A Non-Invasive Sound Technology to Monitor Rumen Contractions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Cows
2.3. Rumen Sounds
2.4. Analysis
3. Results
3.1. Proof of Concept
3.2. Cow #1
3.3. Cow #2
3.4. Cow #3
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Russell, J.B.; Rychlik, J.L. Factors that alter rumen microbial ecology. Science 2001, 292, 1119–1122. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.B. Rumen Microbiology and Its Role in Ruminant Nutrition; Cornell University: Ithaca, NY, USA, 2002. [Google Scholar]
- Ulyatt, M.J.; Dellow, D.W.; John, A.; Reid, C.S.W.; Waghorn, G.C. Contribution of chewing during eating and rumination to the clearance of digesta from the ruminoreticulum. In Control of Digestion and Metabolism in Ruminants, Proceedings of the 6th International Symposium on Ruminant Physiology, Banff, AB, Canada, 10–14 September 1984; Milligan, L.P., Grovum, W.L., Dobson, A., Eds.; Prentice-Hall: Hoboken, NJ, USA, 1984; pp. 498–515. [Google Scholar]
- Gross, J.J.; Bruckmaier, R.M. Invited review: Metabolic challenges and adaptation during different functional stages of the mammary gland in dairy cows: Perspectives for sustainable milk production. J. Dairy Sci. 2019, 102, 2828–2843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagy, D.W. Diagnostic approach to forestomach diseases. Vet. Clin. N. Am. Food Anim. Pract. 2017, 33, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Arai, S.; Okada, H.; Sawada, H.; Takahashi, Y.; Kimura, K.; Itoh, T. Evaluation of ruminal motility in cattle by a bolus-type wireless sensor. J. Vet. Med. Sci. 2019, 81, 1835–1841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wynn, S.; Teramura, M.; Sato, T.; Hanada, M. Changes of serum calcium concentration, frequency of ruminal contraction and feed intake soon after parturition of dairy cows fed difructose anhydride III. Asian Australas. J. Anim. Sci. 2015, 28, 58–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volden, H. NorFor—The Nordic Feed Evaluation System; EAAP Scientific Series; Wageningen Academic Publishers: Wageningen, The Netherlands, 2011. [Google Scholar]
- Caja, G.; Castro-Costa, A.; Salama, A.; Oliver, J.; Baratta, M.; Ferrer, C.; Knight, C. Sensing solutions for improving the performance, health and wellbeing of small ruminants. J. Dairy Res. 2020, 87, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Welch, J.G.; Smith, A.M.; Gibson, K.S. Rumination Time in Four Breeds of Dairy Cattle1. J. Dairy Sci. 1970, 53, 89–91. [Google Scholar] [CrossRef]
- Forbes, J.M. The effects of sex hormones, pregnancy, and lactation on digestion, metabolism, and voluntary food intake. In Control of Digestion and Metabolism in Ruminants, Proceedings of the 6th International Symposium on Ruminant Physiology, Banff, AB, Canada, 10–14 September 1984; Milligan, L.P., Grovum, W.L., Dobson, A., Eds.; Prentice-Hall: Hoboken, NJ, USA, 1986; pp. 420–435. [Google Scholar]
- Schirmann, K.; von Keyserlingk, M.A.; Weary, D.M.; Veira, D.M.; Heuwieser, W. Technical note: Validation of a system for monitoring rumination in dairy cows. J. Dairy Sci. 2009, 92, 6052–6055. [Google Scholar] [CrossRef] [PubMed]
- Ambriz-Vilchis, V.; Jessop, N.S.; Fawcett, R.H.; Shaw, D.J.; Macrae, A.I. Comparison of rumination activity measured using rumination collars against direct visual observations and analysis of video recordings of dairy cows. J. Dairy Sci. 2015, 98, 1750–1758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beauchemin, K.A. Invited review: Current perspectives on eating and rumination activity in dairy cows. J. Dairy Sci. 2018, 101, 4762–4784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, X.; van Mourik, S.; Bokkers, E.A.M.; Groot Koerkamp, P.W.G.; van der Tol, P.P.J. Automatic assessment of dairy cows’ rumen function over time and links to feed changes and milk production. JDS Commun. 2022, 3, 126–131. [Google Scholar] [CrossRef]
- Zhang, M.; Feng, H.; Tomka, J.; Polovka, M.; Ma, R.; Zhang, X. Predicting of mutton sheep stress coupled with multi-environment sensing and supervised learning network in the transportation process. Comput. Electron. Agric. 2021, 190, 106422. [Google Scholar] [CrossRef]
- Knight, C. Review: Sensor techniques in ruminants: More than fitness trackers. Animal 2020, 14, S187–S195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Bello-Pérez, E.; Neves, A.L.A.; Harrison, A. A Non-Invasive Sound Technology to Monitor Rumen Contractions. Animals 2022, 12, 2164. https://doi.org/10.3390/ani12172164
Vargas-Bello-Pérez E, Neves ALA, Harrison A. A Non-Invasive Sound Technology to Monitor Rumen Contractions. Animals. 2022; 12(17):2164. https://doi.org/10.3390/ani12172164
Chicago/Turabian StyleVargas-Bello-Pérez, Einar, André Luis Alves Neves, and Adrian Harrison. 2022. "A Non-Invasive Sound Technology to Monitor Rumen Contractions" Animals 12, no. 17: 2164. https://doi.org/10.3390/ani12172164
APA StyleVargas-Bello-Pérez, E., Neves, A. L. A., & Harrison, A. (2022). A Non-Invasive Sound Technology to Monitor Rumen Contractions. Animals, 12(17), 2164. https://doi.org/10.3390/ani12172164