Application of Organic Acids and Essential Oils as Alternatives to Antibiotic Growth Promoters in Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Treatments, Diets, and Growth Performance
2.2. Sample Collection
2.3. Serum Biochemistry
2.4. Glutathione Peroxidase (GPx) and Superoxide Dismutase (SOD) Activities
2.5. Intestinal Morphology
2.6. Brush Border Digestive Enzyme Activities
2.7. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Serum Biochemistry
3.3. Activities of Glutathione Peroxidase (GPx) and Superoxide Dismutase (SOD)
3.4. Intestinal Morphology
3.5. Activities of Brush Border Digestive Enzymes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, Y.; Liu, X.; Dong, Y.; Lei, J.; Ito, K.; Zhang, B. Enterococcus faecium PNC01 isolated from the intestinal mucosa of chicken as an alternative for antibiotics to reduce feed conversion rate in broiler chickens. Microb. Cell. Fact. 2021, 20, 122. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Chowdhury, M.; Huo, Y.; Gong, J. Phytogenic compounds as alternatives to in-feed antibiotics: Potentials and challenges in application. Pathogens 2015, 4, 137–156. [Google Scholar] [CrossRef]
- Cheng, G.; Hao, H.; Xie, S.; Wang, X.; Dai, M.; Huang, L.; Yuan, Z. Antibiotic alternatives: The substitution of antibiotics in animal husbandry? Front. Microbiol. 2014, 5, 217. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Kim, W.K. Dietary application of tannins as a potential mitigation strategy for current challenges in poultry production: A review. Animals 2020, 10, 2389. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Choi, J.; Yang, C.; Mogire, M.; Liu, S.; Lahaye, L.; Adewole, D.; Rodas-Gonzalez, A.; Yang, C. Effects of antibiotic growth promoter and dietary protease on growth performance, apparent ileal digestibility, intestinal morphology, meat quality, and intestinal gene expression in broiler chickens: A comparison. J. Anim. Sci. 2020, 98, skaa254. [Google Scholar] [CrossRef]
- Choi, J.; Wang, L.; Liu, S.; Lu, P.; Zhao, X.; Liu, H.; Lahaye, L.; Santin, E.; Liu, S.; Nyachoti, M. Effects of a microencapsulated formula of organic acids and essential oils on nutrient absorption, immunity, gut barrier function, and abundance of enterotoxigenic Escherichia coli F4 in weaned piglets challenged with E. coli F4. J. Anim. Sci. 2020, 98, skaa259. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, L.; Cao, G.; Feng, J.; Yue, M.; Xu, Y.; Dai, B.; Han, Q.; Guo, X. Effects of dietary supplementation with essential oils and organic acids on the growth performance, immune system, fecal volatile fatty acids, and microflora community in weaned piglets. J. Anim. Sci. 2019, 97, 133–143. [Google Scholar] [CrossRef]
- Rodjan, P.; Soisuwan, K.; Thongprajukaew, K.; Theapparat, Y.; Khongthong, S.; Jeenkeawpieam, J.; Salaeharae, T. Effect of organic acids or probiotics alone or in combination on growth performance, nutrient digestibility, enzyme activities, intestinal morphology and gut microflora in broiler chickens. J. Anim. Physiol. Anim. Nutr. 2018, 102, e931–e940. [Google Scholar] [CrossRef]
- Omonijo, F.A.; Ni, L.; Gong, J.; Wang, Q.; Lahaye, L.; Yang, C. Essential oils as alternatives to antibiotics in swine production. Anim. Nutr. 2018, 4, 126–136. [Google Scholar] [CrossRef]
- Yang, C.; Diarra, M.S.; Choi, J.; Rodas-Gonzalez, A.; Lepp, D.; Liu, S.; Lu, P.; Mogire, M.; Gong, J.; Wang, Q. Effects of encapsulated cinnamaldehyde on growth performance, intestinal digestive and absorptive functions, meat quality and gut microbiota in broiler chickens. Transl. Anim. Sci. 2021, 5, txab099. [Google Scholar] [CrossRef]
- Yap, P.S.X.; Yiap, B.C.; Ping, H.C.; Lim, S.H.E. Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiol. J. 2014, 8, 6. [Google Scholar] [CrossRef] [PubMed]
- Castro, F.; Kim, W. DL–methionine can be replaced partially by phyto-additive without affecting growth performance, fat metabolism, and serum biochemistry in broilers. J. Appl. Poult. Res. 2019, 28, 1013–1020. [Google Scholar] [CrossRef]
- Maroux, S.; Louvard, D.; Barath, J. The aminopeptidase from hog intestinal brush border. Biochim. Biophys. Acta 1973, 321, 282–295. [Google Scholar] [CrossRef]
- Dahlqvist, A. Method for assay of intestinal disaccharidases. Anal. Biochem. 1964, 7, 18–25. [Google Scholar] [CrossRef]
- Diaz Carrasco, J.M.; Casanova, N.A.; Fernández Miyakawa, M.E. Microbiota, gut health and chicken productivity: What is the connection? Microorganisms 2019, 7, 374. [Google Scholar] [CrossRef]
- Scicutella, F.; Mannelli, F.; Daghio, M.; Viti, C.; Buccioni, A. Polyphenols and organic acids as alternatives to antimicrobials in poultry rearing: A review. Antibiotics 2021, 10, 1010. [Google Scholar] [CrossRef]
- Proctor, A.; Phillips, G.J. Differential effects of bacitracin methylene disalicylate (BMD) on the distal colon and cecal microbiota of young broiler chickens. Front. Vet. Sci. 2019, 6, 114. [Google Scholar] [CrossRef]
- Correa, F.; Luise, D.; Castillo, M.; Peris, S.; Palomo-Yague, A.; Bosi, P.; Trevisi, P. Effect of dietary supplementation with a blend of protected aromatic compounds, including benzoic acid, on growth performance and faecal microbial profile of weaned piglets as an alternative to Zinc Oxide. Livest. Sci. 2021, 246, 104455. [Google Scholar] [CrossRef]
- Luise, D.; Correa, F.; Bosi, P.; Trevisi, P. A review of the effect of formic acid and its salts on the gastrointestinal microbiota and performance of pigs. Animals 2020, 10, 887. [Google Scholar] [CrossRef]
- Nguyen, T.T.T.; Allan, B.; Wheler, C.; Köster, W.; Gerdts, V.; Dar, A. Avian antimicrobial peptides: In vitro and in ovo characterization and protection from early chick mortality caused by yolk sac infection. Sci. Rep. 2021, 11, 2132. [Google Scholar] [CrossRef]
- da Rosa, G.; Alba, D.F.; Silva, A.D.; Miron, V.V.; Morsch, V.M.; Boiago, M.M.; Stefani, L.M.; Baldissera, M.M.; Lopes, M.T.; Mendes, R.E. Impacts of Escherichia coli infection in young breeder chicks on the animal behavior and cerebral activity of purinergic and cholinergic enzymes involved in the regulation of molecules with neurotransmitter and neuromodulator function. Microb. Pathog. 2020, 138, 103787. [Google Scholar] [CrossRef] [PubMed]
- Crisol-Martínez, E.; Stanley, D.; Geier, M.S.; Hughes, R.J.; Moore, R.J. Understanding the mechanisms of zinc bacitracin and avilamycin on animal production: Linking gut microbiota and growth performance in chickens. Appl. Microbiol. Biotechnol. 2017, 101, 4547. [Google Scholar] [CrossRef]
- Pirgozliev, V.; Mansbridge, S.; Rose, S.; Mackenzie, A.; Beccaccia, A.; Karadas, F.; Ivanova, S.; Staykova, G.; Oluwatosin, O.; Bravo, D. Dietary essential oils improve feed efficiency and hepatic antioxidant content of broiler chickens. Animal 2019, 13, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Tompkins, Y.H.; Teng, P.-Y.; Gogal, R.M., Jr.; Kim, W.K. Effects of Tannic Acid Supplementation on Growth Performance, Oocyst Shedding, and Gut Health of in Broilers Infected with Eimeria Maxima. Animals 2022, 12, 1378. [Google Scholar] [CrossRef] [PubMed]
- Gheisar, M.M.; Hosseindoust, A.; Kim, I. Evaluating the effect of microencapsulated blends of organic acids and essential oils in broiler chickens diet. J. Appl. Poult. Res. 2015, 24, 511–519. [Google Scholar] [CrossRef]
- El-Deep, M.H.; Amber, K.A.; Eid, Y.Z.; Alrashood, S.T.; Khan, H.A.; Sakr, M.S.; Dawood, M.A. The Influence of Dietary Chicken Egg Lysozyme on the Growth Performance, Blood Health, and Resistance Against Escherichia coli in the Growing Rabbits’ Cecum. Front. Vet. Sci. 2020, 7, 755. [Google Scholar] [CrossRef]
- Dev, K.; Mir, N.A.; Biswas, A.; Kannoujia, J.; Begum, J.; Kant, R.; Mandal, A. Dietary synbiotic supplementation improves the growth performance, body antioxidant pool, serum biochemistry, meat quality, and lipid oxidative stability in broiler chickens. Anim. Nutr. 2020, 6, 325–332. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, W.; Yuan, S.; Chen, H. The effect of different dietary levels of thyme essential oil on serum biochemical indices in Mahua broiler chickens. Ital. J. Anim. Sci. 2014, 13, 3238. [Google Scholar] [CrossRef]
- Shang, Q.; Wu, D.; Liu, H.; Mahfuz, S.; Piao, X. The impact of wheat bran on the morphology and physiology of the gastrointestinal tract in broiler chickens. Animals 2020, 10, 1831. [Google Scholar] [CrossRef]
- Gong, H.; Yang, Z.; Celi, P.; Yan, L.; Ding, X.; Bai, S.; Zeng, Q.; Xu, S.; Su, Z.; Zhuo, Y. Effect of benzoic acid on production performance, egg quality, intestinal morphology, and cecal microbial community of laying hens. Poult. Sci. 2021, 100, 196–205. [Google Scholar] [CrossRef]
- Gong, J.; Forster, R.J.; Yu, H.; Chambers, J.R.; Wheatcroft, R.; Sabour, P.M.; Chen, S. Molecular analysis of bacterial populations in the ileum of broiler chickens and comparison with bacteria in the cecum. FEMS Microbiol. Ecol. 2002, 41, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Garcia, V.; Catala-Gregori, P.; Hernandez, F.; Megias, M.; Madrid, J. Effect of formic acid and plant extracts on growth, nutrient digestibility, intestine mucosa morphology, and meat yield of broilers. J. Appl. Poult. Res. 2007, 16, 555–562. [Google Scholar] [CrossRef]
- Lin, W.C.; Lee, M.T.; Lo, C.T.; Chang, S.C.; Lee, T.-T. Effects of dietary supplementation of Trichoderma pseudokoningii fermented enzyme powder on growth performance, intestinal morphology, microflora and serum antioxidantive status in broiler chickens. Ital. J. Anim. Sci. 2018, 17, 153–164. [Google Scholar] [CrossRef] [Green Version]
Items | D 0 to 14 | D 14 to 28 | D 28 to 42 |
---|---|---|---|
Ingredients (kg/ton) | |||
Corn | 636.11 | 692.74 | 711.09 |
Soybean meal (480 g crude protein/kg) | 320.37 | 259.93 | 235.96 |
Defluorinated phosphate | 15.65 | 13.03 | 13.22 |
Filler 1 (sand or feed additives) | 5.00 | 5.00 | 5.00 |
Soybean oil | 4.95 | 11.79 | 17.16 |
Limestone | 6.92 | 6.71 | 6.73 |
DL-Methionine 99% | 2.88 | 2.63 | 2.46 |
L-Lysine HCl 78% | 2.04 | 2.06 | 2.20 |
Vitamin Premix 2 | 2.50 | 2.50 | 2.50 |
Common Salt | 1.47 | 1.83 | 1.83 |
L-threonine | 0.80 | 0.48 | 0.54 |
Mineral Premix 3 | 0.80 | 0.80 | 0.80 |
Total | 1000 | 1000 | 1000 |
Calculated energy and nutrient value, % | |||
Metabolizable energy, kcal/kg | 3000 | 3100 | 3150 |
Crude protein | 20.5 | 18 | 17 |
SID 4 Methionine | 0.60 | 0.54 | 0.51 |
SID 4 Total sulfur amino acids | 0.88 | 0.8 | 0.76 |
SID 4 Lysine | 1.17 | 1.02 | 0.97 |
SID 4 Threonine | 0.78 | 0.66 | 0.63 |
Total calcium | 0.87 | 0.76 | 0.76 |
Available phosphate | 0.44 | 0.38 | 0.38 |
Item | NC 1 | PC | OA | EO | OA + EO | SEM | p Value |
---|---|---|---|---|---|---|---|
Initial BW (g) | 44.33 | 44.31 | 44.41 | 44.43 | 44.41 | 0.24 | 0.883 |
Starter | |||||||
BW (g) | 409.78 | 422.68 | 414.64 | 420.28 | 424.64 | 12.58 | 0.254 |
ADG | 26.10 | 27.03 | 26.44 | 26.84 | 27.16 | 0.89 | 0.25 |
ADFI | 36.74 | 36.5 | 36.52 | 36.55 | 37.00 | 1.02 | 0.9 |
FCR | 1.41 a | 1.35 b | 1.38 ab | 1.36 b | 1.36 b | 0.02 | <0.01 |
Grower | |||||||
BW (kg) | 1.46 b | 1.54 a | 1.45 b | 1.45 b | 1.47 ab | 0.06 | 0.085 |
ADG | 75.20 ab | 79.65 a | 74.21 b | 73.23 b | 75.05 ab | 3.76 | 0.061 |
ADFI | 119.77 | 121.47 | 117.59 | 116.4 | 118 | 4.41 | 0.345 |
FCR | 1.59 a | 1.53 b | 1.59 a | 1.59 a | 1.58 a | 0.04 | 0.035 |
Finisher | |||||||
BW (kg) | 3.05 ab | 3.10 a | 3.10 a | 2.97 b | 2.98 ab | 0.09 | 0.055 |
ADG | 113.55 ab | 111.7 ab | 117.78 a | 108.91 b | 107.55 b | 5.55 | 0.031 |
ADFI | 186.01 | 188.47 | 184.77 | 186.77 | 182.21 | 6.07 | 0.45 |
FCR | 1.64 ab | 1.69 a | 1.59 b | 1.69 a | 1.69 a | 0.07 | 0.074 |
Whole period (D 0 to 42) | |||||||
ADG | 71.62 ab | 72.79 a | 72.81 a | 69.66 b | 69.92 ab | 2.26 | 0.054 |
ADFI | 114.18 | 115.48 | 113.63 | 112.37 | 112.71 | 2.98 | 0.404 |
FCR | 1.59 | 1.58 | 1.56 | 1.61 | 1.61 | 0.03 | 0.196 |
Item | NC 1 | PC | OA | EO | OA + EO | SEM | p Value |
---|---|---|---|---|---|---|---|
AST (U/L) 2 | 384.50 | 388.17 | 413.17 | 335.33 | 431.33 | 102.87 | 0.56 |
UA (mg/dL) | 4.07 | 4.5 | 4.13 | 4.25 | 4.58 | 0.81 | 0.756 |
K+ (mM) | 8.5 | 9.6 | 10.22 | 7.13 | 8.5 | 1.97 | 0.102 |
Na+ (mM) | 153.33 | 154 | 151.83 | 148.17 | 155.17 | 7.68 | 0.571 |
Ca+ (mM) | 11.8 | 12.13 | 11.71 | 11.30 | 11.88 | 0.88 | 0.588 |
Phos (mM) | 5.98 | 6.12 | 5.85 | 5.73 | 5.47 | 0.64 | 0.481 |
GLU (mM) | 243 | 257.83 | 248.67 | 248.5 | 254.83 | 26.7 | 0.875 |
TP (g/dL) | 3.07 | 3.25 | 3.13 | 2.87 | 2.98 | 0.26 | 0.156 |
GLOB (g/dL) | 0.65 ab | 0.75 a | 0.78 a | 0.5 b | 0.58 ab | 0.16 | 0.049 |
ALB (g/dL) | 2.4 | 2.52 | 2.35 | 2.35 | 2.42 | 0.17 | 0.431 |
GLOB:ALB | 0.27 ab | 0.3 ab | 0.33 a | 0.22 b | 0.24 ab | 0.07 | 0.052 |
Item | NC 1 | PC | OA | EO | OA + EO | SEM | p Value |
---|---|---|---|---|---|---|---|
GPx | 124.96 | 125.16 | 115.67 | 135.31 | 126.47 | 15.39 | 0.324 |
SOD | 8.59 | 7.64 | 9.20 | 8.26 | 8.78 | 3.35 | 0.945 |
Item | NC 1 | PC | OA | EO | OA + EO | SEM | p Value |
---|---|---|---|---|---|---|---|
Duodenum | |||||||
VH | 2534.9 | 2827.4 | 2910.5 | 2716.3 | 2626.1 | 345.87 | 0.361 |
CD | 267.25 | 290.69 | 294.77 | 310.05 | 277.94 | 46.22 | 0.566 |
VH:CD | 2.58 | 2.58 | 2.61 | 2.6 | 2.53 | 0.12 | 0.812 |
Jejunum | |||||||
VH | 1710.3 | 1697.2 | 1676.7 | 1652.7 | 1763.4 | 205.62 | 0.916 |
CD | 250.11 | 260.23 | 241.23 | 267.36 | 269.66 | 42.23 | 0.759 |
VH:CD | 2.51 | 2.58 | 2.65 | 2.56 | 2.60 | 0.1 | 0.274 |
Ileum | |||||||
VH | 1129.8 | 1097.03 | 1152.9 | 1114.76 | 1055.81 | 115.97 | 0.668 |
CD | 218.33 | 222.83 | 229.03 | 230.1 | 193.43 | 26.35 | 0.137 |
VH:CD | 2.53 ab | 2.48 ab | 2.65 a | 2.46 b | 2.47 ab | 0.12 | 0.089 |
Item | NC 1 | PC | OA | EO | OA + EO | SEM | p Value |
---|---|---|---|---|---|---|---|
L-alanine aminopeptidase | 10.17 | 11.11 | 7.81 | 11.38 | 10.91 | 5.6 | 0.942 |
Sucrase | 1.72 | 1.51 | 1.45 | 1.33 | 1.62 | 0.46 | 0.624 |
Maltase | 17.16 | 15.41 | 15.09 | 13.52 | 16.96 | 3.6 | 0.419 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Singh, A.K.; Chen, X.; Lv, J.; Kim, W.K. Application of Organic Acids and Essential Oils as Alternatives to Antibiotic Growth Promoters in Broiler Chickens. Animals 2022, 12, 2178. https://doi.org/10.3390/ani12172178
Choi J, Singh AK, Chen X, Lv J, Kim WK. Application of Organic Acids and Essential Oils as Alternatives to Antibiotic Growth Promoters in Broiler Chickens. Animals. 2022; 12(17):2178. https://doi.org/10.3390/ani12172178
Chicago/Turabian StyleChoi, Janghan, Amit Kumar Singh, Xi Chen, Jirong Lv, and Woo Kyun Kim. 2022. "Application of Organic Acids and Essential Oils as Alternatives to Antibiotic Growth Promoters in Broiler Chickens" Animals 12, no. 17: 2178. https://doi.org/10.3390/ani12172178
APA StyleChoi, J., Singh, A. K., Chen, X., Lv, J., & Kim, W. K. (2022). Application of Organic Acids and Essential Oils as Alternatives to Antibiotic Growth Promoters in Broiler Chickens. Animals, 12(17), 2178. https://doi.org/10.3390/ani12172178