Effects of Multi-Strain Probiotics and Perilla frutescens Seed Extract Supplementation Alone or Combined on Growth Performance, Antioxidant Indices, and Intestinal Health of Weaned Piglets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Design, and Housing
2.2. Sample Collection
2.3. Assay of Oxidant and Antioxidant Indices in Serum, Liver, and Spleen Tissues, and Small Intestine Mucosa
2.4. Small Intestine Morphology Analysis
2.5. Determination of Enzyme Activity in Digestive Species
2.6. Total RNA Extraction and Quantitative Real-Time PCR
2.7. Microbial DNA Isolation and RT-qPCR
2.8. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Diarrhea Scores and Intestinal Microbes
3.3. Intestinal Mucosa Morphology and Digestive Enzymes
3.4. Intestinal Barrier Gene Expression
3.5. Oxidation and Antioxidant Indices in Serum, Liver, Spleen, and Small Intestine
4. Discussion
4.1. Growth Performance
4.2. Diarrhea Scores and Microbes
4.3. Intestinal Mucosa Morphology
4.4. Gut Barrier Gene Expression
4.5. Antioxidant Capacity
4.6. Interactive Effect
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lan, R.; Kim, I.H. Effects of bacillus licheniformis and bacillus subtilis complex on growth performance and faecal noxious gas emissions in growing-finishing pigs. J. Sci. Food. Agr. 2019, 99, 1554–1560. [Google Scholar] [CrossRef] [PubMed]
- Darvishi, N.; Fard, N.A.; Sadrnia, M. Genomic and proteomic comparisons of bacteriocins in probiotic species Lactobacillus and Bifidobacterium and inhibitory ability of Escherichia coli MG 1655. Biotechnol. Rep. 2020, 31, e00654. [Google Scholar] [CrossRef] [PubMed]
- Larsen, N.; Thorsen, L.; Kpikpi, E.N.; Stuer-Lauridsen, B.; Cantor, M.D.; Nielsen, B.; Brockmann, E.; Derkx, P.M.F.; Jespersen, L. Characterization of Bacillus spp. strains for use as probiotic additives in pig feed. Appl. Microbiol. Biot. 2014, 98, 1105–1118. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Wang, J.Q.; Zhang, H.T. Effects of Bacillus subtilis natto on performance and immune function of preweaning calves. J. Dairy Sci. 2010, 93, 5851–5855. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Peng, X.; Chen, H.; Yan, C.; Liu, Y.; Xu, Q.; Fang, Z.; Lin, Y.; Xu, S.; Feng, B.; et al. Effects of intrauterine growth retardation and Bacillus subtilis PB6 supplementation on growth performance, intestinal development and immune function of piglets during the suckling period. Eur. J. Nutr. 2017, 56, 1753–1765. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, Y.H.; Zhou, D.; Wu, Q.; Song, D.; Dicksved, J.; Wang, J.F. Oral administration of a select mixture of Bacillus probiotics affects the gut microbiota and goblet cell function following Escherichia coli challenge in newly weaned pigs of genotype MUC4 that are supposed to be enterotoxigenic E. coli F4ab/ac receptor negative. Appl. Environ. Microb. 2017, 83, e02747-16. [Google Scholar] [CrossRef]
- Panda, A.K.; Rao, S.V.R.; Raju, M.V.; Sharma, S.R. Dietary supplementation of Lactobacillus sporogenes on performance and serum biochemico-lipid profile of broiler chickens. J. Polut. Sci. 2006, 43, 235–240. [Google Scholar] [CrossRef]
- Betancur, C.; Martínez, Y.; Merino-Guzman, R.; Hernandez-Velasco, X.; Castillo, R.; Rodríguez, R.; Tellez-Isaias, G. Evaluation of oral administration of Lactobacillus plantarum CAM6 strain as an alternative to antibiotics in weaned pigs. Animals 2020, 10, 1218. [Google Scholar] [CrossRef]
- Giang, H.H.; Viet, T.Q.; Ogle, B.; Lindberg, J.E. Growth performance, digestibility, gut environment and health status in weaned piglets fed a diet supplemented with potentially probiotic complexes of lactic acid bacteria. Livest. Sci. 2010, 129, 95–103. [Google Scholar] [CrossRef]
- Giang, H.H.; Viet, T.Q.; Ogle, B.; Lindberg, J.E. Effects of supplementation of probiotics on the performance, nutrient digestibility and faecal microflora in growing-finishing pigs. Asian. Austral J. Anim. 2011, 24, 655–661. [Google Scholar] [CrossRef]
- Giang, H.H.; Viet, T.Q.; Ogle, B.; Lindberg, J.E. Growth performance, digestibility, gut environment and health status in weaned piglets fed a diet supplemented with a complex of lactic acid bacteria alone or in combination with Bacillus subtilis and Saccharomyces boulardii. Livest. Sci. 2012, 143, 132–141. [Google Scholar] [CrossRef]
- Chumphukam, O.; Pintha, K.; Khanaree, C.; Chewonarin, T.; Chaiwangyen, W.; Tantipaiboonwong, P.; Suttajit, M.; Khantamat, O. Potential anti-mutagenicity, antioxidant, and anti-inflammatory capacities of the extract from Perilla seed meal. J. Food. Biochem. 2018, 42, e12556. [Google Scholar] [CrossRef]
- Corino, C.; Rossi, R.; Musella, M.; Cannata, S.; Pastorelli, G. Growth performance and oxidative status in piglets supplemented with verbascoside and teupolioside. Ital. J. Anim. Sci. 2007, 6, 292–294. [Google Scholar] [CrossRef]
- Kongkeaw, S.; Riebroy, S.; Chaijan, M. Comparative studies on chemical composition, phenolic compounds and antioxidant activities of brown and white perilla (perilla frutescens) seeds. Chiang Mai J. Sci. 2015, 42, 896–906. [Google Scholar]
- Yamamoto, H.; Ogawa, T. Antimicrobial activity of perilla seed polyphenols against oral pathogenic bacteria. Biosci. Biotech. Bioch. 2002, 66, 921–924. [Google Scholar] [CrossRef]
- Calder, P.C. Polyunsaturated fatty acids, inflammatory processes and inflammatory bowel diseases. Mol. Nutr. Food Res. 2008, 52, 885–897. [Google Scholar] [CrossRef]
- Igarashi, M.; Miyazaki, Y. A review on bioactivities of perilla: Progress in research on the functions of perilla as medicine and food. Evid-Based Compl. Alt. 2013, 2013, 925342. [Google Scholar] [CrossRef]
- Peiretti, P.G.; Gai, F.; Meineri, G.; Zoccarato, I.; Gasco, L. Apparent digestibility of compound diets with increasing levels of perilla (perilla frutescens L.) seeds in rabbit. Ital. J. Anim. Sci. 2010, 9, e81. [Google Scholar] [CrossRef]
- Oh, H.J.; Song, M.H.; Yun, W.; Lee, J.H.; An, J.S.; Kim, Y.J.; Kim, G.M.; Kim, H.B.; Cho, J.H. Effects of replacing soybean meal with perilla seed meal on growth performance, and meat quality of broilers. J. Anim. Sci. Technol. 2020, 62, 495. [Google Scholar] [CrossRef]
- Shuai, C.; Bie, T.; Xia, Y.; Liao, S.; Wang, M.; Jie, Y.; Wang, J.; Xiao, H.; Qi, M.; Bin, P.; et al. Effects of dietary gamma-aminobutyric acid supplementation on the intestinal functions in weaning piglets. Food Funct. 2019, 10, 366–378. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Swine, 11th ed.; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Chen, J.; Yu, B.; Chen, D.; Huang, Z.; Mao, X.; Zheng, P.; Yu, J.; Luo, J.; He, J. Chlorogenic acid improves intestinal barrier functions by suppressing mucosa inflammation and improving antioxidant capacity in weaned pigs. J. Nutr. Biochem. 2018, 59, 84–92. [Google Scholar] [CrossRef]
- Hampson, D.J. Alterations in piglet small intestinal structure at weaning. Res. Vet. Sci. 1986, 40, 32. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, J.; Chen, D.; Yu, B.; Huang, Z.; Mao, X.; Zheng, P.; Yu, J.; He, J. Alginate oligosaccharide enhances intestinal integrity of weaned pigs through altering intestinal inflammatory responses and antioxidant status. RSC Adv. 2018, 8, 13482–13492. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Mao, X.; He, J.; Yu, B.; Huang, Z.; Yu, J.; Zheng, P.; Chen, D. Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. Brit. J. Nutr. 2013, 110, 1837–1848. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Tao, F.; Hu, Y.; Li, Z.; Zhang, Y.; Deng, B. Positive effects of a Clostridium butyricum-based compound probiotic on growth performance, immune responses, intestinal morphology, hypothalamic neurotransmitters, and colonic microbiota in weaned piglets. Food Funct. 2019, 10, 2926–2934. [Google Scholar] [CrossRef]
- Goodarzi Boroojeni, F.; Männer, K.; Zentek, J. The impacts of Macleaya cordata extract and naringin inclusion in post-weaning piglet diets on performance, nutrient digestibility and intestinal histomorphology. Arch. Anim. Nutr. 2018, 72, 178–189. [Google Scholar] [CrossRef]
- Wang, T.; Yao, W.; Li, J.; Shao, Y.; He, Q.; Xia, J.; Huang, F. Dietary garcinol supplementation improves diarrhea and intestinal barrier function associated with its modulation of gut microbiota in weaned piglets. J. Anim. Sci. Biotechnol. 2020, 11, 12. [Google Scholar] [CrossRef]
- Wang, X.; Tsai, T.; Wei, X.; Zuo, B.; Davis, E.; Rehberger, T.; Hernandez, B.; Jochems, E.J.M.; Maxwell, C.V.; Zhao, J. Effect of Lactylate and Bacillus subtilis on growth performance, peripheral blood cell profile, and gut microbiota of nursery pigs. Microorganisms 2021, 9, 803. [Google Scholar] [CrossRef]
- Hu, Y.; Dun, Y.; Li, S.; Zhao, S.; Peng, N.; Liang, Y. Effects of Bacillus subtilis KN-42 on growth performance, diarrhea and faecal bacterial flora of weaned piglets. A. Asian. Austral. J. Anim. 2014, 27, 1131. [Google Scholar] [CrossRef]
- Hanczakowska, E.; Swiatkiewicz, M. Effect of herbal extracts on piglet performance and small intestinal epithelial villi. Czech. J. Anim. Sci. 2012, 57, 420–429. [Google Scholar] [CrossRef] [Green Version]
- Lauridsen, C. Effects of dietary fatty acids on gut health and function of pigs pre-and post-weaning. J. Anim. Sci. 2020, 98, skaa086. [Google Scholar] [CrossRef] [PubMed]
- Pluschke, A.M.; Williams, B.A.; Zhang, D.; Gidley, M.J. Dietary pectin and mango pulp effects on small intestinal enzyme activity levels and macronutrient digestion in grower pigs. Food Funct. 2018, 9, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.M.; Jiang, Z.Y.; Zheng, C.T.; Wang, L.; Yang, X.F. Effect of Lactobacillus plantarum on diarrhea and intestinal barrier function of young piglets challenged with enterotoxigenic Escherichia coli K88. J. Anim. Sci. 2014, 92, 1496–1503. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Xu, Z.; Yu, G.; Liu, W.; Zhou, Q.; Yang, D.; Li, J.; Chen, L.; Zhang, Y.; Xue, C.; et al. A newly isolated Bacillus subtilis strain named WS-1 inhibited diarrhea and death caused by pathogenic Escherichia coli in newborn piglets. Front. Microbiol. 2019, 10, 1248. [Google Scholar] [CrossRef] [PubMed]
- Luise, D.; Bertocchi, M.; Motta, V.; Salvarani, C.; Bosi, P.; Luppi, A.; Fanelli, F.; Mazzoni, M.; Archetti, L.; Maiorano, G.; et al. Bacillus sp. probiotic supplementation diminish the Escherichia coli F4ac infection in susceptible weaned pigs by influencing the intestinal immune response, intestinal microbiota and blood metabolomics. J. Anim. Sci. Biotechnol. 2019, 10, 74. [Google Scholar] [CrossRef] [PubMed]
- Kang, R.; Helms, R.; Stout, M.J.; Jaber, H.; Chen, Z.; Nakatsu, T. Antimicrobial activity of the volatile constituents of perilla frutescens and its synergistic effects with polygodial. J. Agr. Food. Chem. 1992, 40, 2328–2330. [Google Scholar] [CrossRef]
- Ahmed, H.M.; Al-Zubaidy, A.M.A. Exploring natural essential oil components and antibacterial activity of solvent extracts from twelve perilla frutescens L. Genotypes. Arab. J. Chem. 2020, 13, 7390–7402. [Google Scholar] [CrossRef]
- Pluske, J.R.; Hampson, D.J.; Williams, I.H. Factors influencing the structure and function of the small intestine in the weaned pig: A review. Livest. Prod. Sci. 1997, 51, 215–236. [Google Scholar] [CrossRef]
- Sayan, H.; Assavacheep, P.; Angkanaporn, K.; Assavacheep, A. Effect of Lactobacillus salivarius on growth performance, diarrhea incidence, fecal bacterial population and intestinal morphology of suckling pigs challenged with F4+ enterotoxigenic Escherichia coli. Asian. Austral J. Anim. 2018, 31, 1308. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, Y.; Tian, Z.; Liu, F.; Shi, Y.; Liu, Y.; Xia, P. Astragalus polysaccharides protect against dextran sulfate sodium-induced colitis by inhibiting NF-k activation. Int. J. Biol. Macromol. 2017, 98, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Samanya, M.; Yamauchi, K.E. Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis var. natto. Comp. Biochem. Phys. A 2002, 133, 95–104. [Google Scholar] [CrossRef]
- Chen, L.; Li, S.; Zheng, J.; Li, W.; Jiang, X.; Zhao, X.; Li, J.; Che, L.; Lin, Y.; Xu, S.; et al. Effects of dietary Clostridium butyricum supplementation on growth performance, intestinal development, and immune response of weaned piglets challenged with lipopolysaccharide. J. Anim. Sci. Biotechnol. 2018, 9, 62. [Google Scholar] [CrossRef]
- Pu, J.; Chen, D.; Tian, G.; He, J.; Zheng, P.; Mao, X.; Yu, J.; Huang, Z.; Luo, J.; Yu, B. Effects of benzoic acid, Bacillus coagulans and oregano oil combined supplementation on growth performance, immune status and intestinal barrier integrity of weaned piglets. Anim. Nutr. 2020, 6, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Hara, H. Role of flavonoids in intestinal tight junction regulation. J. Nutr. Biochem. 2011, 22, 401–408. [Google Scholar] [CrossRef]
- Yuan, S.B.; Chen, D.W.; Zhang, K.Y.; Yu, B. Effects of oxidative stress on growth performance, nutrient digestibilities and activities of antioxidative enzymes of weanling pigs. Asian. Austral. J. Anim. 2007, 20, 1600–1605. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, J.; Cao, M.; Li, Y.; Zhuo, Y.; Fang, Z.; Che., L.; Xu, S.; Feng, B.; Lin, Y.; et al. Dietary supplementation of Bacillus subtilis PB6 improves sow reproductive performance and reduces piglet birth intervals. Anim. Nutr. 2020, 6, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Izuddin, W.I.; Humam, A.M.; Loh, T.C.; Foo, H.L.; Samsudin, A.A. Dietary postbiotic Lactobacillus plantarum improves serum and ruminal antioxidant activity and upregulates hepatic antioxidant enzymes and ruminal barrier function in post-weaning lambs. Antioxidants 2020, 9, 250. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, Y.; Wang, Y.; Xu, H.; Mei, X.; Yu, D.; Wang, Y.; Li, W. Antioxidant properties of probiotic bacteria. Nutrients 2017, 9, 521. [Google Scholar] [CrossRef]
- Asif, M. Phytochemical study of polyphenols in perilla Frutescens as an antioxidant. Avicenna J. Phytomed. 2012, 2, 169–178. [Google Scholar]
- Jun, H.I.; Kim, B.T.; Song, G.S.; Kim, Y.S. Structural characterization of phenolic antioxidants from purple perilla (perilla frutescens var. acuta) leaves. Food. Chem. 2014, 148, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.H.; Wang, J.; Guo, R.; Wang, C.Z.; Yan, X.B.; Xu, B.; Zhang, D.Q. Effects of alfalfa saponin extract on growth performance and some antioxidant indices of weaned piglets. Livest. Sci. 2014, 167, 257–262. [Google Scholar] [CrossRef]
- Pabst, R. The pig as a model for immunology research. Cell Tissue Res. 2020, 380, 287–304. [Google Scholar] [CrossRef] [PubMed]
- La Fata, G.; Weber, P.; Mohajeri, M.H. Probiotics and the gut immune system: Indirect regulation. Probiotics Antimicrob. Proteins 2018, 10, 11–21. [Google Scholar] [CrossRef]
- Zangeronimo, M.G.; Cantarelli, V.D.S.; Fialho, E.T.; Amaral, N.D.O.; Silveira, H.; Pereira, L.D.M.; Pereira, L.J. Herbal extracts and symbiotic mixture replacing antibiotics in piglets at the initial phase. Rev. Bras. Zootecn. 2011, 40, 1045–1051. [Google Scholar] [CrossRef]
- Peuhkuri, K.; Vapaatalo, H.; Korpela, R. Even low-grade inflammation impacts on small intestinal function. World J. Gastroenterol. 2010, 16, 1057. [Google Scholar] [CrossRef]
- Jamroz, D.; Wertelecki, T.; Houszka, M.; Kamel, C. Influence of diet type on the inclusion of plant origin active substances on morphological and histochemical characteristics of the stomach and jejunum walls in chicken. J. Anim. Physiol. Anim. Nutr. 2006, 90, 255–268. [Google Scholar] [CrossRef]
Ingredients (%) | Content | |
---|---|---|
Day 1–14 | Day 15–21 | |
Corn | 35.92 | 47.53 |
Extruded corn | 18.00 | 15.00 |
Peeled soybean meal | 12.00 | 17.00 |
Extruded soybean meal | 12.00 | 8.00 |
Fish meal (67% CP) | 4.00 | 3.00 |
Porcine plasma protein powder (70% CP) | 3.00 | 0.00 |
Low protein whey powder | 10.00 | 5.00 |
Soy bean oil | 2.20 | 1.60 |
CaHPO3 | 0.80 | 0.70 |
Limestone | 0.60 | 0.60 |
Sodium chloride | 0.30 | 0.30 |
L-Lys. HCI (98%) | 0.40 | 0.48 |
DL-Met (99%) | 0.12 | 0.10 |
L-Thr (98.5%) | 0.15 | 0.16 |
L-Trp (98%) | 0.01 | 0.03 |
Choline chloride | 0.10 | 0.10 |
Vitamin/trace element Premix 1 | 0.40 | 0.00 |
Vitamin/trace element Premix 2 | 0.00 | 0.40 |
Total | 100 | 100 |
Nutrient composition | ||
Digestible energy, (MJ/kg) | 14.82 | 14.64 |
Crude protein, % | 20.77 | 19.15 |
Calcium, % | 0.81 | 0.70 |
Available phosphorus, % | 0.37 | 0.32 |
Calculated standardized ileal digestible, % | ||
SID-Lys, % | 1.46 | 1.35 |
SID-Met, % | 0.36 | 0.31 |
SID-Thr, % | 0.96 | 0.80 |
SID-Trp, % | 0.20 | 0.22 |
Items 2 | PSE × BL | Pooled SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
−PSE | −PSE | +PSE | +PSE | PSE | BL | Interaction | ||
−BL | +BL | −BL | +BL | |||||
Body weight, kg | ||||||||
Day 0 | 8.20 | 8.21 | 8.21 | 8.22 | 0.29 | 0.973 | 0.986 | 1.000 |
Day 7 | 9.74 | 9.85 | 9.80 | 9.80 | 0.40 | 0.990 | 0.899 | 0.893 |
Day 14 | 11.72 | 12.08 | 11.81 | 11.82 | 0.54 | 0.879 | 0.745 | 0.759 |
Day 21 | 14.02 | 14.49 | 14.21 | 14.31 | 0.69 | 0.999 | 0.686 | 0.784 |
Average daily gain, g/d | ||||||||
Day 1–7 | 220 | 226 | 226 | 225 | 17 | 0.670 | 0.960 | 0.659 |
Day 8–14 | 283 | 318 | 287 | 289 | 22 | 0.410 | 0.574 | 0.456 |
Day 15–21 | 328 | 346 | 343 | 355 | 22 | 0.513 | 0.596 | 0.887 |
Day 1–21 | 277 | 300 | 286 | 290 | 20 | 0.507 | 0.979 | 0.647 |
Average daily gain, g/d | ||||||||
Day 1–7 | 335 | 351 | 348 | 346 | 24 | 0.869 | 0.770 | 0.719 |
Day 8–14 | 460 | 485 | 469 | 471 | 35 | 0.941 | 0.696 | 0.753 |
Day 15–21 | 553 | 577 | 557 | 561 | 43 | 0.892 | 0.743 | 0.829 |
Day 1–21 | 433 | 471 | 455 | 462 | 24 | 0.805 | 0.364 | 0.547 |
Gain/feed | ||||||||
Day 1–7 | 0.651 | 0.665 | 0.651 | 0.651 | 0.014 | 0.614 | 0.589 | 0.589 |
Day 8–14 | 0.616 | 0.659 | 0.612 | 0.616 | 0.012 | 0.063 | 0.068 | 0.123 |
Day 15–21 | 0.595 | 0.622 | 0.622 | 0.635 | 0.009 | 0.006 | 0.294 | 0.727 |
Day 1–21 | 0.617 | 0.637 | 0.625 | 0.632 | 0.006 | 0.807 | 0.034 | 0.273 |
Items 2 | PSE × BL | Pooled SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
−PSE | −PSE | +PSE | +PSE | PSE | BL | Interaction | ||
−BL | +BL | −BL | +BL | |||||
Ileum digesta | ||||||||
Total bacteria | 10.46 | 10.66 | 10.50 | 10.43 | 0.10 | 0.323 | 0.498 | 0.186 |
Bacillus | 8.59 | 8.80 | 8.57 | 8.65 | 0.09 | 0.340 | 0.112 | 0.469 |
Lactobacillus | 5.89 | 6.22 | 6.14 | 6.31 | 0.08 | 0.057 | 0.006 | 0.344 |
E. coli | 6.94 | 6.32 | 6.64 | 6.28 | 0.13 | 0.194 | 0.008 | 0.309 |
Bifidobacterium | 7.42 | 7.26 | 6.90 | 7.18 | 0.30 | 0.315 | 0.871 | 0.507 |
Items 2 | PSE × BL | Pooled SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
−PSE | −PSE | +PSE | +PSE | PSE | BL | Interaction | ||
−BL | +BL | −BL | +BL | |||||
Duodenum | ||||||||
VH, μm | 376 | 379 | 357 | 364 | 21 | 0.408 | 0.813 | 0.919 |
CD, μm | 276 | 289 | 277 | 276 | 17 | 0.735 | 0.734 | 0.702 |
V/C ratio | 1.37 | 1.32 | 1.29 | 1.32 | 0.03 | 0.207 | 0.668 | 0.190 |
Jejunum | ||||||||
VH, μm | 288 B | 385 A | 333 AB | 324 AB | 18 | 0.643 | 0.026 | 0.007 |
CD, μm | 221 A | 181 B | 176 B | 203 AB | 10 | 0.252 | 0.523 | 0.002 |
V/C ratio | 1.32 C | 2.14 A | 1.93 AB | 1.58 BC | 0.11 | 0.808 | 0.041 | <0.001 |
Ileum | ||||||||
VH, μm | 303 C | 325 B | 342 A | 310 C | 4 | 0.003 | 0.173 | <0.001 |
CD, μm | 153 | 156 | 157 | 144 | 5 | 0.433 | 0.338 | 0.136 |
V/C ratio | 2.00 | 2.09 | 2.18 | 2.16 | 0.07 | 0.088 | 0.592 | 0.447 |
Items 2 | PSE ×BL | Pooled SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
−PSE | −PSE | +PSE | +PSE | PSE | BL | Interaction | ||
−BL | +BL | −BL | +BL | |||||
Jejunum | ||||||||
Amylase, U/mg protein | 1.53 | 1.54 | 1.63 | 1.59 | 0.03 | 0.011 | 0.615 | 0.394 |
Trypsin, U/mg protein | 47.91 | 48.77 | 48.78 | 48.50 | 0.75 | 0.699 | 0.698 | 0.463 |
Lipase, U/mg protein | 18.35 B | 19.68 AB | 20.32 A | 19.42 B | 0.53 | 0.124 | 0.691 | 0.049 |
Ileum | ||||||||
Amylase, U/mg protein | 1.24 | 1.17 | 1.24 | 1.18 | 0.04 | 0.983 | 0.114 | 0.983 |
Trypsin, U/mg protein | 17.87 | 20.83 | 18.63 | 19.67 | 0.53 | 0.714 | 0.001 | 0.082 |
Lipase, U/mg protein | 18.90 | 18.81 | 19.76 | 18.61 | 0.76 | 0.668 | 0.423 | 0.498 |
Items 2 | PSE × BL | p-Value | |||||
---|---|---|---|---|---|---|---|
−PSE | −PSE | +PSE | +PSE | PSE | BL | Interaction | |
−BL | +BL | −BL | +BL | ||||
IL-1β | 1.00 ± 0.09 A | 0.58 ± 0.02 B | 0.56 ± 0.06 B | 0.56 ± 0.02 B | <0.001 | 0.001 | 0.001 |
TNF-α | 1.00 ± 0.13 | 1.39 ± 0.22 | 1.36 ± 0.11 | 1.43 ± 0.13 | 0.092 | 0.794 | 0.295 |
ZO-1 | 1.00 ± 0.07 | 1.31 ± 0.18 | 1.34 ± 0.11 | 1.18 ± 0.12 | 0.429 | 0.550 | 0.076 |
Claudin-1 | 1.00 ± 0.17 | 1.56 ± 0.16 | 1.45 ± 0.13 | 1.48 ± 0.06 | 0.201 | 0.046 | 0.064 |
Mucin1 | 1.00 ± 0.09 | 1.03 ± 0.07 | 1.04 ± 0.10 | 1.08 ± 0.07 | 0.590 | 0.670 | 0.938 |
Mucin2 | 1.00 ± 0.22 B | 1.58 ± 0.05 AB | 1.68 ± 0.12 A | 1.63 ± 0.07 AB | 0.014 | 0.053 | 0.036 |
Items 2 | PSE × BL | Pooled SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
−PSE | −PSE | +PSE | +PSE | PSE | BL | Interaction | ||
−BL | +BL | −BL | +BL | |||||
SOD, U/mL | ||||||||
Day 7 | 33.00 | 28.06 | 29.39 | 29.99 | 1.65 | 0.615 | 0.204 | 0.110 |
Day 14 | 41.28 | 41.35 | 37.72 | 40.31 | 1.36 | 0.105 | 0.337 | 0.363 |
Day 21 | 40.50 | 39.09 | 43.32 | 47.15 | 1.39 | 0.001 | 0.393 | 0.074 |
T-AOC, U/mL | ||||||||
Day 7 | 0.96 | 0.99 | 0.94 | 0.96 | 0.03 | 0.492 | 0.458 | 0.818 |
Day 14 | 1.19 | 1.13 | 1.16 | 1.11 | 0.03 | 0.553 | 0.144 | 0.977 |
Day 21 | 1.01 | 1.06 | 1.05 | 1.10 | 0.03 | 0.183 | 0.127 | 0.936 |
CAT, U/mL | ||||||||
Day 7 | 1.29 | 1.01 | 1.28 | 1.18 | 0.28 | 0.764 | 0.506 | 0.760 |
Day 14 | 2.00 | 1.88 | 1.31 | 3.09 | 0.67 | 0.701 | 0.231 | 0.174 |
Day 21 | 1.97 | 2.45 | 2.85 | 2.21 | 0.42 | 0.428 | 0.874 | 0.208 |
MDA, nmol/mL | ||||||||
Day 7 | 6.43 A | 4.18 AB | 3.49 B | 5.15 AB | 0.77 | 0.011 | 0.095 | 0.046 |
Day 14 | 4.44 | 3.37 | 3.39 | 3.18 | 0.36 | 0.094 | 0.086 | 0.241 |
Day 21 | 6.26 | 5.18 | 5.03 | 5.52 | 0.49 | 0.377 | 0.562 | 0.128 |
GSH-Px, U/mL | ||||||||
Day 7 | 702.23 | 717.85 | 683.92 | 845.08 | 44.27 | 0.233 | 0.060 | 0.116 |
Day 14 | 545.64 | 472.86 | 472.29 | 566.19 | 41.67 | 0.813 | 0.803 | 0.060 |
Day 21 | 527.64 | 520.25 | 478.45 | 444.24 | 48.77 | 0.214 | 0.674 | 0.786 |
Items 2 | PSE × BL | Pooled SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
−PSE | −PSE | +PSE | +PSE | PSE | BL | Interaction | ||
−BL | +BL | −BL | +BL | |||||
Liver | ||||||||
T-AOC, U/mg protein | 2.77 | 4.52 | 5.15 | 6.79 | 0.65 | 0.002 | 0.016 | 0.936 |
MDA, nmol/mg protein | 30.65 | 31.89 | 18.54 | 19.33 | 1.80 | <0.001 | 0.580 | 0.901 |
Spleen | ||||||||
T-AOC, U/mg protein | 4.20 | 3.46 | 4.21 | 4.88 | 0.53 | 0.192 | 0.950 | 0.195 |
MDA, nmol/mg protein | 45.21 | 30.89 | 25.20 | 18.64 | 3.02 | <0.001 | 0.003 | 0.215 |
Items 2 | PSE × BL | Pooled SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
−PSE | −PSE | +PSE | +PSE | PSE | BL | Interaction | ||
−BL | +BL | −BL | +BL | |||||
Duodenum | ||||||||
T-AOC, U/mg protein | 2.22 | 1.59 | 1.71 | 1.69 | 0.20 | 0.318 | 0.118 | 0.148 |
MDA, nmol/mg protein | 9.82 | 12.79 | 10.70 | 11.40 | 1.42 | 0.857 | 0.208 | 0.431 |
Jejunum | ||||||||
T-AOC, U/mg protein | 15.45 | 15.66 | 15.32 | 16.13 | 1.05 | 0.871 | 0.632 | 0.777 |
MDA, nmol/mg protein | 20.17 A | 11.61 BC | 10.85 C | 15.36 B | 1.14 | 0.024 | 0.090 | <0.001 |
Ileum | ||||||||
T-AOC, U/mg protein | 1.10 | 1.46 | 0.97 | 1.71 | 0.21 | 0.773 | 0.019 | 0.396 |
MDA, nmol/mg protein | 23.66 | 16.85 | 19.77 | 19.65 | 2.81 | 0.848 | 0.233 | 0.248 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhang, Q.; Zhuo, Y.; Fang, Z.; Che, L.; Xu, S.; Feng, B.; Lin, Y.; Jiang, X.; Zhao, X.; et al. Effects of Multi-Strain Probiotics and Perilla frutescens Seed Extract Supplementation Alone or Combined on Growth Performance, Antioxidant Indices, and Intestinal Health of Weaned Piglets. Animals 2022, 12, 2246. https://doi.org/10.3390/ani12172246
Li J, Zhang Q, Zhuo Y, Fang Z, Che L, Xu S, Feng B, Lin Y, Jiang X, Zhao X, et al. Effects of Multi-Strain Probiotics and Perilla frutescens Seed Extract Supplementation Alone or Combined on Growth Performance, Antioxidant Indices, and Intestinal Health of Weaned Piglets. Animals. 2022; 12(17):2246. https://doi.org/10.3390/ani12172246
Chicago/Turabian StyleLi, Jian, Qianqian Zhang, Yong Zhuo, Zhengfeng Fang, Lianqiang Che, Shengyu Xu, Bin Feng, Yan Lin, Xuemei Jiang, Xilun Zhao, and et al. 2022. "Effects of Multi-Strain Probiotics and Perilla frutescens Seed Extract Supplementation Alone or Combined on Growth Performance, Antioxidant Indices, and Intestinal Health of Weaned Piglets" Animals 12, no. 17: 2246. https://doi.org/10.3390/ani12172246
APA StyleLi, J., Zhang, Q., Zhuo, Y., Fang, Z., Che, L., Xu, S., Feng, B., Lin, Y., Jiang, X., Zhao, X., & Wu, D. (2022). Effects of Multi-Strain Probiotics and Perilla frutescens Seed Extract Supplementation Alone or Combined on Growth Performance, Antioxidant Indices, and Intestinal Health of Weaned Piglets. Animals, 12(17), 2246. https://doi.org/10.3390/ani12172246