. Effects of betaine on non-alcoholic liver disease. Nutr. Res. Rev. 2021, 35, 28–38. [Google Scholar] [CrossRef]
- Hu, Y.; Feng, Y.; Ding, Z.; Lv, L.; Sui, Y.; Sun, Q.; Abobaker, H.; Cai, D.; Zhao, R. Maternal betaine supplementation decreases hepatic cholesterol deposition in chicken offspring with epigenetic modulation of SREBP2 and CYP7A1 genes. Poult. Sci. 2020, 99, 3111–3120. [Google Scholar] [CrossRef]
- Hu, Y.; Sun, Q.; Hu, Y.; Hou, Z.; Zong, Y.; Omer, N.; Abobaker, H.; Zhao, R. Corticosterone-Induced Lipogenesis Activation and Lipophagy Inhibition in Chicken Liver Are Alleviated by Maternal Betaine Supplementation. J. Nutr. 2018, 148, 316–325. [Google Scholar] [CrossRef] [Green Version]
- Idriss, A.A.; Hu, Y.; Sun, Q.; Hou, Z.; Yang, S.; Omer, N.A.; Abobaker, H.; Zhao, R. Fetal betaine exposure modulates hypothalamic expression of cholesterol metabolic genes in offspring cockerels with modification of promoter DNA methylation. Poult. Sci. 2020, 99, 2533–2542. [Google Scholar] [CrossRef]
- Omer, N.A.; Hu, Y.; Idriss, A.A.; Abobaker, H.; Hou, Z.; Yang, S.; Ma, W.; Zhao, R. Dietary betaine improves egg-laying rate in hens through hypomethylation and glucocorticoid receptor–mediated activation of hepatic lipogenesis-related genes. Poult. Sci. 2020, 99, 3121–3132. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, M.; Cottrell, J.J.; Wilkinson, S.; Ringuet, M.; Furness, J.B.; Dunshea, F.R. Betaine and Antioxidants Improve Growth Performance, Breast Muscle Development and Ameliorate Thermoregulatory Responses to Cyclic Heat Exposure in Broiler Chickens. Animals 2018, 8, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Sagan, A.; Al-Yemni, A.; Abudabos, A.; Al-Abdullatif, A.; Hussein, E. Effect of Different Dietary Betaine Fortifications on Performance, Carcass Traits, Meat Quality, Blood Biochemistry, and Hematology of Broilers Exposed to Various Temperature Patterns. Animals 2021, 11, 1555. [Google Scholar] [CrossRef]
- Chen, R.; Wen, C.; Cheng, Y.; Chen, Y.; Zhuang, S.; Zhou, Y. Effects of dietary supplementation with betaine on muscle growth, muscle amino acid contents and meat quality in Cherry Valley ducks. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1050–1059. [Google Scholar] [CrossRef] [PubMed]
- Alhotan, R.A.; Al Sulaiman, A.R.; Alharthi, A.S.; Abudabos, A.M. Protective influence of betaine on intestinal health by regulating inflammation and improving barrier function in broilers under heat stress. Poult. Sci. 2021, 100, 101337. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, Y.; Ou, C.; Ma, J.; Wang, Q.; Du, S.; Xu, Z.; Li, R.; Guo, F. Alleviation of infectious-bursal-disease-virus-induced bursal injury by betaine is associated with DNA methylation in IL-6 and interferon regulatory factor 7 promoter. Poult. Sci. 2019, 98, 4457–4464. [Google Scholar] [CrossRef]
- Wu, J.; He, C.; Bu, J.; Luo, Y.; Yang, S.; Ye, C.; Yu, S.; He, B.; Yin, Y.; Yang, X. Betaine attenuates LPS-induced downregulation of Occludin and Claudin-1 and restores intestinal barrier function. BMC Vet. Res. 2020, 16, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Londhe, P.; Guttridge, D.C. Inflammation induced loss of skeletal muscle. Bone 2015, 80, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Williams, K.T.; Schalinske, K.L. New Insights into the Regulation of Methyl Group and Homocysteine Metabolism. J. Nutr. 2007, 137, 311–314. [Google Scholar] [CrossRef] [Green Version]
- Li, E.; Zhang, Y. DNA Methylation in Mammals. Cold Spring Harb. Perspect. Biol. 2014, 6, a019133. [Google Scholar] [CrossRef]
- Wang, L.-J.; Zhang, H.-W.; Zhou, J.-Y.; Liu, Y.; Yang, Y.; Chen, X.-L.; Zhu, C.-H.; Zheng, R.-D.; Ling, W.-H.; Zhu, H.-L. Betaine attenuates hepatic steatosis by reducing methylation of the MTTP promoter and elevating genomic methylation in mice fed a high-fat diet. J. Nutr. Biochem. 2014, 25, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Cai, D.; Jia, Y.; Lu, J.; Yuan, M.; Sui, S.; Song, H.; Zhao, R. Maternal dietary betaine supplementation modifies hepatic expression of cholesterol metabolic genes via epigenetic mechanisms in newborn piglets. Br. J. Nutr. 2014, 112, 1459–1468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, D.; Wang, J.; Jia, Y.; Liu, H.; Yuan, M.; Dong, H.; Zhao, R. Gestational dietary betaine supplementation suppresses hepatic expression of lipogenic genes in neonatal piglets through epigenetic and glucocorticoid receptor-dependent mechanisms. Biochim. et Biophys. Acta Mol. Cell Biol. Lipids 2016, 1861, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Sung, B.; Kang, Y.J.; Jang, J.Y.; Hwang, S.Y.; Lee, Y.; Kim, M.; Im, E.; Yoon, J.-H.; Kim, C.M.; et al. Anti-inflammatory effects of betaine on AOM/DSS-induced colon tumorigenesis in ICR male mice. Int. J. Oncol. 2014, 45, 1250–1256. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Wang, L.-W.; Wang, L.-K.; Li, X.; Zhang, H.; Luo, L.-P.; Song, J.-C.; Gong, Z.-J. Betaine Protects Against High-Fat-Diet-Induced Liver Injury by Inhibition of High-Mobility Group Box 1 and Toll-Like Receptor 4 Expression in Rats. Am. J. Dig. Dis. 2013, 58, 3198–3206. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Febbraio, M.A. Muscle as an Endocrine Organ: Focus on Muscle-Derived Interleukin-6. Physiol. Rev. 2008, 88, 1379–1406. [Google Scholar] [CrossRef] [Green Version]
- Podbregar, M.; Lainscak, M.; Prelovsek, O.; Mars, T. Cytokine Response of Cultured Skeletal Muscle Cells Stimulated with Proinflammatory Factors Depends on Differentiation Stage. Sci. World J. 2013, 2013, 617170. [Google Scholar] [CrossRef]
- Frost, R.A.; Nystrom, G.J.; Lang, C.H. Lipopolysaccharide regulates proinflammatory cytokine expression in mouse myoblasts and skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R698–R709. [Google Scholar] [CrossRef]
- Luo, G.; Hershko, D.D.; Robb, B.W.; Wray, C.J.; Hasselgren, P.-O. IL-1β stimulates IL-6 production in cultured skeletal muscle cells through activation of MAP kinase signaling pathway and NF-κB. Am. J. Physiol. Integr. Comp. Physiol. 2003, 284, R1249–R1254. [Google Scholar] [CrossRef]
- Baker, L.A.; Martin, N.R.W.; Kimber, M.C.; Pritchard, G.J.; Lindley, M.R.; Lewis, M.P. Resolvin E1 (RvE1) attenuates LPS induced inflammation and subsequent atrophy in C2C12 myotubes. J. Cell. Biochem. 2018, 119, 6094–6103. [Google Scholar] [CrossRef] [Green Version]
- Ono, Y.; Maejima, Y.; Saito, M.; Sakamoto, K.; Horita, S.; Shimomura, K.; Inoue, S.; Kotani, J. TAK-242, a specific inhibitor of Toll-like receptor 4 signalling, prevents endotoxemia-induced skeletal muscle wasting in mice. Sci. Rep. 2020, 10, 694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirvani, H.; Mirnejad, R.; Soleimani, M.; Arabzadeh, E. Swimming exercise improves gene expression of PPAR-γ and downregulates the overexpression of TLR4, MyD88, IL-6, and TNF-α after high-fat diet in rat skeletal muscle cells. Gene 2021, 775, 145441. [Google Scholar] [CrossRef] [PubMed]
- Miao, F.; Shan, C.; Ning, D. Walnut oil alleviates LPS-induced intestinal epithelial cells injury by inhibiting TLR4/MyD88/NF-κB pathway activation. J. Food Biochem. 2021, 45, e13955. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Liu, J.; Chang, G.; Wang, Y.; Ma, N.; Roy, A.C.; Shen, X. Glutamine Supplementation Attenuates the Inflammation Caused by LPS-Induced Acute Lung Injury in Mice by Regulating the TLR4/MAPK Signaling Pathway. Inflammation 2021, 44, 2180–2192. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, X.; Wu, H.; Chen, S.; Zhu, H.; Zhang, J.; Hou, Y.; Hu, C.-A.A.; Zhang, G. Glycine enhances muscle protein mass associated with maintaining Akt-mTOR-FOXO1 signaling and suppressing TLR4 and NOD2 signaling in piglets challenged with LPS. Am. J. Physiol. Integr. Comp. Physiol. 2016, 311, R365–R373. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, K.; Aoki, A.; Takimoto, T.; Akiba, Y. Dietary supplementation of glycine modulates inflammatory response indicators in broiler chickens. Br. J. Nutr. 2008, 100, 1019–1028. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Guo, F.; Zhao, R. Hepatic expression of FTO and fatty acid metabolic genes changes in response to lipopolysaccharide with alterations in m6A modification of relevant mRNAs in the chicken. Br. Poult. Sci. 2016, 57, 628–635. [Google Scholar] [CrossRef]
- Huang, X.-Y.; Ansari, A.R.; Huang, H.-B.; Zhao, X.; Li, N.-Y.; Sun, Z.-J.; Peng, K.-M.; Zhong, J.; Liu, H.-Z. Lipopolysaccharide mediates immuno-pathological alterations in young chicken liver through TLR4 signaling. BMC Immunol. 2017, 18, 12. [Google Scholar] [CrossRef] [Green Version]
- Adler, H.E.; Damassa, A.J. Toxicity of Endotoxin to Chicks. Avian Dis. 1979, 23, 174. [Google Scholar] [CrossRef]
- Krakauer, T.; Buckley, M.J.; Fisher, D. Proinflammatory Mediators of Toxic Shock and Their Correlation to Lethality. Mediat. Inflamm. 2010, 2010, 517594. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Wang, X.-L.; Quan, H.-F.; Yan, L.; Pei, X.-Y.; Wang, R.; Peng, X.-D. Effects of Betaine on LPS-Stimulated Activation of Microglial M1/M2 Phenotypes by Suppressing TLR4/NF-κB Pathways in N9 Cells. Molecules 2019, 24, 367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleh, H.A.; Yousef, M.H.; Abdelnaser, A. The Anti-Inflammatory Properties of Phytochemicals and Their Effects on Epigenetic Mechanisms Involved in TLR4/NF-κB-Mediated Inflammation. Front. Immunol. 2021, 12, 606069. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Sugi, Y.; Hosono, A.; Kaminogawa, S. Epigenetic Regulation of TLR4 Gene Expression in Intestinal Epithelial Cells for the Maintenance of Intestinal Homeostasis. J. Immunol. 2009, 183, 6522–6529. [Google Scholar] [CrossRef] [PubMed]
- Randunu, R.S.; Bertolo, R.F. The Effects of Maternal and Postnatal Dietary Methyl Nutrients on Epigenetic Changes that Lead to Non-Communicable Diseases in Adulthood. Int. J. Mol. Sci. 2020, 21, 3290. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Tan, Y.; Wei, J.; Chang, Y.; Jin, T.; Zhu, H. Betaine supplement alleviates hepatic triglyceride accumulation of apolipoprotein E deficient mice via reducing methylation of peroxisomal proliferator-activated receptor alpha promoter. Lipids Heal. Dis. 2013, 12, 34. [Google Scholar] [CrossRef] [Green Version]
- Cong, B.; Zhang, Q.; Cao, X. The function and regulation of TET2 in innate immunity and inflammation. Protein Cell 2021, 12, 165–173. [Google Scholar] [CrossRef]
- Ma, S.; Wan, X.; Deng, Z.; Shi, L.; Hao, C.; Zhou, Z.; Zhou, C.; Fang, Y.; Liu, J.; Yang, J.; et al. Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. J. Exp. Med. 2017, 214, 1471–1491. [Google Scholar] [CrossRef]
- Qin, W.; Brands, X.; Matsumoto, H.; Butler, J.M.; Veer, C.V.; de Vos, A.F.; Roelofs, J.J.T.H.; Scicluna, B.P.; van der Poll, T. Role of Myeloid Tet Methylcytosine Dioxygenase 2 in Pulmonary and Peritoneal Inflammation Induced by Lipopolysaccharide and Peritonitis Induced by Escherichia coli. Cells 2021, 11, 82. [Google Scholar] [CrossRef]
Target Gene | Sequence (F: Forward, R: Reverse) | GenBank Access |
---|---|---|
IL1-β | F: 5′-TTCCGCTACACCCGCTCACA-3′ R: 5′-TGCCGCTCATCACACACGAC-3′ | NM_204524.2 |
IL-6 | F: 5′-GAAATCCCTCCTCGCCAATCTG-3′ R: 5′-GCCCTCACGGTCTTCTCCATAAA-3′ | NM_204628.2 |
TNFα | F: 5′-TCACCCCTACCCTGTCCCA-3′ R: 5′-AGCCAAGTCAACGCTCCTG-3′ | NM_204267.2 |
TLR2 | F: 5′-ATCCTGCTGGAGCCCATTCAGAG -3′ R: 5′-TTGCTCTTCATCAGGAGGCCACTC -3 | NM_204278.1 |
TLR4 | F: 5′-GTTTGACATTGCTCGGTCCT -3′ R: 5′-GCTGCCTCCAGAAGATATGC -3′ | NM_001030693 |
MyD88 | F: 5′-GTTTGATGCCTTCATCTGCTACT-3′ R: 5′-ATCCTCCGACACCTTCTTTCTAT-3′ | NM_001030962.5 |
DNMT1 | F: 5′-TTTTTTTACATAATCCTCCA -3′ R: 5′-AAAGTATCAATCCCCACTTG -3′ | NM_206952.1 |
DNMT3a | F: 5′- ATCACCACTCGCTCCAACTC-3′ R: 5′-CCAAACACCCTCTCCATCTC-3′ | NM_001024832.3 |
Tet1 | F: 5′-AAAAGGAAGCGCTGTGAGAA-3′ F: 5′-CCACGCCAGTATGAGAATCA-3′ | XM_015278732.1 |
Tet2 | F: 5′-CGGTCCTAATGTGGCAGCTA-3′ F: 5′-TGCCTTCTTTCCCAGTGTAGA-3′ | NM_001277794.1 |
β-actin | F: 5′-TGCGTGACATCAAGGAGAAG-3′ R: 5′-TGCCAGGGTACATTGTGGTA-3′ | NM_205518 |
Target Gene | Sequence (F: Forward, R: Reverse, 5′—3′) | Product Size (bp) |
---|---|---|
IL-6fragment 1 | F: GCGTGTGACGGCGTATAAC R: AAACCTCCTCGGGCTGGTG | 116 |
IL-6fragment 2 | F: GAGGCTGCCAGGCTCACCCCCC R: CCCTGAACGTGTATTTATCGAG | 184 |
TLR4 fragment 1 | F: GGTGTGTTTTCTGCTTGTGC R: GATGTTGGAGAGTTTGGGAG | 218 |
TLR4 fragment 2 | F: ACGCACTTTTTGTCTGCTGGC R: AGGAGATGGGCATGGGACTTC | 188 |
TLR4 fragment 3 | F: GTCTCCTCCAGAAACAATAGC R: CATCACATGAACACACACTCC | 159 |
TLR4 fragment 4 | F: GGTGCTGGAGTGTGTGTTC R: CGTGGTGTTGTATCGGTGT | 144 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, F.; Jing, M.; Zhang, A.; Yu, Y.; Gao, P.; Wang, Q.; Wang, L.; Xu, Z.; Ma, J.; Zhang, Y. Betaine Alleviates LPS-Induced Chicken Skeletal Muscle Inflammation with the Epigenetic Modulation of the TLR4 Gene. Animals 2022, 12, 1899. https://doi.org/10.3390/ani12151899
Guo F, Jing M, Zhang A, Yu Y, Gao P, Wang Q, Wang L, Xu Z, Ma J, Zhang Y. Betaine Alleviates LPS-Induced Chicken Skeletal Muscle Inflammation with the Epigenetic Modulation of the TLR4 Gene. Animals. 2022; 12(15):1899. https://doi.org/10.3390/ani12151899
Chicago/Turabian StyleGuo, Feng, Mengna Jing, Aoyu Zhang, Yan Yu, Pei Gao, Qiuxia Wang, Li Wang, Zhiyong Xu, Jinyou Ma, and Yanhong Zhang. 2022. "Betaine Alleviates LPS-Induced Chicken Skeletal Muscle Inflammation with the Epigenetic Modulation of the TLR4 Gene" Animals 12, no. 15: 1899. https://doi.org/10.3390/ani12151899
APA StyleGuo, F., Jing, M., Zhang, A., Yu, Y., Gao, P., Wang, Q., Wang, L., Xu, Z., Ma, J., & Zhang, Y. (2022). Betaine Alleviates LPS-Induced Chicken Skeletal Muscle Inflammation with the Epigenetic Modulation of the TLR4 Gene. Animals, 12(15), 1899. https://doi.org/10.3390/ani12151899