Effects of Dietary Inclusion of Sericea Lespedeza Hay on Feed Intake, Digestion, Nutrient Utilization, Growth Performance, and Ruminal Fermentation and Methane Emission of Alpine Doelings and Katahdin Ewe Lambs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Periods, and Housing
2.2. Diets
2.3. Measures
2.3.1. Feed Intake and Growth Performance
2.3.2. Digestibility, Metabolizability, Energy Utilization, and Methane Emission
2.3.3. Ruminal Fluid and Blood Characteristics
2.4. Statistical Analyses
3. Results
3.1. Diet Composition and Environmental Conditions
3.2. Feed Intake and Growth Performance
3.3. Digestibility and Nitrogen Balance
3.4. Energy Measures during the Calorimetry Period
3.5. Ruminal Fluid and Plasma Measures
4. Discussion
4.1. Feed Intake and Growth Performance
4.2. Digestibility
4.3. Methane Emission and Energy Metabolism
4.4. Ruminal Conditions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pech-Cervantes, A.A.; Terrill, T.H.; Ogunade, I.M.; Estrada-Reyes, Z.M. Meta-Analysis of the Effects of Dietary Inclusion of Sericea Lespedeza (Lespedeza Cuneata) Forage on Performance, Digestibility, and Rumen Fermentation of Small Ruminants. Livest. Sci. 2021, 253, 104707. [Google Scholar] [CrossRef]
- Terrill, T.H.; Windham, W.R.; Hoveland, C.S.; Amos, H.E. Forage Preservation Method Influences on Tannin Concentration, Intake, and Digestibility of Sericea Lespedeza by Sheep. Agron. J. 1989, 81, 435–439. [Google Scholar] [CrossRef]
- Puchala, R.; Animut, G.; Patra, A.K.; Detweiler, G.D.; Wells, J.E.; Varel, V.H.; Sahlu, T.; Goetsch, A.L. Effects of Different Fresh-Cut Forages and Their Hays on Feed Intake, Digestibility, Heat Production, and Ruminal Methane Emission by Boer × Spanish Goats. J. Anim. Sci. 2012, 90, 2754–2762. [Google Scholar] [CrossRef] [PubMed]
- Lange, K.C.; Olcott, D.D.; Miller, J.E.; Mosjidis, J.A.; Terrill, T.H.; Burke, J.M.; Kearney, M.T. Effect of Sericea Lespedeza (Lespedeza Cuneata) Fed as Hay, on Natural and Experimental Haemonchus Contortus Infections in Lambs. Vet. Parasitol. 2006, 141, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Mahachi, L.N.; Chikwanha, O.C.; Katiyatiya, C.L.; Marufu, M.C.; Aremu, A.O.; Mapiye, C. Sericea Lespedeza (Lespedeza Juncea var. Sericea) for Sustainable Small Ruminant Production: Feed, Helminth Suppressant and Meat Preservation Capabilities. Anim. Feed Sci. Technol. 2020, 270, 114688. [Google Scholar] [CrossRef]
- McMichael, A.J.; Powles, J.W.; Butler, C.D.; Uauy, R. Food, Livestock Production, Energy, Climate Change, and Health. Lancet 2007, 370, 1253–1263. [Google Scholar] [CrossRef]
- Patra, A.K. Recent Advances in Measurement and Dietary Mitigation of Enteric Methane Emissions in Ruminants. Front. Vet. Sci. 2016, 3, 39. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.; Park, T.; Kim, M.; Yu, Z. Rumen Methanogens and Mitigation of Methane Emission by Anti-Methanogenic Compounds and Substances. J. Anim. Sci. Biotechnol. 2017, 8, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.K.; Saxena, J. A New Perspective on the Use of Plant Secondary Metabolites to Inhibit Methanogenesis in the Rumen. Phytochemistry 2010, 71, 1198–1222. [Google Scholar] [CrossRef]
- Animut, G.; Puchala, R.; Goetsch, A.L.; Patra, A.K.; Sahlu, T.; Varel, V.H.; Wells, J. Methane Emission by Goats Consuming Diets with Different Levels of Condensed Tannins from Lespedeza. Anim. Feed Sci. Technol. 2008, 144, 212–227. [Google Scholar] [CrossRef]
- Du Toit, C.J.L.; Van Niekerk, W.A.; Meissner, H.H.; Erasmus, L.J.; Coertze, R.J. Methane Emissions from Sheep Fed Eragrostis Curvula Hay Substituted with Lespedeza Cuneata. Anim. Prod. Sci. 2020, 60, 1777–1784. [Google Scholar] [CrossRef]
- Puchala, R.; Animut, G.; Patra, A.K.; Detweiler, G.D.; Wells, J.E.; Varel, V.H.; Sahlu, T.; Goetsch, A.L. Methane Emissions by Goats Consuming Sericea Lespedeza at Different Feeding Frequencies. Anim. Feed Sci. Technol. 2012, 175, 76–84. [Google Scholar] [CrossRef]
- Puchala, R.; Min, B.R.; Goetsch, A.L.; Sahlu, T. The Effect of a Condensed Tannin-Containing Forage on Methane Emission by Goats. J. Anim. Sci. 2005, 83, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, L.P.S.; Puchala, R.; Goetsch, A.L. Effects of an Array of Dietary Treatments and Length of Feeding on Ruminal Methane Emission and Other Variables in Hair Sheep. Small Rumin. Res. 2021, 205, 106566. [Google Scholar] [CrossRef]
- van Cleef, F.O.; Dubeux, J.C., Jr.; Naumann, H.D.; Santos, E.R.; Sollenberger, L.E.; Vendramini, J.M.; Ruiz-Moreno, M.; Ciriaco, F.M.; DiLorenzo, N. Methane Emissions and Δ13C Composition from Beef Steers Consuming Increasing Proportions of Sericea Lespedeza Hay on Bermudagrass Hay Diets. J. Anim. Sci. 2021, 99, skab224. [Google Scholar] [CrossRef]
- Schmitt, M.H.; Ward, D.; Shrader, A.M. Salivary Tannin-Binding Proteins: A Foraging Advantage for Goats? Livest. Sci. 2020, 234, 103974. [Google Scholar] [CrossRef]
- Silanikove, N. The Physiological Basis of Adaptation in Goats to Harsh Environments. Small Rumin. Res. 2000, 35, 181–193. [Google Scholar] [CrossRef]
- Min, B.R.; Solaiman, S. Comparative Aspects of Plant Tannins on Digestive Physiology, Nutrition and Microbial Community Changes in Sheep and Goats: A Review. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1181–1193. [Google Scholar] [CrossRef]
- Nudda, A.; Cannas, A.; Correddu, F.; Atzori, A.S.; Lunesu, M.F.; Battacone, G.; Pulina, G. Sheep and Goats Respond Differently to Feeding Strategies Directed to Improve the Fatty Acid Profile of Milk Fat. Animals 2020, 10, 1290. [Google Scholar] [CrossRef]
- Kleiber, M. Body Size and Metabolic Rate. Physiol. Rev. 1947, 27, 511–541. [Google Scholar] [CrossRef]
- Kelly, A.K.; McGee, M.; Crews, D.H., Jr.; Lynch, C.O.; Wylie, A.R.; Evans, R.D.; Kenny, D.A. Relationship between Body Measurements, Metabolic Hormones, Metabolites and Residual Feed Intake in Performance Tested Pedigree Beef Bulls. Livest. Sci. 2011, 135, 8–16. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Garrett, W.N.; Meyer, J.H.; Lofgreen, G.P. The Comparative Energy Requirements of Sheep and Cattle for Maintenance and Gain. J. Anim. Sci. 1959, 18, 528–547. [Google Scholar] [CrossRef]
- Grabber, J.H.; Zeller, W.E. Direct versus Sequential Analysis of Procyanidin-and Prodelphinidin-Based Condensed Tannins by the HCl–Butanol–Acetone–Iron Assay. J. Agric. Food Chem. 2020, 68, 2906–2916. [Google Scholar] [CrossRef]
- Puchala, R.; Tovar-Luna, I.; Sahlu, T.; Freetly, H.C.; Goetsch, A.L. The Relationship between Heart Rate and Energy Expenditure in Growing Crossbred Boer and Spanish Wethers. J. Anim. Sci. 2009, 87, 1714–1721. [Google Scholar] [CrossRef] [PubMed]
- Puchala, R.; Tovar-Luna, I.; Goetsch, A.L.; Sahlu, T.; Carstens, G.E.; Freetly, H.C. The Relationship between Heart Rate and Energy Expenditure in Alpine, Angora, Boer and Spanish Goat Wethers Consuming Different Quality Diets at Level of Intake near Maintenance or Fasting. Small Rumin. Res. 2007, 70, 183–193. [Google Scholar] [CrossRef]
- Brouwer, E. Report of Sub-Committee on Constants and Factors. In Proceedings of the 3rd Symposium on Energy Metabolism, Troon, UK, May 1964; Blaxter, K.L., Ed.; EAAP Publication number 11. Academic Press: London, UK, 1965; pp. 441–443. [Google Scholar]
- Lu, C.D.; Potchoiba, M.J.; Sahlu, T.; Fernandez, J.M. Performance of Dairy Goats Fed Isonitrogenous Diets Containing Soybean Meal or Hydrolyzed Feather Meal during Early Lactation. Small Rumin. Res. 1990, 3, 425–434. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated Simultaneous Determination of Ammonia and Total Amino Acids in Ruminal Fluid and in Vitro Media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Kamra, D.N.; Sawal, R.K.; Pathak, N.N.; Kewalramani, N.; Agarwal, N. Diurnal Variation in Ciliate Protozoa in the Rumen of Black Buck (Antilope Cervicapra) Fed Green Forage. Lett. Appl. Microbiol. 1991, 13, 165–167. [Google Scholar] [CrossRef]
- Chaney, A.L.; Marbach, E.P. Modified Reagents for Determination of Urea and Ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Littell, R.C.; Henry, P.R.; Ammerman, C.B. Statistical Analysis of Repeated Measures Data Using SAS Procedures. J. Anim. Sci. 1998, 76, 1216–1231. [Google Scholar] [CrossRef] [PubMed]
- SAS. SAS/STAT User’s Guide; Version 9.3; SAS Institute: Cary, NC, USA, 2011. [Google Scholar]
- Makkar, H.P.S.; Borowy, N.K.; Becker, K.; Degen, A. Some Problems in Fiber Determination of a Tannin-Rich Forage (Acacia Saligna Leaves) and Their Implications in in Vivo Studies. Anim. Feed Sci. Technol. 1995, 55, 67–76. [Google Scholar] [CrossRef]
- Animut, G.; Puchala, R.; Goetsch, A.L.; Patra, A.K.; Sahlu, T.; Varel, V.H.; Wells, J. Methane Emission by Goats Consuming Different Sources of Condensed Tannins. Anim. Feed Sci. Technol. 2008, 144, 228–241. [Google Scholar] [CrossRef]
- Puchala, R.; LeShure, S.; Gipson, T.A.; Tesfai, K.; Flythe, M.D.; Goetsch, A.L. Effects of Different Levels of Lespedeza and Supplementation with Monensin, Coconut Oil, or Soybean Oil on Ruminal Methane Emission by Mature Boer Goat Wethers after Different Lengths of Feeding. J. Appl. Anim. Res. 2018, 46, 1127–1136. [Google Scholar] [CrossRef]
- Liu, H.; Puchala, R.; LeShure, S.; Gipson, T.A.; Flythe, M.D.; Goetsch, A.L. Effects of Lespedeza Condensed Tannins Alone or with Monensin, Soybean Oil, and Coconut Oil on Feed Intake, Growth, Digestion, Ruminal Methane Emission, and Heat Energy by Yearling Alpine Doelings. J. Anim. Sci. 2019, 97, 885–899. [Google Scholar] [CrossRef]
- Amundson, J.L.; Mader, T.L.; Rasby, R.J.; Hu, Q.S. Environmental Effects on Pregnancy Rate in Beef Cattle. J. Anim. Sci. 2006, 84, 3415–3420. [Google Scholar] [CrossRef]
- Patra, A.K.; Saxena, J. Exploitation of Dietary Tannins to Improve Rumen Metabolism and Ruminant Nutrition. J. Sci. Food Agric. 2011, 91, 24–37. [Google Scholar] [CrossRef]
- Turner, K.E.; Wildeus, S.; Collins, J.R. Intake, Performance, and Blood Parameters in Young Goats Offered High Forage Diets of Lespedeza or Alfalfa Hay. Small Rumin. Res. 2005, 59, 15–23. [Google Scholar] [CrossRef]
- Burke, J.M.; Miller, J.E.; Terrill, T.H.; Mosjidis, J.A. The Effects of Supplemental Sericea Lespedeza Pellets in Lambs and Kids on Growth Rate. Livest. Sci. 2014, 159, 29–36. [Google Scholar] [CrossRef]
- Gujja, S.; Terrill, T.H.; Mosjidis, J.A.; Miller, J.E.; Mechineni, A.; Kommuru, D.S.; Shaik, S.A.; Lambert, B.D.; Cherry, N.M.; Burke, J.M. Effect of Supplemental Sericea Lespedeza Leaf Meal Pellets on Gastrointestinal Nematode Infection in Grazing Goats. Vet. Parasitol. 2013, 191, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Mechineni, A.; Kommuru, D.S.; Gujja, S.; Mosjidis, J.A.; Miller, J.E.; Burke, J.M.; Ramsay, A.; Mueller-Harvey, I.; Kannan, G.; Lee, J.H. Effect of Fall-Grazed Sericea Lespedeza (Lespedeza Cuneata) on Gastrointestinal Nematode Infections of Growing Goats. Vet. Parasitol. 2014, 204, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Romero, J.J.; Zarate, M.A.; Ogunade, I.M.; Arriola, K.G.; Adesogan, A.T. Tropical Plant Supplementation Effects on the Performance and Parasite Burden of Goats. Asian-Australas. J. Anim. Sci. 2018, 31, 208. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.A.; Terrill, T.H.; Kouakou, B.; Shaik, S.A.; Mosjidis, J.A.; Miller, J.E.; Vanguru, M.; Kannan, G.; Burke, J.M. The Effects of Feeding Sericea Lespedeza Hay on Growth Rate of Goats Naturally Infected with Gastrointestinal Nematodes. J. Anim. Sci. 2008, 86, 2328–2337. [Google Scholar] [CrossRef]
- Moore, J.E.; Goetsch, A.L.; Luo, J.; Owens, F.N.; Galyean, M.L.; Johnson, Z.B.; Sahlu, T.; Ferrell, C.L. Prediction of Fecal Crude Protein Excretion of Goats. Small Rumin. Res. 2004, 53, 275–292. [Google Scholar] [CrossRef]
- Zhong, H.; Zhou, J.; Abdelrahman, M.; Xu, H.; Wu, Z.; Cui, L.; Ma, Z.; Yang, L.; Li, X. The Effect of Lignin Composition on Ruminal Fiber Fractions Degradation from Different Roughage Sources in Water Buffalo (Bubalus Bubalis). Agriculture 2021, 11, 1015. [Google Scholar] [CrossRef]
- Patra, A.K.; Min, B.-R.; Saxena, J. Dietary Tannins on Microbial Ecology of the Gastrointestinal Tract in Ruminants. In Dietary Phytochemicals and Microbes; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Salami, S.A.; Valenti, B.; Bella, M.; O’Grady, M.N.; Luciano, G.; Kerry, J.P.; Jones, E.; Priolo, A.; Newbold, C.J. Characterisation of the Ruminal Fermentation and Microbiome in Lambs Supplemented with Hydrolysable and Condensed Tannins. FEMS Microbiol. Ecol. 2018, 94, fiy061. [Google Scholar]
- Min, B.R.; Attwood, G.T.; McNabb, W.C.; Molan, A.L.; Barry, T.N. The Effect of Condensed Tannins from Lotus Corniculatus on the Proteolytic Activities and Growth of Rumen Bacteria. Anim. Feed Sci. Technol. 2005, 121, 45–58. [Google Scholar] [CrossRef]
- Molan, A.L.; Attwood, G.T.; Min, B.R.; McNabb, W.C. The Effect of Condensed Tannins from Lotus Pedunculatus and Lotus Corniculatus on the Growth of Proteolytic Rumen Bacteria in Vitro and Their Possible Mode of Action. Can. J. Microbiol. 2001, 47, 626–633. [Google Scholar] [CrossRef]
- Mueller-Harvey, I. Unravelling the Conundrum of Tannins in Animal Nutrition and Health. J. Sci. Food Agric. 2006, 86, 2010–2037. [Google Scholar] [CrossRef]
- Hagerman, A.E.; Robbins, C.T. Implications of Soluble Tannin-Protein Complexes for Tannin Analysis and Plant Defense Mechanisms. J. Chem. Ecol. 1987, 13, 1243–1259. [Google Scholar] [CrossRef] [PubMed]
- Brooker, J.D.; O’donovan, L.A.; Skene, I.; Clarke, K.; Blackall, L.; Muslera, P. Streptococcus Caprinus Sp. Nov., a Tannin-Resistant Ruminal Bacterium from Feral Goats. Lett. Appl. Microbiol. 1994, 18, 313–318. [Google Scholar] [CrossRef]
- Norris, A.B.; Crossland, W.L.; Tedeschi, L.O.; Foster, J.L.; Muir, J.P.; Pinchak, W.E.; Fonseca, M.A. Inclusion of Quebracho Tannin Extract in a High-Roughage Cattle Diet Alters Digestibility, Nitrogen Balance, and Energy Partitioning. J. Anim. Sci. 2020, 98, skaa047. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.K. Aspects of Nitrogen Metabolism in Sheep-Fed Mixed Diets Containing Tree and Shrub Foliages. Br. J. Nutr. 2010, 103, 1319–1330. [Google Scholar] [CrossRef]
- Stewart, E.K.; Beauchemin, K.A.; Dai, X.; MacAdam, J.W.; Christensen, R.G.; Villalba, J.J. Effect of Tannin-Containing Hays on Enteric Methane Emissions and Nitrogen Partitioning in Beef Cattle. J. Anim. Sci. 2019, 97, 3286–3299. [Google Scholar] [CrossRef]
- Aboagye, I.A.; Beauchemin, K.A. Potential of Molecular Weight and Structure of Tannins to Reduce Methane Emissions from Ruminants: A Review. Animals 2019, 9, 856. [Google Scholar] [CrossRef]
- Patra, A.K.; Saxena, J. Dietary Phytochemicals as Rumen Modifiers: A Review of the Effects on Microbial Populations. Antonie Van Leeuwenhoek 2009, 96, 363–375. [Google Scholar] [CrossRef]
- Morgavi, D.P.; Martin, C.; Jouany, J.-P.; Ranilla, M.J. Rumen Protozoa and Methanogenesis: Not a Simple Cause–Effect Relationship. Br. J. Nutr. 2012, 107, 388–397. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Kreuzer, M.; O’mara, F.; McAllister, T.A. Nutritional Management for Enteric Methane Abatement: A Review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- El-Meccawi, S.; Kam, M.; Brosh, A.; Degen, A.A. Energy Intake, Heat Production and Energy and Nitrogen Balances of Sheep and Goats Fed Wheat Straw as a Sole Diet. Livest. Sci. 2009, 125, 88–91. [Google Scholar] [CrossRef]
- Jouany, J.-P. Effect of Rumen Protozoa on Nitrogen Utilization by Ruminants. J. Nutr. 1996, 126, 1335S–1346S. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Morales, E.; Arco-Pérez, A.; Martín-García, A.I.; Yáñez-Ruiz, D.R.; Frutos, P.; Hervás, G. Use of Stomach Tubing as an Alternative to Rumen Cannulation to Study Ruminal Fermentation and Microbiota in Sheep and Goats. Anim. Feed Sci. Technol. 2014, 198, 57–66. [Google Scholar] [CrossRef]
- Isac, M.D.; García, M.A.; Aguilera, J.F.; Alcaide, E.M. A Comparative Study of Nutrient Digestibility, Kinetics of Digestion and Passage and Rumen Fermentation Pattern in Goats and Sheep Offered Medium Quality Forages at the Maintenance Level of Feeding. Arch. Anim. Nutr. 1994, 46, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Hadjipanayiotou, M.; Antoniou, T. A Comparison of Rumen Fermentation Patterns in Sheep and Goats given a Variety of Diets. J. Sci. Food Agric. 1983, 34, 1319–1322. [Google Scholar] [CrossRef]
- Yanez Ruiz, D.R.; Moumen, A.; Martin Garcia, A.I.; Molina Alcaide, E. Ruminal Fermentation and Degradation Patterns, Protozoa Population, and Urinary Purine Derivatives Excretion in Goats and Wethers Fed Diets Based on Two-Stage Olive Cake: Effect of PEG Supply. J. Anim. Sci. 2004, 82, 2023–2032. [Google Scholar] [CrossRef]
- Roman-Garcia, Y.; Denton, B.L.; Mitchell, K.E.; Lee, C.; Socha, M.T.; Firkins, J.L. Conditions Stimulating Neutral Detergent Fiber Degradation by Dosing Branched-Chain Volatile Fatty Acids. I: Comparison with Branched-Chain Amino Acids and Forage Source in Ruminal Batch Cultures. J. Dairy Sci. 2021, 104, 6739–6755. [Google Scholar] [CrossRef]
Diet 1 | |||
---|---|---|---|
Item | ALF | ALF+LES | LES |
Ingredient (% dry matter) | |||
Alfalfa hay | 75.00 | 37.50 | 0.00 |
Lespedeza hay | 0.00 | 37.50 | 75.00 |
Rolled corn | 19.32 | 19.32 | 19.32 |
Molasses | 5.00 | 5.00 | 5.00 |
Dicalcium phosphate | 0.08 | 0.08 | 0.08 |
Mineral supplement 2 | 0.50 | 0.50 | 0.50 |
Vitamin premix 3 | 0.05 | 0.05 | 0.05 |
Trace mineral mix 4 | 0.05 | 0.05 | 0.05 |
Constituent 5 (% dry matter) | |||
Ash | 10.5 ± 0.29 | 8.9 ± 0.23 | 7.4 ± 0.30 |
Crude protein | 21.2 ± 0.63 | 17.1 ± 0.42 | 13.0 ± 0.27 |
Neutral detergent fiber | 35.3 ± 0.70 | 39.0 ± 0.58 | 40.0 ± 1.06 |
Acid detergent fiber | 25.1 ± 0.67 | 31.1 ± 0.46 | 32.7 ± 1.04 |
Acid detergent lignin | 6.9 ± 0.24 | 10.1 ± 0.32 | 11.3 ± 0.34 |
Condensed tannins | 0.9 ± 0.07 | 5.8 ± 0.48 | 10.0 ± 0.94 |
Period | Item | Mean | SEM | Minimum | Maximum |
---|---|---|---|---|---|
1 | Temperature (°C) | 13.6 | 0.08 | 4.1 | 21.9 |
Relative humidity (%) | 53.4 | 0.22 | 29.3 | 74.7 | |
THI | 56.8 | 0.11 | 44.1 | 67.8 | |
2 | Temperature (°C) | 14.9 | 0.12 | −0.9 | 30.6 |
Relative humidity (%) | 60.5 | 0.37 | 19.7 | 99.0 | |
THI | 58.2 | 0.16 | 33.8 | 75.6 | |
3 | Temperature (°C) | 20.2 | 0.12 | 7.5 | 32.2 |
Relative humidity (%) | 73.9 | 0.37 | 28.4 | 98.9 | |
THI | 66.4 | 0.16 | 46.4 | 80.3 | |
4 | Temperature (°C) | 26.8 | 0.10 | 15.2 | 38.2 |
Relative humidity (%) | 70.3 | 0.34 | 30.8 | 97.2 | |
THI | 76.0 | 0.11 | 59.2 | 86.5 |
Source of Variation | |||||||
---|---|---|---|---|---|---|---|
Item 2 | Breed | Diet | Breed × Diet | Period | Breed × Period | Diet × Period | Breed × Diet × Period |
BW (kg) | <0.001 | 0.183 | 0.499 | <0.001 | <0.001 | <0.001 | 0.582 |
DMI | |||||||
g/day | <0.001 | 0.199 | 0.346 | <0.001 | 0.002 | 0.486 | 0.211 |
% BW | 0.063 | 0.540 | 0.692 | <0.001 | 0.535 | 0.132 | 0.067 |
g/kg BW0.75 | 0.001 | 0.425 | 0.566 | <0.001 | 0.960 | 0.229 | 0.077 |
ADG (g) | <0.001 | <0.001 | 0.326 | <0.001 | 0.063 | 0.013 | 0.117 |
ADG:DMI (g/kg) | <0.001 | 0.001 | 0.326 | <0.001 | 0.018 | 0.108 | 0.479 |
KR (g/kg BW0.75) | <0.001 | <0.001 | 0.691 | ||||
RFI, breed (g/day) | 1.000 | 0.432 | 0.713 | ||||
RFI, combined (g/day) | 0.851 | 0.337 | 0.540 |
Interaction | Breed | Diet | Period | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Item 2 | Breed | Diet | ALP | KAT | SEM | ALF | ALF+LES | LES | SEM | 1 | 2 | 3 | 4 | SEM |
BW (kg) | 33.5 a | 44.4 b | 1.04 | 40.9 | 39.2 | 37.5 | 1.28 | 30.0 a | 36.6 b | 42.6 c | 47.5 d | 0.75 | ||
ALP | 27.3 a | 31.7 b | 36.0 c | 39.1 d | 1.06 | |||||||||
KAT | 32.7 b | 41.5 d | 49.2 e | 55.9 f | ||||||||||
ALF | 30.0 a | 37.8 bc | 44.9 ef | 50.9 g | 1.30 | |||||||||
ALF-LES | 29.9 a | 36.6 b | 42.7 de | 47.4 fg | ||||||||||
LES | 30.2 a | 35.5 b | 40.1 cd | 44.3 ef | ||||||||||
DMI | ||||||||||||||
g/day | 1274 a | 1817 b | 51.1 | 1600 | 1584 | 1452 | 62.6 | 1242 a | 1635 b | 1682 b | 1623 b | 43.9 | ||
ALP | 1063 a | 1361 b | 1372 b | 1300 b | 62.0 | |||||||||
KAT | 1420 b | 1909 c | 1992 c | 1946 c | ||||||||||
% BW | 3.84 | 4.14 | 0.110 | 3.97 | 4.10 | 3.89 | 0.134 | 4.14 b | 4.45 c | 3.94 b | 3.43 a | 0.102 | ||
g/kg BW0.75 | 91.9 a | 105.9 b | 2.60 | 99.3 | 101.7 | 95.8 | 3.18 | 95.6 b | 109.2 c | 100.3 b | 89.6 a | 2.45 | ||
ADG (g) | 88 a | 180 b | 5.0 | 159 c | 132 b | 111 a | 6.1 | |||||||
ALF | 167 e | 204 f | 137 cde | 129 cd | 12.3 | |||||||||
ALF+LES | 147 de | 169 e | 125 cd | 88 ab | ||||||||||
LES | 149 de | 103 abc | 116 bcd | 76 a | ||||||||||
ADG:DMI (g/kg) | 72 a | 104 b | 3.4 | 101 b | 84 a | 79 a | 4.2 | |||||||
ALP | 93 cd | 84 bc | 73 b | 38 a | 6.8 | |||||||||
KAT | 147 e | 108 d | 86 bc | 75 bc | ||||||||||
KR (g/kg BW0.75) | 6.33 a | 10.46 b | 0.185 | 9.70 c | 8.32 b | 7.15 a | 0.226 |
Source of Variation | |||||||
---|---|---|---|---|---|---|---|
Item 2 | Breed | Diet | Breed × Diet | Period | Breed × Period | Diet × Period | Breed × Diet × Period |
Dry matter | |||||||
Intake | |||||||
g/day | <0.001 | 0.577 | 0.991 | 0.034 | 0.012 | 0.838 | 0.408 |
% BW | 0.901 | 0.120 | 0.716 | <0.001 | 0.390 | 0.186 | 0.555 |
g/kg BW0.75 | 0.118 | 0.122 | 0.778 | <0.001 | 0.331 | 0.525 | 0.413 |
Digestion (%) | 0.483 | <0.001 | 0.213 | <0.001 | 0.862 | 0.735 | 0.314 |
Digested (g/day) | <0.001 | 0.255 | 0.691 | 0.601 | 0.072 | 0.886 | 0.400 |
Organic matter | |||||||
Intake (g/day) | <0.001 | 0.319 | 0.993 | 0.060 | 0.013 | 0.805 | 0.403 |
Digestion (%) | 0.704 | <0.001 | 0.227 | <0.001 | 0.797 | 0.637 | 0.317 |
Digested (g/day) | <0.001 | 0.531 | 0.751 | 0.589 | 0.054 | 0.885 | 0.413 |
Neutral detergent fiber | |||||||
Intake (g/day) | <0.001 | 0.007 | 0.952 | 0.065 | 0.011 | 0.143 | 0.362 |
Digestion (%) | 0.839 | <0.001 | 0.130 | <0.001 | 0.781 | 0.053 | 0.361 |
Digested (g/day) | <0.001 | 0.017 | 0.273 | 0.716 | 0.153 | 0.107 | 0.429 |
Nitrogen | |||||||
Intake (g/day) | <0.001 | <0.001 | 0.433 | <0.001 | 0.008 | 0.168 | 0.466 |
Digestion (%) | 0.037 | <0.001 | 0.009 | 0.154 | 0.491 | 0.190 | 0.373 |
Digested (g/day) | <0.001 | <0.001 | 0.047 | <0.001 | 0.027 | 0.085 | 0.463 |
Urine (g/day) | 0.009 | <0.001 | 0.191 | <0.001 | <0.001 | 0.044 | 0.405 |
Retained (g/day) | 0.001 | <0.001 | 0.302 | 0.013 | 0.842 | 0.061 | 0.879 |
DE intake (MJ/day) | <0.001 | 0.531 | 0.751 | 0.589 | 0.054 | 0.885 | 0.413 |
Urine energy (MJ/day) | 0.013 | <0.001 | 0.272 | <0.001 | 0.013 | 0.701 | 0.506 |
Interaction | Breed | Diet | Period | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Item 2 | Breed | Diet | ALP | KAT | SEM | ALF | ALF+LES | LES | SEM | 1 | 2 | 3 | 4 | SEM |
Dry matter | ||||||||||||||
Intake | ||||||||||||||
g/day | 1252 a | 1660 b | 45.5 | 1411 | 1492 | 1465 | 55.7 | |||||||
ALP | 1250 a | 1314 a | 1262 a | 1182 a | 61.4 | |||||||||
KAT | 1523 b | 1633 bc | 1789 d | 1697 c | ||||||||||
% BW | 3.83 | 3.86 | 0.115 | 3.60 | 3.96 | 3.97 | 0.141 | 4.65 d | 4.06 c | 3.60 b | 3.07 a | 0.110 | ||
g/kg BW0.75 | 89.0 | 94.6 | 2.50 | 86.5 | 94.3 | 94.6 | 3.07 | 102.5 c | 96.2 c | 88.8 b | 79.8 a | 2.54 | ||
Digestion (%) | 68.7 | 68.0 | 0.73 | 73.7 c | 67.5 b | 63.7 a | 0.89 | 71.9 b | 67.2 a | 67.0 a | 67.2 a | 0.79 | ||
Digested (g/day) | 867 a | 1136 b | 37.1 | 1048 | 1015 | 942 | 45.4 | 1000 | 997 | 1034 | 976 | 37.0 | ||
Organic matter | ||||||||||||||
Intake (g/day) | 1140 a | 1511 b | 41.4 | 1262 | 1359 | 1356 | 50.8 | 1270 | 1343 | 1384 | 1306 | 39.6 | ||
ALP | 1145 ab | 1199 b | 1145 ab | 1073 a | 56.0 | |||||||||
KAT | 1395 c | 1488 cd | 1623 e | 1539 de | ||||||||||
Digestion (%) | 70.2 | 69.9 | 0.70 | 75.3 c | 69.3 b | 65.5 a | 0.86 | 73.3 b | 68.7 a | 69.0 a | 69.2 a | 0.75 | ||
Digested (g/day) | 807 a | 1062 b | 34.2 | 958 | 949 | 896 | 41.9 | 933 | 929 | 965 | 912 | 34.0 | ||
NDF | ||||||||||||||
Intake (g/day) | 478 a | 633 b | 17.4 | 497 a | 582 b | 586 b | 21.3 | 528 | 565 | 574 | 554 | 16.5 | ||
ALP | 476 a | 505 a | 474 a | 456 a | 23.3 | |||||||||
KAT | 580 b | 625 bc | 674 c | 652 c | ||||||||||
Digestion (%) | 51.4 | 51.0 | 1.22 | 61.7 c | 50.5 b | 41.4 a | 1.49 | 56.6 b | 49.1 a | 48.7 a | 50.6 a | 1.32 | ||
Digested (g/day) | 249 a | 325 b | 12.8 | 312 b | 299 b | 249 a | 15.6 | 297 | 280 | 284 | 285 | 13.2 | ||
Nitrogen | ||||||||||||||
Intake (g/day) | 34.1 a | 45.4 b | 1.25 | 47.9 c | 40.9 b | 30.4 a | 1.53 | 35.1 a | 40.6 b | 43.6 c | 39.8 b | 1.21 | ||
ALP | 31.6 a | 36.0 bc | 36.2 bc | 32.7 ab | 1.71 | |||||||||
KAT | 38.5 c | 45.2 d | 51.0 e | 46.9 d | ||||||||||
Digestion (%) | 66.6 b | 64.3 a | 0.75 | 78.8 c | 66.9 b | 50.8 a | 0.92 | 66.0 | 64.2 | 66.6 | 65.2 | 0.87 | ||
ALP | 78.5 d | 67.0 c | 54.4 b | 1.30 | ||||||||||
KAT | 79.0 d | 66.7 c | 47.3 a | |||||||||||
Digested (g/day) | 23.5 a | 30.6 b | 1.03 | 38.0 c | 27.5 b | 15.7 a | 1.26 | 23.9 a | 27.2 b | 30.3 c | 26.9 b | 1.04 | ||
ALP | 32.3 c | 23.7 b | 14.5 a | 1.78 | 22.1 a | 24.3 a | 25.4 a | 22.2 a | 1.47 | |||||
KAT | 43.7 d | 31.3 c | 16.8 a | 25.6 a | 30.1 b | 35.1 c | 31.7 b | |||||||
Urine (g/day) | 12.4 a | 14.7 b | 0.60 | 19.4 c | 14.0 b | 7.3 a | 0.74 | 9.2 a | 14.6 b | 15.1 b | 15.4 b | 0.57 | ||
ALP | 9.5 a | 13.7 bc | 12.9 b | 13.6 bc | 0.80 | |||||||||
KAT | 8.9 a | 15.5 c | 17.3 d | 17.2 d | ||||||||||
ALF | 13.8 c | 20.8 d | 20.6 d | 22.6 d | 0.98 | |||||||||
ALF+LES | 9.4 b | 14.8 c | 16.5c | 15.0 c | ||||||||||
LES | 4.3 a | 8.2 b | 8.1 b | 8.8 b | ||||||||||
Retained (g/day) | 11.1 a | 15.9 b | 0.97 | 18.6 c | 13.6 b | 8.3 a | 1.19 | 14.7 bc | 12.6 ab | 15.2 c | 11.5 a | 1.03 | ||
DE intake (MJ/day) | 15.59 a | 20.53 b | 0.661 | 18.52 | 18.35 | 17.32 | 0.810 | 18.03 | 17.95 | 18.64 | 17.62 | 0.657 | ||
UE (MJ/day) | 0.59 a | 0.68 b | 0.025 | 0.81 c | 0.66 b | 0.43 a | 0.031 | 0.49 a | 0.66 b | 0.70 b | 0.69 b | 0.025 | ||
ALP | 0.49 a | 0.63 b | 0.60 b | 0.63 b | 0.035 | |||||||||
KAT | 0.49 a | 0.69 bc | 0.79 d | 0.74 cd |
Source of Variation | |||||||
---|---|---|---|---|---|---|---|
Item 2 | Breed | Diet | Breed × Diet | Period | Breed × Period | Diet × Period | Breed × Diet × Period |
DM intake 3 | |||||||
g/day | <0.001 | 0.541 | 0.920 | 0.210 | 0.185 | 0.033 | 0.392 |
% BW | 0.552 | 0.043 | 0.880 | <0.001 | 0.165 | 0.001 | 0.527 |
g/kg BW0.75 | 0.322 | 0.074 | 0.895 | <0.001 | 0.203 | 0.002 | 0.475 |
GE intake (MJ/day) | <0.001 | 0.274 | 0.933 | 0.224 | 0.086 | 0.028 | 0.381 |
DE intake (MJ/day) | <0.001 | 0.845 | 0.659 | 0.085 | 0.184 | 0.112 | 0.392 |
UE (MJ/day) | 0.083 | <0.001 | 0.355 | <0.001 | 0.197 | 0.565 | 0.720 |
Methane | 0.001 | 0.487 | 0.968 | <0.001 | 0.415 | 0.774 | 0.490 |
MJ/day | 0.001 | 0.487 | 0.968 | <0.001 | 0.415 | 0.774 | 0.490 |
kJ/g DM intake | 0.228 | 0.742 | 0.462 | <0.001 | 0.574 | 0.744 | 0.462 |
kJ/kg BW0.75 | 0.658 | 0.132 | 0.946 | <0.001 | 0.929 | 0.536 | 0.508 |
% GE intake | 0.226 | 0.547 | 0.464 | <0.001 | 0.578 | 0.716 | 0.464 |
% DE intake | 0.418 | 0.351 | 0.340 | <0.001 | 0.800 | 0.873 | 0.311 |
ME intake (MJ/day) | <0.001 | 0.942 | 0.658 | 0.052 | 0.209 | 0.124 | 0.394 |
Heat energy | |||||||
MJ/day | <0.001 | 0.064 | 0.234 | <0.001 | <0.001 | 0.691 | 0.800 |
kJ/kg BW0.75 | 0.128 | 0.027 | 0.323 | <0.001 | 0.426 | 0.028 | 0.796 |
Retained energy | |||||||
MJ/day | 0.016 | 0.870 | 0.820 | 0.006 | 0.330 | 0.183 | 0.361 |
% GE intake | 0.943 | 0.489 | 0.486 | <0.001 | 0.826 | 0.364 | 0.197 |
% DE intake | 0.881 | 0.628 | 0.346 | 0.001 | 0.917 | 0.378 | 0.278 |
% ME intake | 0.989 | 0.687 | 0.276 | 0.004 | 0.941 | 0.353 | 0.242 |
Interaction | Breed | Diet | Period | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Item 2 | Breed | Diet | ALP | KAT | SEM | ALF | ALF+LES | LES | SEM | 1 | 2 | 3 | 4 | SEM |
DM intake 3 | ||||||||||||||
g/day | 1310 a | 1707 b | 54.0 | 1449 | 1530 | 1546 | 66.1 | |||||||
ALF | 1434 a | 1456 ab | 1463 ab | 1443 ab | 89.4 | |||||||||
ALF+LES | 1686 b | 1454 ab | 1582 ab | 1399 a | ||||||||||
LES | 1415 a | 1502 ab | 1687 b | 1581 ab | ||||||||||
% BW | 3.90 | 3.80 | 0.121 | 3.55 a | 3.90 ab | 4.09 b | 0.148 | |||||||
ALF | 4.44 e | 3.70 cd | 3.22 ab | 2.83 a | 0.204 | |||||||||
ALF+LES | 5.18 f | 3.80 cd | 3.63 bcd | 3.00 a | ||||||||||
LES | 4.42 e | 4.19 de | 4.17 de | 3.58 bc | ||||||||||
g/kg BW0.75 | 93.6 | 97.8 | 2.95 | 89.1 | 97.2 | 100.0 | 3.62 | |||||||
ALF | 105.6 e | 92.4 bcd | 83.2 ab | 75.4 a | 5.06 | |||||||||
ALF+LES | 123.5 f | 94.2 bcde | 92.9 bcde | 78.1 a | ||||||||||
LES | 104.9 de | 102.2 cde | 104.8 de | 91.8 abc | ||||||||||
GEI (MJ/day) | 23.06 a | 30.05 b | 0.948 | 25.06 | 26.94 | 27.66 | 1.16 | 26.77 | 25.92 | 27.68 | 25.85 | 0.908 | ||
ALF | 24.74 a | 25.35 a | 25.18 a | 24.97 a | 1.572 | |||||||||
ALF+LES | 29.97 bc | 25.40 a | 27.86 abc | 24.54 a | ||||||||||
LES | 25.59 ab | 27.02 abc | 29.99 c | 28.05 abc | ||||||||||
UE (MJ/day) | 0.62 | 0.69 | 0.031 | 0.83 c | 0.68 b | 0.46 a | 0.038 | 0.53 a | 0.67 b | 0.71 b | 0.70 b | 0.030 | ||
DEI (MJ/day) | 16.28 a | 21.12 b | 0.760 | 18.99 | 18.84 | 18.27 | 0.931 | 19.67 | 17.90 | 19.25 | 17.98 | 0.746 | ||
Methane | ||||||||||||||
kJ/day | 1175 a | 1436 b | 50.8 | 1248 | 1353 | 1316 | 62.2 | 1157 a | 1277 b | 1581 c | 1207 ab | 51.2 | ||
kJ/g DMI | 0.918 | 0.865 | 0.0304 | 0.888 | 0.914 | 0.873 | 0.0372 | 0.776 a | 0.888 b | 1.044 c | 0.858 ab | 0.0370 | ||
kJ/kg BW0.75 | 83.5 | 81.7 | 2.83 | 76.8 | 85.4 | 85.7 | 3.46 | 85.6 b | 83.4 b | 94.1 b | 67.4 a | 2.99 | ||
% GEI | 5.2 | 4.9 | 0.17 | 5.1 | 5.2 | 4.9 | 0.21 | 4.4 a | 5.0 b | 6.0 c | 4.9 ab | 0.21 | ||
% DEI | 7.6 | 7.2 | 0.33 | 6.9 | 7.6 | 7.6 | 0.40 | 6.0 a | 7.5 b | 8.8 c | 7.3 b | 0.38 | ||
MEI (MJ/day) | 14.52 a | 19.00 b | 0.728 | 16.94 | 16.82 | 16.52 | 0.891 | 18.03 | 15.96 | 16.97 | 16.08 | 0.724 | ||
Heat energy | ||||||||||||||
MJ/day | 7.90 a | 10.19 b | 0.217 | 9.20 | 9.40 | 8.53 | 0.266 | |||||||
ALP | 7.82 ab | 8.09 b | 8.16 b | 7.53 a | 0.249 | |||||||||
KAT | 9.27 c | 10.20 d | 10.95 e | 10.33 d | ||||||||||
kJ/kg BW0.75 | 560 | 579 | 8.4 | 563 a | 592 b | 553 a | 10.3 | |||||||
ALF | 637 fg | 591 e | 548 cd | 476 a | 13.9 | |||||||||
ALF+LES | 669 g | 608 ef | 585 de | 508 ab | ||||||||||
LES | 590 de | 587 de | 540 bc | 496 a | ||||||||||
RE | ||||||||||||||
MJ/day | 6.62 a | 8.81 b | 0.616 | 7.74 | 7.42 | 7.99 | 0.754 | 9.49 b | 6.81 a | 7.41 a | 7.15 a | 0.666 | ||
% GEI | 26.8 | 27.0 | 1.73 | 28.8 | 25.1 | 26.7 | 2.12 | 32.4 b | 24.5 a | 23.7 a | 25.1 a | 1.92 | ||
% DEI | 37.0 | 37.5 | 2.47 | 37.4 | 35.1 | 39.2 | 3.02 | 46.3 b | 34.7 a | 33.1 a | 34.8 a | 2.81 | ||
% MEI | 40.9 | 41.0 | 2.85 | 41.4 | 38.6 | 42.9 | 3.49 | 50.6 b | 38.5 a | 36.7 a | 38.1 a | 3.28 |
Source of Variation | ||||||||
---|---|---|---|---|---|---|---|---|
Item 2 | Period | Breed | Diet | Breed × Diet | Period | Breed × Period | Diet × Period | Breed × Diet × Period |
Ruminal fluid | ||||||||
pH | 0.001 | 0.002 | 0.911 | <0.001 | 0.191 | 0.463 | 0.838 | |
AMN (mg/dL) | <0.001 | <0.001 | 0.952 | 0.002 | 0.172 | 0.157 | 0.233 | |
VFA | ||||||||
Total (mmol/L) | 0.028 | <0.001 | 0.165 | <0.001 | 0.575 | 0.003 | 0.369 | |
Molar % | ||||||||
Acetate | <0.001 | <0.001 | 0.056 | <0.001 | <0.001 | <0.001 | 0.001 | |
1 | <0.001 | <0.001 | 0.022 | |||||
2 | 0.003 | <0.001 | 0.254 | |||||
3 | 0.011 | 0.003 | 0.402 | |||||
4 | 0.724 | <0.001 | 0.002 | |||||
Propionate | 0.038 | <0.001 | 0.039 | 0.002 | 0.004 | 0.041 | 0.026 | |
1 | <0.001 | <0.001 | 0.199 | |||||
2 | 0.988 | 0.003 | 0.004 | |||||
3 | 0.335 | 0.007 | 0.361 | |||||
4 | 0.731 | 0.002 | 0.456 | |||||
Isobutyrate | 0.016 | <0.001 | 0.005 | <0.001 | 0.005 | <0.001 | 0.087 | |
Butyrate | 0.094 | 0.002 | 0.501 | <0.001 | 0.456 | 0.306 | 0.003 | |
1 | 0.303 | 0.281 | 0.265 | |||||
2 | 0.013 | 0.020 | 0.002 | |||||
3 | 0.770 | 0.156 | 0.942 | |||||
4 | 0.622 | 0.006 | 0.074 | |||||
Isovalerate | 0.002 | <0.001 | 0.004 | 0.003 | 0.002 | <0.001 | 0.016 | |
1 | 0.003 | 0.043 | 0.290 | |||||
2 | <0.001 | <0.001 | 0.083 | |||||
3 | <0.001 | <0.001 | 0.815 | |||||
4 | 0.334 | <0.001 | 0.013 | |||||
Valerate | 0.034 | <0.001 | 0.010 | 0.001 | <0.001 | 0.005 | 0.010 | |
1 | 0.055 | <0.001 | 0.064 | |||||
2 | 0.192 | <0.001 | 0.165 | |||||
3 | 0.001 | <0.001 | 0.003 | |||||
4 | 0.015 | <0.001 | 0.065 | |||||
Acetate:propionate | 0.002 | <0.001 | 0.005 | 0.041 | <0.001 | 0.068 | 0.015 | |
1 | <0.001 | <0.001 | 0.016 | |||||
2 | 0.563 | <0.001 | 0.004 | |||||
3 | 0.155 | 0.001 | 0.343 | |||||
4 | 0.517 | <0.001 | 0.129 | |||||
Bacteria, ×1010/ML | 0.005 | 0.002 | 0.276 | <0.001 | 0.021 | 0.094 | <0.001 | |
1 | 0.004 | 0.683 | 0.315 | |||||
2 | 0.045 | 0.098 | 0.036 | |||||
3 | 0.523 | 0.053 | 0.135 | |||||
4 | 0.005 | <0.001 | <0.001 | |||||
Protozoa, ×105/mL | 0.030 | <0.001 | 0.405 | <0.001 | 0.317 | 0.067 | 0.468 | |
Plasma | ||||||||
UN (mg/L) | 0.001 | <0.001 | 0.010 | <0.001 | 0.368 | 0.218 | 0.595 | |
TAC (μmol/L) | 0.077 | 0.152 | 0.051 | <0.001 | 0.967 | 0.039 | 0.479 |
Interaction 2 | Breed | Diet | Period | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Item | Period | Diet | Breed | ALP | KAT | SEM | ALF | ALF+LES | LES | SEM | 1 | 2 | 3 | 4 | SEM |
Ruminal fluid | |||||||||||||||
pH | 6.01 a | 6.22 b | 0.040 | 6.00 a | 6.08 a | 6.27 b | 0.049 | 6.49 c | 5.81 a | 6.02 b | 6.14 b | 0.049 | |||
AMN (mg/dL) | 10.1 b | 7.8 a | 0.42 | 10.4 b | 10.1 b | 6.4 a | 0.51 | 9.6 bc | 7.8 a | 9.9 c | 8.4 ab | 0.47 | |||
VFA | |||||||||||||||
Total (mmol/L) | 72.9 b | 68.8 a | 1.28 | 78.4 b | 74.8 b | 59.4 a | 1.57 | 72.9 b | 74.5 b | 63.5 a | 72.6 b | 1.62 | |||
ALF | 86.4 f | 82.5 f | 66.2 bcd | 75.9 e | 2.83 | ||||||||||
ALF+LES | 75.2 de | 78.9 ef | 67.2 cd | 80.0 ef | |||||||||||
LES | 59.3 ab | 59.4 abc | 57.1 a | 61.9 abc | |||||||||||
Molar % | |||||||||||||||
Acetate | 73.7 a | 75.2 b | 0.19 | 72.7 a | 75.0 b | 75.6 b | 0.24 | 73.5 a | 74.1 ab | 74.3 b | 76.0 c | 0.22 | |||
1 | 71.9 a | 75.1 b | 0.32 | 71.0 a | 73.9 b | 75.6 c | 0.39 | ||||||||
1 | ALP | 70.1 a | 71.5 ab | 74.1 c | 0.55 | ||||||||||
1 | KAT | 71.8 b | 76.4 d | 77.2 d | |||||||||||
2 | 73.3 a | 74.8 b | 0.32 | 72.5 a | 74.4 b | 75.3 b | 0.39 | ||||||||
3 | 73.8 a | 74.8 b | 0.28 | 73.4 a | 74.5 b | 75.1 b | 0.34 | ||||||||
4 | 75.9 | 76.1 | 0.35 | 74.6 a | 77.3 b | 76.5 b | 0.43 | ||||||||
4 | ALP | 74.3 a | 78.2 d | 75.1 ab | 0.61 | ||||||||||
4 | KAT | 73.8 a | 76.4 bc | 77.9 cd | |||||||||||
Propionate | 14.1 b | 13.3 a | 0.25 | 15.1 c | 13.9 b | 12.2 a | 0.31 | 14.4 c | 14.0 bc | 13.0 a | 13.5 ab | 0.29 | |||
ALP | 15.3 d | 13.8 bc | 13.2 b | 0.44 | |||||||||||
KAT | 14.9 cd | 13.9 bc | 11.1 a | ||||||||||||
1 | 15.6 b | 13.2 a | 0.44 | 16.8 c | 14.3 b | 12.1 a | 0.54 | ||||||||
2 | 14.0 | 14.0 | 0.46 | 15.0 b | 14.6 b | 12.3 a | 0.57 | ||||||||
2 | ALP | 15.4 cd | 13.0 ab | 13.5 bc | 0.80 | ||||||||||
2 | KAT | 14.6 bcd | 16.2 d | 11.1 a | |||||||||||
3 | 13.3 | 12.8 | 0.36 | 14.6 b | 12.9 ab | 12.1 a | 0.44 | ||||||||
4 | 13.5 | 13.4 | 0.34 | 14.5 b | 13.7 b | 12.3 a | 0.42 | ||||||||
Isobutyrate | 0.40 b | 0.34 a | 0.015 | 0.50 c | 0.35 b | 0.27 a | 0.019 | 0.30 a | 0.35 a | 0.43 b | 0.41 b | 0.020 | |||
ALF | 0.36 c | 0.49 d | 0.51 d | 0.64 e | 0.035 | ||||||||||
ALF+LES | 0.33 bc | 0.29 abc | 0.47 d | 0.29 abc | |||||||||||
LES | 0.22 a | 0.26 ab | 0.30 abc | 0.30 abc | |||||||||||
ALP | 0.35 bc | 0.40 cde | 0.47 e | 0.38 cd | 0.029 | ||||||||||
KAT | 0.26 e | 0.29 ab | 0.38 cd | 0.44 de | |||||||||||
Butyrate | 10.5 b | 10.0 a | 0.21 | 10.2 a | 9.7 a | 11.0 b | 0.25 | 10.7 b | 10.5 b | 11.0 b | 9.0 a | 0.24 | |||
ALP | 10.4 bc | 10.1 abc | 11.0 c | 0.36 | |||||||||||
KAT | 9.9 ab | 0.3 a | 11.0 a | ||||||||||||
1 | 11.0 | 10.5 | 0.35 | 10.6 | 10.4 | 11.3 | 0.43 | ||||||||
2 | 11.0 b | 9.9 a | 0.29 | 10.5 ab | 9.7 a | 11.2 b | 0.36 | ||||||||
2 | ALP | 11.0 bc | 11.3 bc | 10.8 bc | 0.51 | ||||||||||
2 | KAT | 10.1 b | 8.2 a | 11.6 c | |||||||||||
3 | 11.0 | 10.9 | 0.35 | 10.4 | 10.9 | 11.6 | 0.42 | ||||||||
4 | 9.1 | 8.8 | 0.37 | 9.1 b | 7.8 a | 10.0 b | 0.45 | ||||||||
Isovalerate | 0.42 b | 0.31 a | 0.022 | 0.52 b | 0.32 a | 0.26 a | 0.027 | 0.29 a | 0.33 a | 0.42 b | 0.42 b | 0.030 | |||
ALP | 0.49 cd | 0.41 bc | 0.25 b | 0.039 | |||||||||||
KAT | 0.55 d | 0.23 a | 0.17 a | ||||||||||||
1 | 0.37 b | 0.22 a | 0.033 | 0.34 b | 0.32 b | 0.21 a | 0.041 | ||||||||
2 | 0.42 b | 0.24 a | 0.027 | 0.47 b | 0.27 a | 0.25 a | 0.033 | ||||||||
3 | 0.51 | 0.33 | 0.022 | 0.51 b | 0.46 b | 0.28 a | 0.027 | ||||||||
4 | 0.37 | 0.47 | 0.069 | 0.74 b | 0.24 a | 0.29 a | 0.085 | ||||||||
4 | ALP | 0.48 a | 0.29 a | 0.36 a | 0.122 | ||||||||||
4 | KAT | 1.00 b | 0.19 a | 0.22 a | |||||||||||
Valerate | 0.82 a | 0.78 b | 0.012 | 1.00 c | 0.77 b | 0.63 a | 0.015 | 0.79 a | 0.80 a | 0.86 b | 0.76 a | 0.016 | |||
ALP | 1.06 d | 0.77 b | 0.64 a | 0.021 | |||||||||||
KAT | 0.94 c | 0.78 b | 0.63 a | ||||||||||||
1 | 0.82 | 0.76 | 0.021 | 0.99 c | 0.81 b | 0.58 a | 0.026 | ||||||||
2 | 0.82 | 0.78 | 0.024 | 0.96 c | 0.77 b | 0.67 a | 0.029 | ||||||||
3 | 0.92 | 0.79 | 0.028 | 1.07 c | 0.84 b | 0.66 a | 0.028 | ||||||||
3 | ALP | 1.22 d | 0.86 bc | 0.68 a | 0.039 | ||||||||||
3 | KAT | 0.93 a | 0.82 b | 0.63 a | |||||||||||
4 | 0.72 | 0.80 | 0.023 | 0.97 b | 0.68 a | 0.63 a | 0.028 | ||||||||
Acetate:propionate | 5.38 a | 5.88 b | 0.109 | 4.91 a | 5.58 b | 6.40 c | 0.134 | 5.42 a | 5.52 ab | 5.82 b | 5.76 b | 0.124 | |||
ALP | 4.83 a | 5.54 ab | 5.77 b | 0.189 | |||||||||||
KAT | 5.00 a | 5.62 b | 7.03 c | ||||||||||||
1 | 4.73 a | 6.12 b | 0.192 | 4.31 a | 5.39 b | 6.56 c | 0.231 | ||||||||
1 | ALP | 4.17 a | 4.57 ab | 5.46 bc | 0.327 | ||||||||||
1 | KAT | 4.46 a | 6.22 c | 7.67 d | |||||||||||
2 | 5.44 | 5.60 | 0.198 | 4.89 a | 5.33 a | 6.34 b | 0.243 | ||||||||
2 | ALP | 4.70 a | 5.91 c | 5.71 bc | 0.343 | ||||||||||
2 | KAT | 5.09 abc | 4.74 ab | 6.98 d | |||||||||||
3 | 5.66 | 5.99 | 0.161 | 5.26 a | 5.85 b | 6.37 b | 0.201 | ||||||||
4 | 5.69 | 5.83 | 0.151 | 5.19 a | 5.74 b | 6.34 c | 0.192 | ||||||||
Bacteria (×109/mL) | 8.64 b | 7.74 a | 0.214 | 8.79 b | 8.35 b | 7.44 a | 0.263 | 10.01 c | 9.11 b | 6.95 a | 6.70 a | 0.048 | |||
1 | 10.79 b | 9.24 a | 0.358 | 10.33 | 9.82 | 9.89 | 0.438 | ||||||||
2 | 9.66 b | 8.56 b | 0.378 | 9.72 | 8.31 | 0.463 | |||||||||
2 | ALP | 8.93 b | 10.38 b | 9.68 b | 0.655 | ||||||||||
3 | KAT | 9.68 b | 9.06 b | 6.94 a | |||||||||||
3 | 6.79 | 7.12 | 0.359 | 7.58 | 7.21 | 6.06 | 0.440 | ||||||||
4 | 7.34 b | 6.05 a | 0.302 | 7.96 | 6.64 | 5.48 | 0.370 | ||||||||
4 | ALP | 9.60 c | 6.05 ab | 6.36 b | 0.523 | ||||||||||
4 | KAT | 6.32 b | 7.24 b | 4.60 a | |||||||||||
Protozoa (× 105/mL) | 4.24 b | 3.74 a | 0.156 | 4.73 b | 3.77 a | 3.48 a | 0.191 | 3.19 a | 4.39 b | 4.15 b | 4.24 b | 0.173 | |||
Plasma | |||||||||||||||
UN (mg/L) | 16.6 a | 18.8 b | 0.45 | 22.7 c | 18.3 b | 12.0 a | 0.55 | 15.4 a | 18.7 b | 20.9 c | 15.8 a | 0.59 | |||
ALP | 20.8 c | 16.6 b | 12.3 a | 0.77 | |||||||||||
KAT | 24.6 d | 20.1 c | 11.7 a | ||||||||||||
TAC (μmol/L) | 209 | 201 | 3.2 | 199 | 207 | 209 | 3.9 | 200 ab | 206 b | 196 a | 221 c | 3.8 | |||
ALF | 196 ab | 198 ab | 181 a | 221 cd | 6.7 | ||||||||||
ALF+LES | 199 ab | 219 cd | 201 b | 211 bc | |||||||||||
LES | 205 bc | 199 ab | 203 b | 230 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Patra, A.K.; Puchala, R.; Ribeiro, L.; Gipson, T.A.; Goetsch, A.L. Effects of Dietary Inclusion of Sericea Lespedeza Hay on Feed Intake, Digestion, Nutrient Utilization, Growth Performance, and Ruminal Fermentation and Methane Emission of Alpine Doelings and Katahdin Ewe Lambs. Animals 2022, 12, 2064. https://doi.org/10.3390/ani12162064
Wang W, Patra AK, Puchala R, Ribeiro L, Gipson TA, Goetsch AL. Effects of Dietary Inclusion of Sericea Lespedeza Hay on Feed Intake, Digestion, Nutrient Utilization, Growth Performance, and Ruminal Fermentation and Methane Emission of Alpine Doelings and Katahdin Ewe Lambs. Animals. 2022; 12(16):2064. https://doi.org/10.3390/ani12162064
Chicago/Turabian StyleWang, Wei, Amlan Kumar Patra, Ryszard Puchala, Luana Ribeiro, Terry Allen Gipson, and Arthur Louis Goetsch. 2022. "Effects of Dietary Inclusion of Sericea Lespedeza Hay on Feed Intake, Digestion, Nutrient Utilization, Growth Performance, and Ruminal Fermentation and Methane Emission of Alpine Doelings and Katahdin Ewe Lambs" Animals 12, no. 16: 2064. https://doi.org/10.3390/ani12162064
APA StyleWang, W., Patra, A. K., Puchala, R., Ribeiro, L., Gipson, T. A., & Goetsch, A. L. (2022). Effects of Dietary Inclusion of Sericea Lespedeza Hay on Feed Intake, Digestion, Nutrient Utilization, Growth Performance, and Ruminal Fermentation and Methane Emission of Alpine Doelings and Katahdin Ewe Lambs. Animals, 12(16), 2064. https://doi.org/10.3390/ani12162064