Expression of Hormones, Cytokines, and Antioxidants in Heat-Stressed Subfertile Female Dromedaries
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Animals and Location
2.2. FSH Determination
2.3. Estradiol-17ß Determination
2.4. Progesterone Determination
2.5. Camel Inhibin Determination
2.6. DHEA Determination
2.7. Camel TGFά Determination
2.8. ILß Determination
2.9. GSH Determination
2.10. NO Determination
2.11. Free T4 Determination
2.12. Free T3 Determination
2.13. Total T4 Determination
2.14. Statistical Analysis
- µ = overall mean,
- Ai = the fixed effect of the ith fertility status, (i = 1……7).
- eij = random error assumed to be independent normally distributed with mean = 0 and variance = Ợ2.
3. Results
4. Discussion
4.1. Impact of Heat Stress and Lack of Nutrients on Animal Reproduction
4.2. FSH, Inhibin, Thyroid Hormones, and Glucose as Bio-Indicators for Reproductive Failure
4.3. Expression of TGFά and IL-ß as a Response to the Reproductive Failure
4.4. Sex Steroid Hormones Response to Reproductive Failure
4.5. Antioxidants’ Response to the Reproductive Inefficiency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ingman, W.V.; Jones, R.L. Cytokine knockouts in reproduction: The use of gene ablation to dissect roles of cytokines in reproductive biology. Hum. Reprod. Updat. 2008, 14, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Harada, T.; Iwabe, T.; Terakawa, N. Role of cytokines in endometriosis. Fertil. Steril. 2001, 76, 1–10. [Google Scholar] [CrossRef]
- Trunov, A.; Obukhova, O.; Gorbenko, O.; Shvayk, A.; Trunova, L. Cytokines and Infertility Influence of Cytokines and Local Inflammation in Women of Reproductive Age with Infertility. J. Cytokine Biol. 2016, 1, 1–3. [Google Scholar] [CrossRef]
- Lindsay, T.J.; Vitrikas, K.R. Evaluation and treatment of infertility. Am. Fam. Physician 2015, 91, 308–314. [Google Scholar] [PubMed]
- Poole, R.K.; Ault-Seay, T.B.; Payton, R.R.; Myer, P.R.; Lear, A.S.; Pohler, K.G. Evaluation of Reproductive Tract Cytokines in Post-partum Beef Cows Relating to Reproductive Microbiota and Fertility Outcomes. Front. Anim. Sci. 2021, 2, 704714. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Nayan, V.; Parvati, N.; Mamta, J.; Gupta, A.K. Inhibin: A Role for Fecundity Augmentation in Farm Animals. Asian J. Anim. Vet. Adv. 2012, 7, 771–778. [Google Scholar] [CrossRef]
- Sharma, G.T.; Dubey, P.K.; Kumar, G.S. Effects of IGF-1, TGF-α plus TGF-β1 and bFGF on in vitro survival, growth and apoptosis in FSH-stimulated buffalo (Bubalis bubalus) preantral follicles. Growth Horm. IGF Res. 2010, 20, 319–325. [Google Scholar] [CrossRef]
- Lie, P.P.Y.; Cheng, C.Y.; Mruk, D.D. The biology of interleukin-1: Emerging concepts in regulating the actin cytoskeleton and cell junction dynamics. Cell Mol. Life Sci. 2012, 69, 487–500. [Google Scholar] [CrossRef]
- Tibary, A.; Anouassi, A. Reproductive physiology in the female camelidae. In Theriogenology in Camelids; Institute Agronomique et Veterinaire Hassan II: Rabat, Morocco, 1997; pp. 169–241. [Google Scholar]
- Rebar, R.W.; Erickson, G.F.; Yen, S.S.C. Idiopathic premature ovarian failure: Clinical and endocrine characteristics. Fertil. Steril. 1982, 37, 35–41. [Google Scholar] [CrossRef]
- Ratcliffe, W.A.; Carter, G.D.; Dowsett, M.; Hillier, S.G.; Middle, J.G.; Reed, M.J. Oestradiol Assays: Applications and Guidelines for the Provision of a Clinical Biochemistry Service. Ann. Clin. Biochem. 1988, 25, 466–483. [Google Scholar] [CrossRef]
- Radwanska, E.; Frankenberg, J.; Allen, E.I. Plasma progesterone levels in normal and abnormal early human pregnancy. Fertil. Steril. 1978, 30, 398–402. [Google Scholar] [CrossRef]
- Kricka, L.J. Interferences in Immunoassay—Still a Threat. Clin. Chem. 2000, 46, 1037–1038. [Google Scholar] [CrossRef]
- Chasalow, F.I.; Blethen, S.L. Dehydroepiandrosterone measurements in cord blood. Steroids 1985, 45, 187–193. [Google Scholar] [CrossRef]
- Mouradian, M.; Kikawa, K.D.; Johnson, E.D.; Beck, K.L.; Pardini, R.S. Key roles for GRB2-associated-binding protein 1, phosphatidylinositol-3-kinase, cyclooxygenase 2, prostaglandin E2 and transforming growth factor alpha in linoleic acid-induced upregulation of lung and breast cancer cell growth. Prostaglandins Leukot. Essent. Fat. Acids 2014, 90, 105–115. [Google Scholar] [CrossRef]
- Herzyk, D.J.; Wewers, M.D. ELISA Detection of IL-Iβ in Human Sera Needs Independent Confirmation: False Positives in Hospitalized Patients. Am. Rev. Respir. Dis. 1993, 147, 139–142. [Google Scholar] [CrossRef]
- Meister, A.; Anderson, M.E. Glutathione. Annu. Rev. Biochem. 1983, 52, 711–760. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, X.; Broderick, M.; Fein, H. Measurement of Nitric Oxide Production in Biological Systems by Using Griess Reaction Assay. Sensors 2003, 3, 276–284. [Google Scholar] [CrossRef]
- Sterling, L. Diagnosis and Treatment of Thyroid Disease; CRC Press: Cleveland, OH, USA, 1975; pp. 19–51. [Google Scholar]
- Coscia, F.; Taler-Verčič, A.; Chang, V.T.; Sinn, L.; O’Reilly, F.J.; Izoré, T.; Renko, M.; Berger, I.; Rappsilber, J.; Turk, D.; et al. The structure of human thyroglobulin. Nature 2020, 578, 627–630. [Google Scholar] [CrossRef]
- SAS. Statistical Analysis System User’s Guide; Release 9.1; SAS Institute: Cary, NC, USA, 2004. [Google Scholar]
- Marai, I.F.M.; El-Darawany, A.A.; Fadiel, A.; Abdel-Hafez, M.A.M. Physiological traits as affected by heat stress in sheep—A review. Small Rumin. Res. 2007, 71, 1–12. [Google Scholar] [CrossRef]
- Baumgard, L.H.; Rhoads, R.P., Jr. Effects of Heat Stress on Postabsorptive Metabolism and Energetics. Annu. Rev. Anim. Biosci. 2013, 1, 311–337. [Google Scholar] [CrossRef]
- Kadokawa, H.; Sakatani, M.; Hansen, P.J. Perspectives on the improvement of reproduction in cattle during heat stress in a future Japan. Anim. Sci. J. 2013, 83, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, M.; Tabayashi, D.; Latief, T.A.; Shimizu, T.; Oshima, I.; Kanai, Y. Alterations in follicular dynamics and steroidogenic abilities induced by heat stress during follicular recruitment in goats. Reproduction 2005, 129, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Derar, D.R.; Ali, A.M.; Almundarij, T.; Abd-Elmoniem, E.; Alhassun, T.; Zeitoun, M.M. Association between serum trace element levels, steroid concentrations, and reproductive disorders in ewes. Hindawi Vet. Med. Int. 2022, 2022, 8525089. [Google Scholar] [CrossRef] [PubMed]
- Zaher, H.; El-Zahar, H.; AlSharifi, S.; Shety, T. Alterations in Hematological and Biochemical Parameters Affecting the Reproductive Performance in Female Camels (Camelus Dromedaries). Int. J. Vet. Health Sci. Res. 2017, 5, 155–160. [Google Scholar] [CrossRef]
- Robinson, J.J.; Ashworth, C.J.; Rooke, J.A.; Mitchell, L.M.; McEvoy, T.G. Nutrition and fertility in ruminant livestock. Anim. Feed Sci. Technol. 2006, 126, 259–276. [Google Scholar] [CrossRef]
- Welt, C.K.; Hall, J.E.; Adams, J.M.; Taylor, A.E. Relationship of Estradiol and Inhibin to the Follicle-Stimulating Hormone Variability in Hypergonadotropic Hypogonadism or Premature Ovarian Failure. J. Clin. Endocrinol. Metab. 2005, 90, 826–830. [Google Scholar] [CrossRef]
- Kaneko, H.; Kishi, H.; Watanabe, G.; Taya, K.; Sasamoto, S.; Hasegawa, Y. Changes in plasma concentrations of immunoreactive inhibin, estradiol, and FSH are associated with follicular waves during the cow’s estrous cycle. J. Reprod. Dev. 1995, 41, 311–320. [Google Scholar] [CrossRef]
- Buratini, J.; e Silva, A.R.; Barros, C.M.Q.; Papa, F.O.; Caldas, M.C.S.; Meira, C. Follicular dynamics in Mangalarga mares. Equine Vet. J. 1997, 29 (Suppl. S25), 7–11. [Google Scholar] [CrossRef]
- Bartlewski, P.M.; Beard, A.P.; Cook, S.J.; Chandolia, R.K.; Honaramooz, A.; Rawlings, N.C. Ovarian follicular dynamics and their relationships with endocrine variables in two breeds of sheep differing in prolificacy. J. Reprod. Fertil. 1999, 115, 111–124. [Google Scholar] [CrossRef]
- Medan, M.S.; Watanabe, G.; Sasaki, K.; Groome, N.P.; Sharawy, S.; Taya, K. Follicular and Hormonal Dynamics during the Estrous Cycle in Goats. J. Reprod. Dev. 2005, 51, 455–463. [Google Scholar] [CrossRef]
- Guo, R.; Chen, F.; Mei, C.; Dai, Z.; Yan, L.; Shi, Z. Conception Rate and Reproductive Hormone Secretion in Holstein Cows Immunized against Inhibin and Subjected to the Ovsynch Protocol. Animals 2020, 10, 313. [Google Scholar] [CrossRef]
- Al-Sa’Aidi, J.A.A.; Khudair, K.K.; Khafaji, S.S. Reproductive fecundity of Iraqi Awassi ewes immunized against synthetic inhibin-α subunit or steroid-free bovine follicular fluid. Asian-Australas. J. Anim. Sci. 2018, 31, 1169–1175. [Google Scholar] [CrossRef]
- Downing, J.A.; Joss, J.; Scaramuzzi, R.J. Ovulation rate and the concentrations of gonadotrophins and metabolic hormones in ewes infused with glucose during the late luteal phase of the oestrous cycle. J. Endocrinol. 1995, 146, 403–410. [Google Scholar] [CrossRef]
- Jorritsma, R.; Wensing, T.; Kruip, T.A.M.; Vos, P.L.A.M.; Noordhuizen, J.P.T.M. Metabolic changes in early lactation and impaired reproductive performance in dairy cows. Vet. Res. 2003, 34, 11–26. [Google Scholar] [CrossRef]
- Zelová, H.; Hošek, J. TNF-α signalling and inflammation: Interactions between old acquaintances. Inflamm. Res. 2013, 62, 641–651. [Google Scholar] [CrossRef]
- Piotrowska, H.; Kempisty, B.; Sosinska, P.; Ciesiolka, S.; Bukowska, D.; Antosik, P.; Rybska, M.; Brussow, K.P.; Nowicki, M.; Zabel, M. The role of TGF superfamily gene expression in the regulation of folliculogenesis and oogenesis in mammals: A review. Vet. Med. 2013, 58, 505–515. [Google Scholar] [CrossRef]
- Christian, L.M.; Porter, K. Longitudinal changes in serum proinflammatory markers across pregnancy and postpartum: Effects of maternal body mass index. Cytokine 2014, 70, 134–140. [Google Scholar] [CrossRef]
- Gomes, F.I.F.; Aragão, M.G.B.; Barbosa, F.C.B.; Bezerra, M.M.; Pinto, V.D.P.T.; Chaves, H.V. Inflammatory Cytokines Interleukin-1β and Tumour Necrosis Factor-α—Novel Biomarkers for the Detection of Periodontal Diseases: A Literature Review. J. Oral Maxillofac. Res. 2016, 7, e2. [Google Scholar] [CrossRef]
- Powell, I.J.; Chinni, S.R.; Reddy, S.S.; Zaslavsky, A.; Gavnath, N. Pro-inflammatory cytokines and chemokines initiate multiple prostate cancer biologic pathways of cellular proliferation, heterogeneity and metastasis in a racially diverse population and underlie the genetic/biologic mechanism of racial disparity: Update. Urol. Oncol. Semin. Orig. Investig. 2021, 39, 34–40. [Google Scholar] [CrossRef]
- Kasimanickam, R.; Kasimanickam, V.; Kastelic, J.P.; Ramsey, K. Metabolic biomarkers, body condition, uterine inflammation and response to superovulation in lactating Holstein cows. Theriogenology 2020, 146, 71–79. [Google Scholar] [CrossRef]
- Mansour, M.M.; Zeitoun, M.M.; Hussein, F.M. Mastitis outcomes on pre-ovulatory follicle diameter, estradiol concentrations, subsequent luteal profiles and conception rate in Buffaloes. Anim. Reprod. Sci. 2017, 181, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Keisler, D.H.; Lucy, M.C. Perception and Interpretation of the Effects of Undernutrition on Reproduction. J. Anim. Sci. 2016, 74 (Suppl. S3), 1–17. [Google Scholar] [CrossRef]
- Dawuda, P.M.; Scaife, J.R.; Hutchinson, J.S.M.; Sinclair, K.D. Mechanisms linking under-nutrition and ovarian function in beef heifers. Anim. Reprod. Sci. 2002, 74, 11–26. [Google Scholar] [CrossRef]
- Yilmaz, N.; Uygur, D.; Inal, H.; Gorkem, U.; Cicek, N.; Mollamahmutoglu, L. Dehydroepiandrosterone supplementation improves predictive markers for diminished ovarian reserve: Serum AMH, inhibin B and antral follicle count. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 169, 257–260. [Google Scholar] [CrossRef]
- Wu, G.; Fang, Y.-Z.; Yang, S.; Lupton, J.R.; Turner, N.D. Glutathione Metabolism and Its Health Implications. J. Nutr. 2004, 134, 489–492. [Google Scholar] [CrossRef]
- Takahashi, M. Heat stress on reproductive function and fertility in mammals. Reprod. Med. Biol. 2012, 11, 37–47. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, G.; Sunil Kumar, B.V.; Meur, S.K. Modulating antioxidant status and lipid peroxidation in erythrocytes by dietary supplementation during heat stress in buffaloes. Livest. Sci. 2011, 138, 299–303. [Google Scholar] [CrossRef]
- Pandey, N.; Kataria, N.; Kataria, A.K.; Joshi, A.; Sankhala, L.N.; Asopa, S.; Pachaury, R. Extreme ambiances vis-à-vis endogenous antioxidants of Marwari goat from arid tracts in India. Extrem. Life Biospeol. Astrobiol. 2012, 4, 29–33. [Google Scholar]
- Hernández-Rabaza, V.; López-Pedrajas, R.; Almansa, I. Progesterone, Lipoic Acid, and Sulforaphane as Promising Antioxidants for Retinal Diseases: A Review. Antioxidants 2019, 8, 53. [Google Scholar] [CrossRef]
- Ogunro, P.S.; Bolarinde, A.A.; Owa, O.O.; Salawu, A.A.; Oshodi, A.A. Antioxidant status and reproductive hormones in women during reproductive, perimenopausal and postmenopausal phase of life. Afr. J. Med. Med. Sci. 2014, 43, 49–57. [Google Scholar]
- Rosselli, M.; Imthurm, B.; Macas, E.; Keller, P.; Dubey, R.K. Circulating nitrite/nitrate increase with follicular development: Indirect evidence for estradiol mediated release. Biochem. Biophys. Res. Commun. 1994, 202, 1543–1552. [Google Scholar] [CrossRef]
- Bonello, N.; Mckie, K.; Jasper, M.; Andrew, L.; Ross, N.; Braybon, E.; Brännström, M.; Norman, R.J. Inhibition of nitric oxide effects on interleukin-1 beta-enhanced ovulation rate, a steroid hormone, and ovarian leukocyte distribution at ovulation in the rat. Biol. Reprod. 1996, 54, 436–445. [Google Scholar] [CrossRef]
Reproductive | Hormone | |||||
---|---|---|---|---|---|---|
Fertility Status | No. Animals | FSH (mIU/mL) | Inhibin (pg/mL) | Estradiol (pg/mL) | Progesterone (ng/mL) | DHEA (ng/mL) |
Control Fertile Females | 5 | 3.38 ± 0.21 a | 35.98 ± 3.07 a | 603.56 ± 53.21 a | 2.74 ± 0.47 | 44.48 ± 2.36 |
Ovarian Hydro-bursa | 19 | 2.17 ± 0.07 cd | 58.84 ± 2.66 b | 64.4 ± 24.38 b | 1.36 ± 0.28 | 43.71 ± 3.02 |
Inactive Ovaries | 20 | 2.24 ± 0.08 cd | 61.79 ± 2.63 b | 127.56 ± 32.22 b | 1.48 ± 0.34 | 46.7 ± 2.16 |
Uterine Inflammation | 28 | 2.13 ± 0.08 cd | 58.27 ± 2.23 b | 144.48 ± 38.57 b | 2.41 ± 0.38 | 49.5 ± 2.41 |
Cervicitis | 4 | 2.79 ± 0.19 b | 68.21 ± 7.11 b | 215.06 ± 185.17 b | 0.94 ± 0.86 | 53.03 ± 1.55 |
Vaginitis | 7 | 2.5 ± 0.23 bc | 66.4 ± 4.04 b | 218.71 ± 91.19 b | 2.28 ± 1.0 | 52.77 ± 2.61 |
Salpingitis | 4 | 2.01 ± 0.05 d | 55.83 ± 3.95 b | 629.15 ± 145.22 a | 1.42 ± 0.77 | 40.76 ± 6.75 |
Metabolic | Hormone | ||||
---|---|---|---|---|---|
Fertility Status | No. Animals | Free T3 * (pg/mL) | Free T4 * (ng/mL) | T4 * (µg/mL) | Glucose * (mmol/L) |
Control Fertile Females | 5 | 3.39 ± 0.24 | 1.47 ± 0.08 | 9.14 ± 0.33 | 32.84 ± 2.65 |
Ovarian Hydro-bursa | 19 | 3.69 ± 0.41 | 1.46 ± 0.09 | 9.67 ± 0.18 | 26.68 ± 2.53 |
Inactive Ovaries | 20 | 3.27 ± 0.29 | 1.22 ± 0.1 | 8.99 ± 0.19 | 24.61 ± 2.97 |
Uterine Inflammation | 28 | 2.97 ± 0.36 | 1.37 ± 0.06 | 8.92 ± 0.32 | 25.5 ± 1.83 |
Cervicitis | 4 | 2.92 ± o.13 | 1.22 ± 0.2 | 9.57 ± 0.56 | 27.66 ± 3.79 |
Vaginitis | 7 | 3.37 ± 0.25 | 1.28 ± 0.11 | 9.03 ± 0.19 | 24.42 ± 3.41 |
Salpingitis | 4 | 3.11 ± 0.63 | 1.31 ± 0.1 | 9.43 ± 0.2 | 18.33 ± 2.33 |
No. Animals | Cytokine | Antioxidant | |||
---|---|---|---|---|---|
Fertility Status | TGFά (pg/mL) | IL-ß (pg/mL) | GSH (µmol/L) | NO (µmol/L) | |
Control Fertile | 5 | 13.32 ± 1.0 | 4.87 ± 0.62 b | 491.94 ± 44.2 a | 156.98 ± 25.08 a |
Ovarian Hydro-bursa | 19 | 12.81 ± 0.56 | 10.83 ± 3.78 a | 356.89 ± 43.24 bc | 19.76 ± 4.6 b |
Inactive Ovaries | 20 | 12.93 ± 0.48 | 0.26 ± 0.07 c | 289.88 ± 35.77 c | 26.71 ± 16.53 b |
Uterine Inflammation | 28 | 12,78 ± 0.38 | 3.19 ± 1.51 b | 288.68 ± 39.6 c | 22.37 ± 8.92 b |
Cervicitis | 4 | 15.17 ± 1.17 | 11.69 ± 0.87 a | 473.04 ± 47.21 ab | 54.63 ± 32.14 b |
Vaginitis | 7 | 14.81 ± 1.0 | 8.59 ± 0.71 a | 333.4 ± 26.4 c | 74.03 ± 36.73 b |
Salpingitis | 4 | 12.36 ± 0.72 | 3.25 ± 0.91 b | 322.27 ± 33.66 c | 78.01 ± 51.82 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeitoun, M.M.; Derar, D.R.; Ali, A.; Alharbi, Y.M. Expression of Hormones, Cytokines, and Antioxidants in Heat-Stressed Subfertile Female Dromedaries. Animals 2022, 12, 2125. https://doi.org/10.3390/ani12162125
Zeitoun MM, Derar DR, Ali A, Alharbi YM. Expression of Hormones, Cytokines, and Antioxidants in Heat-Stressed Subfertile Female Dromedaries. Animals. 2022; 12(16):2125. https://doi.org/10.3390/ani12162125
Chicago/Turabian StyleZeitoun, Moustafa M., Derar R. Derar, Ahmed Ali, and Yousef M. Alharbi. 2022. "Expression of Hormones, Cytokines, and Antioxidants in Heat-Stressed Subfertile Female Dromedaries" Animals 12, no. 16: 2125. https://doi.org/10.3390/ani12162125
APA StyleZeitoun, M. M., Derar, D. R., Ali, A., & Alharbi, Y. M. (2022). Expression of Hormones, Cytokines, and Antioxidants in Heat-Stressed Subfertile Female Dromedaries. Animals, 12(16), 2125. https://doi.org/10.3390/ani12162125