Effect of Black Soldier Fly (Hermetia illucens L.) Fat on Health and Productivity Performance of Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Fat
2.2. Toxicity BSFLF
2.3. Animals and Housing
2.4. Experimental Diets of Cows
2.5. Milk Performance and Analyses in Milk
2.6. Blood and Rumen Fluid Sampling and Analyses
2.7. Bacterial Strains and Culture Conditions
2.7.1. Phagocytosis Assay
2.7.2. Lysozyme Activity Assay
2.7.3. Bactericidal Activity of Blood Serum
2.8. Statistical Analyses
2.9. Ethical Approval
3. Results
3.1. Chemical Composition and Characteristic BSFLF
3.2. Toxicity BSFLF
3.3. Milk Productivity of Dairy Cows
3.4. Milk Content
3.5. Parameters of Rumen Contents of Cows
3.6. Blood Parameters of Experimental Animals
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sogari, G.; Amato, M.; Biasato, I.; Chiesa, S.; Gasco, L. The potential role of insects as feed: A multi-perspective review. Animals 2019, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Dobermann, D.; Swift, J.A.; Field, L.M. Opportunities and hurdles of edible insects for food and feed. Nutr. Bull. 2017, 42, 293–308. [Google Scholar] [CrossRef]
- Gasco, L.; Acuti, G.; Bani, P.; Zotte, A.D.; Danieli, P.P.; De Angelis, A.; Fortina, R.; Marino, R.; Parisi, G.; Piccolo, G.; et al. Insect and fish by-products as sustainable alternatives to conventional animal proteins in animal nutrition. Ital. J. Anim. Sci. 2020, 19, 360–372. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 2017/893 of 24 May 2017. Off. J. Eur. Union L 393 2017, 60, 92–116.
- Commission Regulation (EU) 2021/1925 of 5 November 2021. Off. J. Eur. Union L 393 2021, 64, 4–8.
- Jin, X.H.; Heo, P.S.; Hong, J.S.; Kim, N.J.; Kim, Y.Y. Supplementation of Dried Mealworm (Tenebrio molitor larva) on Growth Performance, Nutrient Digestibility and Blood Profiles in Weaning Pigs. Asian-Australas J. Anim. Sci. 2016, 29, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.S.; Cho, K.H.; Hong, J.S.; Jang, H.S.; Chung, Y.H.; Kwon, G.T.; Shin, D.G.; Kim, Y.Y. Nutrient ileal digestibility evaluation of dried mealworm (Tenebrio molitor) larvae compared to three animal protein by-products in growing pigs. Asian-Australas J. Anim. Sci. 2019, 32, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Spranghers, T.; Michiels, J.; Vrancx, J.; Ovyn, A.; Eeckhout, M.; De Clercq, P.; De Smet, S. Gut antimicrobial effects and nutritional value of black soldier fly (Herrnetia illucens L.) prepupae for weaned piglets. Anim. Feed. Sci. Technol. 2018, 235, 33–42. [Google Scholar] [CrossRef]
- Biasato, I.; Renna, M.; Gai, F.; Dabbou, S.; Meneguz, M.; Perona, G.; Martinez, S.; Lajusticia, A.C.B.; Bergagna, S.; Sardi, L.; et al. Partially defatted black soldier fly larva meal inclusion in piglet diets: Effects on the growth performance, nutrient digestibility, blood profile, gut morphology and histological features. J. Anim. Sci. Biotechnol. 2019, 10, 12. [Google Scholar] [CrossRef]
- Newton, G.L.; Booram, C.V.; Barker, R.W.; Hale, O.M. Dried Hermetia illucens larvae meal as a supplement for swine. JAS 1977, 44, 395–400. [Google Scholar] [CrossRef]
- Hussein, M.; Pillai, V.V.; Goddard, J.M.; Park, H.G.; Kothapalli, K.S.; Ross, D.A.; Ketterings, Q.M.; Brenna, J.T.; Milstein, M.B.; Marquis, H. Sustainable production of housefly (Musca domestica) larvae as a protein-rich feed ingredient by utilizing cattle manure. PLoS ONE 2017, 12, e0171708. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-S.; Shelomi, M. Review of black soldier fly (Hermetia illucens) as animal feed and human food. Foods 2017, 6, 91. [Google Scholar] [CrossRef] [PubMed]
- Nekrasov, R.V.; Chabaev, M.G.; Zelenchenkova, A.A.; Bastrakov, A.I.; Ushakova, N.A. Nutritional properties of Hermetia illucens L., a new feed product for young pigs (Sus scrofa domesticus Erxleben). Agr. Biology 2019, 54, 316–325. [Google Scholar] [CrossRef]
- Chia, S.Y.; Tanga, C.M.; Osuga, I.M.; Alaru, A.O.; Mwangi, D.M.; Githinji, M.; Dubois, T.; Ekesi, S.; van Loon, J.J.A.; Dicke, M. Black soldier fly larval meal in feed enhances growth performance, carcass yield and meat quality of finishing pigs. J. Insects Food Feed 2021, 7, 433–447. [Google Scholar] [CrossRef]
- Maurer, V.; Holinger, M.; Amsler, Z.; Früh, B.; Wohlfahrt, J.; Stamer, A.; Leiber, F. Replacement of soybean cake by Hermetia illucens meal in diets for layers. J. Insects Food Feed 2016, 2, 83–90. [Google Scholar] [CrossRef]
- Onsongo, V.O.; Osuga, I.M.; Gachuiri, C.K.; Wachira, A.M.; Miano, D.M.; Tanga, C.M.; Ekesi, S.; Nakimbugwe, D.; Fiaboe, K.K.M. Insects for income generation through animal feed: Effect of dietary replacement of soybean and fish meal with black soldier fly meal on broiler growth and economic performance. J. Econom. Entomol. 2018, 111, 1966–1973. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.P.; Jin, P.; Zheng, L.Y.; Cai, M.M.; Yu, Z.N.; Yu, J.; Zhang, J.B. Effects of black soldier fly (Hermetia illucens) larvae meal protein as a fishmeal replacement on the growth and immune index of yellow catfish (Pelteobagrus fulvidraco). Aquac. Res. 2018, 49, 1569–1577. [Google Scholar] [CrossRef]
- Belghit, I.; Liland, N.S.; Gjesdal, P.; Biancarosa, I.; Menchetti, E.; Li, Y.X.; Waagbo, R.; Krogdahl, A.; Lock, E.J. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture 2019, 503, 609–619. [Google Scholar] [CrossRef]
- Barragan-Fonseca, K.B.; Dicke, M.; Van Loon, J.J.A. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed—A review. J. Insects Food Feed 2017, 3, 105–120. [Google Scholar] [CrossRef]
- Bondari, K.; Sheppard, D.C. Soldier fly, Hermetia illucens L., larvae as feed for channel catfish, Ictalurus punctatus (Rafinesque), and blue tilapia, Oreochromis aureus (Steindachner). Aquac. Res. 1987, 18, 209–220. [Google Scholar] [CrossRef]
- Liu, Q.; Tomberlin, J.K.; Brady, J.A.; Sanford, M.R.; Yu, Z. Black soldier fly (Diptera: Stratiomyidae) larvae reduce Escherichia coli in dairy manure. Environ. Entomol. 2008, 37, 1525–1530. [Google Scholar] [CrossRef] [PubMed]
- Ushakova, N.A.; Dontsov, A.E.; Sakina, N.L.; Brodsky, E.S.; Ratnikova, I.A.; Gavrilova, N.N.; Bastrakov, A.I.; Kozlova, A.A.; Nekrasov, R.V. Melanin properties at the different stages towards life cycle of the fly Hermetia illucens. UJoE 2017, 7, 424–431. [Google Scholar] [CrossRef]
- Marusich, E.; Mohamed, H.; Afanasev, Y.; Leonov, S. Fatty acids from Hermetia illucens larvae fat inhibit the proliferation and growth of actual phytopathogens. Microorganisms 2020, 8, 1423. [Google Scholar] [CrossRef]
- Kovanda, L.; Zhang, W.; Wei, X.; Luo, J.; Wu, X.; Atwill, E.R.; Vaessen, S.; Li, X.; Liu, Y. In vitro antimicrobial activities of organic acids and their derivatives on several species of gram-negative and gram-positive bacteria. Molecules 2019, 24, 3770. [Google Scholar] [CrossRef]
- Nekrasov, R.V.; Pravdin, I.V.; Kravtsova, L.Z.; Bastrakov, I.A.; Pashkova, L.A.; Ushakova, N.A. Biochemical Characteristics of Insects Hermetia illucens. In Chemical and Biochemical Physics. A Systematic Approach to Experiments, Evaluation, and Modeling; Schiraldi, D., Zaikov, G.E., Eds.; Apple Academic Press: Oakville, Canada, USA, 2016; pp. 287–300. [Google Scholar] [CrossRef]
- Ewald, N.; Vidakovic, A.; Langeland, M.; Kiessling, A.; Sampels, S.; Lalander, C. Fatty acid composition of black soldier fly larvae (Hermetia illucens)—Possibilities and limitations for modification through diet. Waste Manag. 2020, 102, 40–47. [Google Scholar] [CrossRef]
- Ushakova, N.; Brodskiy, E.; Kovalenko, A.; Bastrakov, A.; Kozlova, A.; Pavlov, D. Characteristics of lipid fractions of larvae of the black soldier fly Hermetia illucens. Dokl. Biochem. Biophys. 2016, 468, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Jiang, M. Evaluation of antibacterial activity of hexanedioic acid isolated from Hermetia illucens larvae. J. Appl. Biomed. 2014, 12, 179–189. [Google Scholar] [CrossRef]
- Saviane, A.; Tassoni, L.; Naviglio, D.; Lupi, D.; Savoldelli, S.; Bianchi, G.; Cortellino, G.; Bondioli, P.; Folegatti, L.; Casartelli, M.; et al. Mechanical processing of Hermetia illucens larvae and bombyx mori pupae produces oils with antimicrobial activity. Animals 2021, 11, 783. [Google Scholar] [CrossRef]
- Lähteenmäki-Uutela, A.; Grmelová, N. European law on insects in food and feed. EFFL 2016, 11, 2–8. Available online: https://www.jstor.org/stable/43958606 (accessed on 25 July 2022).
- AOAC. Official Methods of Analysis of the Association of Analytical Chemists; Latimer, G.W., Jr., Ed.; AOAC Inc.: Arlington, VA, USA, 1995. [Google Scholar]
- Methodological Guidelines for the Accelerated Determination of the Toxicity of Animal Products and Feed, No. 13-7-2/2156; Department of Veterinary Medicine of the Ministry of Agriculture of the Russian Federation: Moscow, Russia, 2000.
- Wildman, E.E.; Jones, I.G.M.; Wagner, P.E.; Boman, R.L. A dairy cow body condition scoring system and its relationship to selected production characteristics. J. Dairy Sci. 1982, 65, 495–501. [Google Scholar] [CrossRef]
- Nutrient Requirements of Dairy Cattle, 7th ed; Natl. Acad. Press: Washington, DC, USA, 2001.
- Nekrasov, R.V.; Golovin, A.V.; Makhaev, E.A.; Anikin, A.S.; Pervov, N.G.; Strekozov, N.I.; Mysik, A.T.; Duborezov, V.M.; Chabaev, M.G.; Fomichev, Y.P.; et al. Nutrient Requirements of Dairy Cattle and Pigs; L.K. Ernst Federal Research Center for Animal Husbandry: Moscow, Russia, 2018. [Google Scholar]
- Kirilov, M.P.; Mahaev, E.A.; Pervov, N.G.; Puzanova, V.V.; Anikin, A.S. The Method of Calculating the Metabolic Energy in Feed Based on the Content of Raw Nutrients; L.K. Ernst Federal Research Center for Animal Husbandry: Dubrovitsy, Russia, 2008. [Google Scholar]
- Makkar, H.P.S.; Tran, G.; Henze, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Van Huis, A. Edible insects: Non-food and non-feed industrial applications. J. Insects Food Feed 2022, 8, 447–450. [Google Scholar] [CrossRef]
- Barragan-Fonseca, K.B.; Dicke, M.; van Loon, J.J.A. Influence of larval density and dietary nutrient concentration on performance, body protein, and fat contents of black soldier fly larvae (Hermetia illucens). Ent. Exp. Appl. 2018, 166, 761–770. [Google Scholar] [CrossRef] [PubMed]
- Benzertiha, A.; Kierończyk, B.; Rawski, M.; Mikołajczak, Z.; Urbański, A.; Nogowski, L.; Józefiak, D. Insect Fat in Animal Nutrition—A Review. Ann. Anim. Sci. 2020, 20, 1217–1240. [Google Scholar] [CrossRef]
- Wang, J.-M.; Ao, A.-H.; Qiao, C.-S.; Zhong, Y.; Zhang, Y.-Y. The research progress of melanin. Adv. Mat. Res. 2011, 204–210, 2057–2060. [Google Scholar] [CrossRef]
- Chyizhanska, N.; Beregova, T. Effect of melanin isolated from Antarctic yeasts on preservation of pig livestock after ablactation. UAZH 2009, 8, 382–385. [Google Scholar]
- Slobodyanyk, N.; Beregova, T.; Neporada, K. Pancreatic enzymes activity under the conditions of acute stress and melanin administration depending on the stress resistance. J. Pharm. Pharmacol. 2015, 3, 232–236. [Google Scholar] [CrossRef]
- Maltseva, T.A. Research of the properties of dried Hermetia illucens fly larvae and fat in relation to the extraction process. Polythematic Online Sci. J. Kuban State Agrar. Univ. 2021, 173, 281–291. (In Russian) [Google Scholar] [CrossRef]
- Ruban, A.A.; Novikova, M.V.; Kostin, A.A. Effective viscosity of lecithin solutions and fat emulsions of black soldier fly larvae with different lecithin content. Food Syst. 2021, 4, 220–225. (In Russia) [Google Scholar] [CrossRef]
- Purushothaman, S.; Kumar, A.; Tiwari, D.P. Effect of feeding calcium salts of palm oil fatty acids on performance of lactating crossbred cows. Asian-Australas J. Anim. Sci. 2008, 21, 376–385. [Google Scholar] [CrossRef]
- Grummer, R.R.; Socha, M.T. Milk fatty acid composition and plasma energy metabolite concentrations in lactating cows fed medium-chain triglycerides. J. Dairy Sci. 1989, 72, 1996–2001. [Google Scholar] [CrossRef]
- Sun, Y.; Bu, D.; Wang, J.Q.; Cui, H.; Zhao, X.W.; Xu, X.Y.; Sun, P.; Zhou, L.Y. Supplementing different ratios of short- and medium-chain fatty acids to long-chain fatty acids in dairy cows: Changes of milk fat production and milk fatty acids composition. J. Dairy Sci. 2013, 96, 2366–2373. [Google Scholar] [CrossRef] [PubMed]
- Bergner, H.; Sommer, A. Einsatz von freien Fettsäuren in der Tierernährung [Use of free fatty acids in animal nutrition]. Arch. Tierernahr. 1994, 46, 217–236. [Google Scholar] [CrossRef] [PubMed]
- Sosa, D.A.T.; Fogliano, V. Potential of insect-derived ingredients for food applications. In Insect Physiology and Ecology; Shields, V.D.C., Ed.; InTechOpen: Rijeka, Croatia, 2017; pp. 215–231. [Google Scholar]
- Müller, A.; Wolf, D.; Gutzeit, H.O. The black soldier fly, Hermetia illucens—A promising source for sustainable production of proteins, lipids and bioactive substances. Zeitschrift fur Naturforschung, C.J. Biosci. 2017, 72, 351–363. [Google Scholar] [CrossRef] [PubMed]
- Kierończyk, B.; Rawski, M.; Józefiak, A.; Mazurkiewicz, J.; Świątkiewicz, S.; Siwek, M.; Bednarczyk, M.; Szumacher-Strabel, M.; Cieślak, A.; Benzertiha, A.; et al. Effects of replacing soybean oil with selected insect fats on broilers. Anim. Feed Sci. Technol. 2018, 240, 170–183. [Google Scholar] [CrossRef]
- Alifian, M.D.; Sholikin, M.M.; Evvyernie, D.; Nahrowi. Potential fatty acid composition of Hermetia illucens oil reared on different substrates. IOP Conf. Ser. Mater. Sci. Eng. 2019, 546, 062002. [Google Scholar] [CrossRef]
- Renna, M.; Schiavone, A.; Gai, F.; Dabbou, S.; Lussiana, C.; Malfatto, V.; Prearo, M.; Capucchio, M.T.; Biasato, I.; Biasibetti, E.; et al. Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. J. Anim. Sci. Biotechnol. 2017, 8, 57. [Google Scholar] [CrossRef]
- Meneguz, M.; Schiavone, A.; Gai, F.; Dama, A.; Lussiana, C.; Renna, M.; Gasco, L. Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. J. Sci. Food Agric. 2018, 98, 5776–5784. [Google Scholar] [CrossRef]
- Spranghers, T.; Ottoboni, M.; Klootwijk, C.; Ovyn, A.; Deboosere, S.; De Meulenaer, B.; Michiels, J.; Eeckhout, M.; De Clercq, P.; De Smet, S. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 2017, 97, 2594–2600. [Google Scholar] [CrossRef]
- Jucker, C.; Erba, D.; Leonardi, M.G.; Lupi, D.; Savoldelli, S. Assessment of vegetable and fruit substrates as potential rearing media for Hermetia illucens (Diptera: Stratiomyidae) larvae. Environ. Entomol. 2017, 46, 1415–1423. [Google Scholar] [CrossRef]
- Danieli, P.P.; Lussiana, C.; Gasco, L.; Amici, A.; Ronchi, B. The effects of diet formulation on the yield, proximate composition, and fatty acid profile of the black soldier fly (Hermetia illucens L.) prepupae intended for animal feed. Animals 2019, 9, 178. [Google Scholar] [CrossRef] [PubMed]
- Couto, M.; Sousa, N.; Paixão, P.; Medeiros, E.; Abe, H.; Meneses, J.; Cunha, F.; Filho, R.; Sousa, R.; Maria, A.; et al. Is there antimicrobial property of coconut oil and lauric acid against fish pathogen? Aquaculture 2021, 545, 737234. [Google Scholar] [CrossRef]
- Vyas, D.; Teter, B.B.; Erdman, R.A. Milk fat responses to dietary supplementationof short- and medium-chain fatty acids in lactating dairy cows. J. Dairy Sci. 2012, 95, 5194–5202. [Google Scholar] [CrossRef] [PubMed]
- Sheela, D.L.; Nazeem, P.A.; Narayanankutty, A.; Manalil, J.J.; Raghavamenon, A.C. In silico and wet lab studies reveal the cholesterol lowering efficacy of lauric acid, a medium chain fat of coconut oil. Plant Foods Hum. Nutr. 2016, 71, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Sypniewski, J.; Kierończyk, B.; Benzertiha, A.; Mikołajczak, Z.; Pruszyńska-Oszmałek, E.; Kołodziejski, P.; Sassek, M.; Rawski, M.; Czekała, W.; Józefiak, D. Replacement of soybean oil by Hermetia illucens fat in turkey nutrition: Effect on performance, digestibility, microbial community, immune and physiological status and final product quality. Brit. Poultry Sci. 2020, 1, 1–9. [Google Scholar] [CrossRef]
- Kim, Y.B.; Kim, D.H.; Jeong, S.B.; Lee, J.W.; Kim, T.H.; Lee, H.G.; Lee, K.W. Black soldier fly larvae oil as an alternative fat source in broiler nutrition. Poult. Sci. 2020, 99, 3133–3143. [Google Scholar] [CrossRef] [PubMed]
- Khatibjoo, A.; Mahmoodi, M.; Fattahnia, F.; Akbari-Gharaei, M.; Shokri, A.N.; Soltani, S. Effects of dietary short-and medium-chain fatty acids on performance, carcass traits, jejunum morphology, and serum parameters of broiler chickens. J. Appl. Anim. Res. 2018, 46, 492–498. [Google Scholar] [CrossRef]
- Rebucci, R.; Comi, M.; Ghiringhelli, M.; Giorgi, S.; Cheli, F.; Bontempo, V. Lauric acid saponified with calcium ameliorates indices of intestinal function and gut health in weaned piglets. Italian J. Anim. Sci. 2021, 20, 1479–1490. [Google Scholar] [CrossRef]
- Yoon, B.K.; Jackman, J.A.; Valle-González, E.R.; Cho, N.-J. Antibacterial free fatty acids and monoglycerides: Biological activities, experimental testing, and therapeutic applications. Int. J. Mol. Sci. 2018, 19, 1114. [Google Scholar] [CrossRef]
- Erickson, M.C.; Islam, M.; Sheppard, C.; Liao, J.; Doyle, M. Reduction of Escherichia coli O157:H7 and Salmonella enteric Serovar Enteritidis in chicken manure by larvae of the Black Soldier fly. J. Food Prot. 2004, 67, 685–690. [Google Scholar] [CrossRef]
- Nekrasov, R.V.; Ivanov, G.A.; Chabaev, M.G.; Tsis, E.Y.; Bogolyubova, N.V.; Nikanova, D.A. Effect of dietary replacement of fishmeal by insect meal on growth performance and non-specific immunity of growing pigs. J. Anim. Sci. 2020, 98, 353. [Google Scholar] [CrossRef]
- Yu, M.; Li, Z.; Chen, W.; Chen, W.; Rong, T.; Wang, G.; Ma, X. Hermetia illucens larvae as a potential dietary protein source altered the microbiota and modulated mucosal immune status in the colon of finishing pigs. J. Anim. Sci. Biotechnol. 2019, 10, 50. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.A.; Rhee, M.S. Highly enhanced bactericidal effects of medium chain fatty acids (caprylic, capric, and lauric acid) combined with edible plant essential oils (carvacrol, eugenol, b-resorcylic acid, trans-cinnamaldehyde, thymol, and vanillin) against Escherichia coli O157:H7. Food Control 2016, 60, 447–454. [Google Scholar] [CrossRef]
- Schiavone, A.; Cullere, M.; De Marco, M.; Meneguz, M.; Biasato, I.; Bergagna, S.; Dezzutto, D.; Gai, F.; Dabbou, S.; Gasco, L.; et al. Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: Effect on growth performances, feed-choice, blood traits, carcass characteristics and meat quality. Italian J. Anim. Sci. 2017, 16, 100–193. [Google Scholar] [CrossRef]
- Benzertiha, A.; Kierończyk, B.; Rawski, M.; Kołodziejski, P.A.; Bryszak, M.; Józefiak, D. Insect oil as an alternative to palm oil and poultry fat in broiler chicken nutrition. Animals 2019, 9, 116. [Google Scholar] [CrossRef]
- Heuel, M.; Kreuzer, M.; Sandrock, C.; Leiber, F.; Mathys, A.; Gold, M.; Zurbrügg, C.; Gangnat, I.D.; Terranova, M. Transfer of lauric and myristic acid from black soldier fly larval lipids to egg yolk lipids of hens is low. Lipids 2021, 56, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Gasco, L.; Dabbou, S.; Trocino, A.; Xiccato, G.; Capucchio, M.T.; Biasato, I.; Dezzutto, D.; Birolo, M.; Meneguz, M.; Schiavone, A.; et al. Effect of dietary supplementation with insect fats on growth performance, digestive efficiency and health of rabbits. J. Anim. Sci. Biotechnol. 2019, 17, 4. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ji, H.; Zhang, B.; Tian, J.; Zhou, J.; Yu, H. Influence of black soldier fly (Hermetia illucens) larvae oil on growth performance, body composition, tissue fatty acid composition and lipid deposition in juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture 2016, 465, 43–52. [Google Scholar] [CrossRef]
- Faciola, A.P.; Broderick, G.A. Effects of feeding lauric acid or coconut oil on ruminal protozoa numbers, fermentation pattern, digestion, omasal nutrient flow, and milk production in dairy cows. J. Dairy Sci. 2014, 97, 5088–5100. [Google Scholar] [CrossRef]
Parameter 1 | Diets 2 | ||
---|---|---|---|
D0 | D10 | D100 | |
Ingredient (kg) | |||
Hay | 1.0 | 1.0 | 1.0 |
Haylage | 13.0 | 13.0 | 13.0 |
Corn silage | 15.0 | 15.0 | 15.0 |
Fresh brewer’s grain | 4.0 | 4.0 | 4.0 |
Compound feed 3 | 14.5 | 14.5 | 14.5 |
BSFLF | - | 0.01 | 0.10 |
Calculated nutrients | |||
Energy (MJ/kg DM) | 11.18 | 11.18 | 11.29 |
Analysed nutrients | |||
DM (kg) | 24.00 | 24.01 | 24.10 |
Crude protein (% DM) | 16.21 | 16.20 | 16.14 |
Crude fibre (% DM) | 18.54 | 18.53 | 18.46 |
Starch (% DM) | 22.31 | 22.30 | 22.21 |
Sugar, (% DM) | 4.99 | 4.98 | 4.97 |
Crude fat, (% DM) | 3.91 | 3.95 | 4.31 |
Calcium, (% DM) | 0.69 | 0.69 | 0.69 |
Phosphorus, (% DM) | 0.52 | 0.52 | 0.51 |
Parameter | Mean | ±Δ |
---|---|---|
Mass fraction of moisture and volatile substances, % | 0.02 | 0.002 |
Mass fraction of crude fat on natural moisture, % | 99.98 | 10.0 |
Mass fraction of crude protein, % | None | - |
Mass fraction of nitrogen, % | none | - |
Gross energy, MJ/kg | 38.36 | 0.4 |
Content of tocopherols, including | ||
alpha-tocopherol, mg/kg | 40.4 | 4.0 |
sum of beta- and gamma-tocopherols, mg/kg | 25.5 | 2.5 |
delta-tocopherol, mg/kg | 8.1 | 0.8 |
Gross energy, MJ/kg | 38.46 | 0.71 |
Acid value, mg KOH/g fat | 1.6 | 0.2 |
Peroxide value, O2 mmol/kg | 1.66 | 0.2 |
TBA value, mg/kg | 0.05 | 0.0005 |
Oxidative stability OSI/Rancimat test (induction point at 100 °C; hours) | >48 | - |
Oxidative stability OSI/Rancimat test (conversion to 20 °C; hours) | >12,288 | - |
Sample | Temperature, °C | ||||
---|---|---|---|---|---|
25 | 30 | 40 | 50 | 60 | |
Fat of Hermetia illucens larvae | 71.15 | 54.46 | 34.95 | 23.59 | 16.47 |
Name of Fatty Acid | Mean | ±Δ |
---|---|---|
Capric acid (C10:0) | 1.57 | 0.5 |
Lauric acid (C12:0) | 58.93 | 3.0 |
Tridecanoic acid (C13:0) | 0.06 | 0.5 |
Myristic acid (C14:0) | 11.11 | 1.17 |
Myristoleic acid (cis-9) (C14:1) | 0.45 | 0.05 |
Pentadecanoic acid (C15:0) | 0.31 | 0.05 |
Palmitic acid (C16:0) | 12.68 | 1.46 |
Palmitoleic acid (cis-9) (C16:1) | 2.17 | 0.5 |
Margarine acid (C17:0) | 0.13 | 0.05 |
Heptadecenic acid (C17:1) | 0.1 | - |
Stearic acid (C18:0) | 1.24 | 0.5 |
Oleic acid (cis-9) (C18:1) | 7.39 | 0.8 |
Linoleic acid (cis-9,12) (C18:2) | 3.52 | 0.5 |
Eicosenic acid (cis-11) (C20:1) | 0.34 | 0.05 |
Total, %, including | 100.00 | - |
SFA, % | 86.03 | - |
USFA, % | 13.97 | - |
USFA/SFA | 0.16 | - |
MUFA, %e | 10.45 | - |
PUFA, % | n/a | - |
Parameter | BSFLF Concentration, mg/mL | |||||||||
0.0312 | 0.0625 | 0.125 | 0.25 | 0.5 | 1.0 | 2.0 | 4.0 | 8.0 | 16.0 | |
Toxicity level | n/d | n/d | n/d | n/d | n/d | n/d | n/d | n/d | n/d | n/d |
Parameter | Diets 2 | SEM | p-Value | ||
---|---|---|---|---|---|
D0 n = 36 | D10 n = 36 | D100 n = 36 | GLM | ||
Fat content in milk, % | 3.66 ± 0.11 | 3.72 ± 0.13 | 3.72 ± 0.10 | 0.074 | 0.99 |
Protein content in milk, % | 3.47 ± 0.04 | 3.42 ± 0.06 | 3.38 ± 0.04 | 0.028 | 0.16 |
Lactose, % | 4.67 ± 0.10 | 4.73 ± 0.03 | 4.81 ± 0.03 | 0.037 | 0.15 |
SNF, % | 8.95 ± 0.13 | 8.95 ± 0.07 | 8.98 ± 0.05 | 0.051 | 0.92 |
Dry matter, % | 12.45 ± 0.23 | 12.98 ± 0.21 d | 12.62 ± 0.13 | 0.114 | 0.16 |
Casein, % | 2.72 ± 0.04 | 2.70 ± 0.05 | 2.67 ± 0.03 | 0.024 | 0.42 |
Acetone, mmol/l | 0.06 ± 0.01 | 0.04 ± 0.01 d | 0.03 ± 0.01 a | 0.004 | 0.01 |
β-hydroxybutyrate, mmol/L | 0.05 ± 0.01 | 0.03 ± 0.01 | 0.03 ± 0.01 d | 0.005 | 0.03 |
Urea, mg/100 mL | 39.88 ± 1.27 | 42.66 ± 1.15 | 43.30 ± 0.97 a | 0.671 | 0.03 |
Freezing point | 533.83 ± 1.09 | 531.74 ± 2.02 | 534.57 ± 0.83 | 0.816 | 0.60 |
Acidity, pH | 6.56 ± 0.03 | 6.60 ± 0.02 | 6.60 ± 0.01 | 0.014 | 0.31 |
Fatty acids, g/100 g, including | |||||
myristic acid | 0.36 ± 0.01 | 0.40 ± 0.02 a | 0.36 ± 0.01 | 0.008 | 0.14 |
palmitic acid | 0.98 ± 0.04 | 1.12 ± 0.06 a | 0.97 ± 0.03 | 0.026 | 0.22 |
stearic acid | 0.32 ± 0.02 | 0.36 ± 0.02 | 0.32 ± 0.01 | 0.011 | 0.41 |
oleic acid | 0.99 ± 0.04 | 1.14 ± 0.06 a | 1.07 ± 0.04 | 0.027 | 0.06 |
long chain fatty acids (LCFA) | 1.17 ± 0.06 | 1.35 ± 0.08 d | 1.27 ± 0.05 | 0.039 | 0.09 |
medium chain (MCFA) | 1.51 ± 0.05 | 1.70 ± 0.08 a | 1.51 ± 0.05 | 0.036 | 0.24 |
short-chain (SCFA) | 0.46 ± 0.02 | 0.55 ± 0.03 b | 0.49 ± 0.02 | 0.013 | 0.02 |
saturated (SFA) | 2.46 ± 0.10 | 2.82 ± 0.14 a | 2.51 ± 0.08 | 0.064 | 0.14 |
monounsaturated (MUFA) | 0.94 ± 0.04 | 1.09 ± 0.06 a | 1.00 ± 0.03 | 0.026 | 0.08 |
polyunsaturated (PUFA) | 0.12 ± 0.004 | 0.13 ± 0.01 d | 0.12 ± 0.003 | 0.002 | 0.09 |
trans-isomers (TFA) | 0.08 ± 0.005 | 0.08 ± 0.01 | 0.07 ± 0.01 | 0.003 | 0.88 |
Somatic cells, thousand/cm3 | 323.80 ± 102.08 | 238.91 ± 39.05 | 258.71 ± 50.23 | 40.08 | 0.37 |
Parameter | Diets 2 | SEM | p-Value | ||
---|---|---|---|---|---|
D0 | D10 | D100 | GLM | ||
n = 3 | n = 3 | n = 3 | |||
pH | 7.16 ± 0.06 | 6.80 ± 0.07 a | 6.85 ± 0.09 a | 0.07 | 0.03 |
VFA, mMol/100 Ml | 6.56 ± 0.29 | 8.66 ± 0.46 a | 10.37 ± 0.42 b | 0.62 | 0.001 |
Ammonia nitrogen, mg% | 16.08 ± 0.05 | 11.66 ± 3.47 | 11.74 ± 1.06 a | 1.41 | 0.31 |
Amylolytic activity, U/ml | 13.35 ± 0.51 | 16.46 ± 0.59 a | 15.29 ± 1.37 | 0.68 | 0.13 |
Microorganisms, total, g/100 mL of rumen content, including | 0.61 ± 0.10 | 0.66 ± 0.03 | 0.80 ± 0.17 | 0.07 | 0.53 |
Infusoria | 0.18 ± 0.03 | 0.27 ± 0.03 | 0.37 ± 0.09 | 0.04 | 0.16 |
Bacteria | 0.43 ± 0.07 | 0.39 ± 0.01 | 0.43 ± 0.08 | 0.03 | 0.87 |
Parameter | Diets 2 | SEM | p-Value | ||
---|---|---|---|---|---|
D0 | D10 | D100 | GLM | ||
n = 5 | n = 5 | n = 5 | |||
TP (g/L) | 98.13 ± 5.83 | 90.70 ± 2.73 | 90.32 ± 4.04 | 2.39 | 0.32 |
ALB (g/L) | 32.33 ± 1.43 | 34.27 ± 0.83 | 32.88 ± 1.37 | 0.65 | 0.47 |
GLB (g/L) | 65.80 ± 7.05 | 56.43 ± 2.48 | 57.44 ± 3.63 | 2.64 | 0.28 |
ALB/GLB | 0.52 ± 0.08 | 0.61 ± 0.03 | 0.58 ± 0.04 | 0.03 | 0.41 |
UREA (mmol/L) | 3.08 ± 0.24 | 4.70 ± 0.22 c | 3.41 ± 0.29 | 0.23 | <0.001 |
CREA (mmol/L) | 74.65 ± 5.55 | 75.38 ± 5.28 | 70.60 ± 3.22 | 2.44 | 0.70 |
TBIL (µmol/L) | 2.44 ± 0.24 | 3.80 ± 0.75 d | 5.79 ± 1.56 a | 0.63 | 0.06 |
ALT (IE/L) | 22.66 ± 2.15 | 25.16 ± 2.01 | 24.09 ± 1.56 | 0.99 | 0.60 |
AST (IE/L) | 64.65 ± 3.77 | 66.19 ± 8.89 | 61.61 ± 5.28 | 3.19 | 0.81 |
ALP (mmol/L) | 92.89 ± 23.22 | 73.48 ± 8.00 | 93.03 ± 30.36 | 11.44 | 0.73 |
CHOL (mmol/L) | 6.16 ± 0.48 | 7.11 ± 0.66 | 4.74 ± 0.34 a | 0.37 | 0.01 |
TRIG (mmol/L) | 0.32 ± 0.02 | 0.33 ± 0.01 | 0.32 ± 0.00 | 0.01 | 0.54 |
GLU (mmol/L) | 2.66 ± 0.27 | 3.02 ± 0.27 | 2.20 ± 0.13 a | 0.15 | 0.05 |
Ca (mmol/L) | 2.75 ± 0.13 | 2.82 ± 0.05 | 2.74 ± 0.06 | 0.04 | 0.73 |
P (mmol/L) | 2.19 ± 0.24 | 2.02 ± 0.18 | 2.13 ± 0.15 | 0.10 | 0.78 |
Ca/P | 1.68 ± 0.16 | 1.85 ± 0.16 | 1.69 ± 0.12 | 0.08 | 0.56 |
Mg (mmol/L) | 0.49 ± 0.11 | 0.49 ± 0.03 | 0.54 ± 0.07 | 0.04 | 0.81 |
Fe (µmol/L) | 24.46 ± 1.66 | 27.37 ± 1.61 | 24.84 ± 1.19 | 0.82 | 0.29 |
WBC (109/L) | 13.47 ± 0.87 | 12.48 ± 2.47 | 13.04 ± 1.48 | 0.87 | 0.90 |
RBC (1012/L) | 7.50 ± 0.19 | 7.68 ± 0.30 | 7.54 ± 0.12 | 0.11 | 0.79 |
HGB (g/L) | 94.52 ± 3.68 | 93.74 ± 5.42 | 90.14 ± 0.94 | 1.96 | 0.64 |
HCT (%) | 37.31 ± 1.14 | 37.05 ± 2.28 | 35.88 ± 0.42 | 0.76 | 0.73 |
TAWSA (mg/g) | 10.96 ± 0.55 | 11.59 ± 1.79 | 12.59 ± 1.00 | 0.48 | 0.56 |
Parameter | Diets 2 | SEM | p-Value | ||
---|---|---|---|---|---|
D0 | D10 | D100 | GLM | ||
n = 5 | n = 5 | n = 5 | |||
LA, % | 44.11 ± 2.60 | 60.10 ± 6.02 a | 56.71 ± 6.63 d | 0.32 | 0.08 |
Lysozyme, mkg/mL | 0.78 ± 0.04 | 1.36 ± 0.28 a | 1.29 ± 0.33 | 0.14 | 0.18 |
AU/TP | 3.10 ± 0.20 | 4.12 ± 0.38 a | 3.97 ± 0.39 d | 0.21 | 0.07 |
BA, % | 43.56 ± 1.69 | 46.67 ± 2.69 | 49.33 ± 2.14 a | 1.27 | 0.16 |
PA, % | 58.83 ± 2.09 | 55.67 ± 5.02 | 52.60 ± 3.88 | 2.96 | 0.99 |
PI | 3.43 ± 0.21 | 2.78 ± 0.27 d | 3.60 ± 0.06 | 0.14 | <0.05 |
PAM | 1.80 ± 0.22 | 1.46 ± 0.17 | 1.89 ± 0.12 | 0.10 | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nekrasov, R.V.; Ivanov, G.A.; Chabaev, M.G.; Zelenchenkova, A.A.; Bogolyubova, N.V.; Nikanova, D.A.; Sermyagin, A.A.; Bibikov, S.O.; Shapovalov, S.O. Effect of Black Soldier Fly (Hermetia illucens L.) Fat on Health and Productivity Performance of Dairy Cows. Animals 2022, 12, 2118. https://doi.org/10.3390/ani12162118
Nekrasov RV, Ivanov GA, Chabaev MG, Zelenchenkova AA, Bogolyubova NV, Nikanova DA, Sermyagin AA, Bibikov SO, Shapovalov SO. Effect of Black Soldier Fly (Hermetia illucens L.) Fat on Health and Productivity Performance of Dairy Cows. Animals. 2022; 12(16):2118. https://doi.org/10.3390/ani12162118
Chicago/Turabian StyleNekrasov, Roman V., Gennady A. Ivanov, Magomed G. Chabaev, Aloyna A. Zelenchenkova, Nadezhda V. Bogolyubova, Daria A. Nikanova, Alexander A. Sermyagin, Semen O. Bibikov, and Sergey O. Shapovalov. 2022. "Effect of Black Soldier Fly (Hermetia illucens L.) Fat on Health and Productivity Performance of Dairy Cows" Animals 12, no. 16: 2118. https://doi.org/10.3390/ani12162118
APA StyleNekrasov, R. V., Ivanov, G. A., Chabaev, M. G., Zelenchenkova, A. A., Bogolyubova, N. V., Nikanova, D. A., Sermyagin, A. A., Bibikov, S. O., & Shapovalov, S. O. (2022). Effect of Black Soldier Fly (Hermetia illucens L.) Fat on Health and Productivity Performance of Dairy Cows. Animals, 12(16), 2118. https://doi.org/10.3390/ani12162118