Effects of Fatty-Type and Lean-Type on Growth Performance and Lipid Droplet Metabolism in Pekin Ducks
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiments and Animal Handing
2.2. Sample Collection
2.3. Measurement of Serum Biochemical Parameters
2.4. Histological Studies
2.5. RNA Extraction and Real-Time Quantitative PCR
2.6. Statistical Analyses
3. Results
3.1. Growth Performace
3.2. Serum Biochemical Parameters
3.3. Liver Histology
3.4. Fat Deposition and Adiopocyte Histology
3.5. Gene Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vostrizansky, A.; Barce, A.; Gum, Z.; Shafer, D.J.; Jeffrey, D.; Fraley, G.S.; Rivera, P.D. Effect of pre-hatch incubator lights on the ontogeny of CNS opsins and photoreceptors in the Pekin duck. Poult. Sci. 2022, 101, 101699. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Xie, M.; Tang, J.; Zhou, Z.; Zhang, Y.; Chen, G.; Hou, S. Effects of genetic selection and threonine on meat quality in Pekin ducks. Poult. Sci. 2020, 99, 2508–2518. [Google Scholar] [CrossRef] [PubMed]
- Zheng, A.; Chang, W.; Hou, S.; Zhang, S.; Cai, H.; Chen, G.; Lou, R.; Liu, G. Unraveling molecular mechanistic differences in liver metabolism between lean and fat lines of Pekin duck (Anas platyrhynchos domestica): A proteomic study. J. Proteom. 2014, 98, 271–288. [Google Scholar] [CrossRef] [PubMed]
- Farhat, A.; Chavez, E.R. Metabolic studies on lean and fat Pekin ducks selected for breast muscle thickness measured by ultrasound scanning. Poult. Sci. 2001, 80, 585–591. [Google Scholar] [CrossRef]
- Ding, S.R.; Li, G.S.; Chen, S.R.; Zhu, F.; Hao, J.P.; Yang, F.X.; Hou, Z.C. Comparison of carcass and meat quality traits between lean and fat Pekin ducks. Anim. Biosci. 2021, 34, 1193–1201. [Google Scholar] [CrossRef]
- Leonhardt, M.; Langhans, W. Fatty acid oxidation and control of food intake. Physiol. Behav. 2004, 83, 645–651. [Google Scholar] [CrossRef]
- Ahima, R.S.; Flier, J.S. Adipose tissue as an endocrine organ. Trends Endocrin. Metab. 2000, 11, 327–332. [Google Scholar] [CrossRef]
- Bedu, E.; Chainier, F.; Sibille, B.; Meister, R.; Dallevet, G.; Garin, D.; Duchamp, C. Increased lipogenesis in isolated hepatocytes from cold-acclimated ducklings. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R1245–R1253. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, Z.; Lin, Q.; Yang, Y.; Hang, Y.; Zhou, X.; Wu, C.; Xie, Z. Nuciferine reduced fat deposition by controlling triglyceride and cholesterol concentration in broiler chickens. Poult. Sci. 2020, 99, 7101–7108. [Google Scholar] [CrossRef]
- Krahmer, N.; Farese, R.V., Jr.; Walther, T.C. Balancing the fat: Lipid droplets and human disease. EMBO Mol. Med. 2013, 5, 973–983. [Google Scholar] [CrossRef]
- Brasaemle, D.L.; Subramanian, V.; Garcia, A.; Marcinkiewicz, A.; Rothenberg, A. Perilipin A and the control of triacylglycerol metabolism. Mol. Cell. Biochem. 2009, 326, 15–21. [Google Scholar] [CrossRef]
- Zechner, R.; Kienesberger, P.C.; Haemmerle, G.; Zimmermann, R.; Lass, A. Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J. Lipid Res. 2009, 50, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Leclercq, B.; Saadoun, A.J.P.S. Selecting Broilers for Low or High Abdominal Fat: Comparison of Energy Metabolism of the Lean and Fat Lines. Poult. Sci. 1982, 61, 1799–1803. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, Z.; Yuan, Z.; Lo, L.J.; Chen, J.; Wang, Y.; Peng, J. Distinctive genes determine different intramuscular fat and muscle fiber ratios of the longissimus dorsi muscles in Jinhua and landrace pigs. PLoS ONE 2013, 8, e53181. [Google Scholar] [CrossRef] [PubMed]
- Sandercock, D.A.; Nute, G.R.; Hocking, P.M. Quantifying the effects of genetic selection and genetic variation for body size, carcass composition, and meat quality in the domestic fowl (Gallus domesticus). Poult. Sci. 2009, 88, 923–931. [Google Scholar] [CrossRef]
- Saadoun, A.; Leclercq, B. In vivo lipogenesis in genetically fat and lean chickens of various ages. Comp. Biochem. Physiol. B 1986, 83, 607–611. [Google Scholar] [CrossRef]
- Xu, D.; Xu, M.; Lin, L.; Rao, S.; Wang, J.; Davey, A.K. The effect of isosteviol on hyperglycemia and dyslipidemia induced by lipotoxicity in rats fed with high-fat emulsion. Life Sci. 2012, 90, 30–38. [Google Scholar] [CrossRef]
- Ivanovic, N.; Minic, R.; Dimitrijevic, L.; Skodric, S.R.; Zivkovic, I.; Djordjevic, B. Lactobacillus rhamnosus LA68 and Lactobacillus plantarum WCFS1 differently influence metabolic and immunological parameters in high fat diet-induced hypercholesterolemia and hepatic steatosis. Food Funct. 2015, 6, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zhang, J.; Liu, W.; Kimura, Y.; Zheng, Y. Anti-Obesity effects of protopanaxdiol types of Ginsenosides isolated from the leaves of American ginseng (Panax quinquefolius L.) in mice fed with a high-fat diet. Fitoterapia 2010, 81, 1079–1087. [Google Scholar] [CrossRef]
- Li, M.Y.; Chen, J.H.; Chen, C.; Kang, Y.N. Association between Egg Consumption and Cholesterol Concentration: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Nutrients 2020, 12, 1995. [Google Scholar] [CrossRef]
- Jang, H.; Kim, M.; Lee, S.; Kim, J.; Woo, D.C.; Kim, K.W.; Song, K.; Lee, I. Adipose tissue hyperplasia with enhanced adipocyte-derived stem cell activity in Tc1(C8orf4)-deleted mice. Sci. Rep. 2016, 6, 35884. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Kim, W.K.; Cline, M.A.; Gilbert, E.R. Factors affecting adipose tissue development in chickens: A review. Poult. Sci. 2017, 96, 3687–3699. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Sun, B.; Shang, Z.; Leng, L.; Wang, Y.; Wang, N.; Li, H. Comparison of adipose tissue cellularity in chicken lines divergently selected for fatness. Poult. Sci. 2011, 90, 2024–2034. [Google Scholar] [CrossRef]
- Simon, J.; Leclercq, B. Longitudinal study of adiposity in chickens selected for high or low abdominal fat content: Further evidence of a glucose-insulin imbalance in the fat line. J. Nutr. 1982, 112, 1961–1973. [Google Scholar] [CrossRef] [PubMed]
- Hermier, D.; Quignard-Boulange, A.; Dugail, I.; Guy, G.; Salichon, M.R.; Brigant, L.; Ardouin, B.; Leclercq, B. Evidence of enhanced storage capacity in adipose tissue of genetically fat chickens. J. Nutr. 1989, 119, 1369–1375. [Google Scholar] [CrossRef]
- Hausman, G.J.; Martin, R.J. Subcutaneous adipose tissue development in Yorkshire (lean) and Ossabaw (obese) pigs. J. Anim. Sci. 1981, 52, 1442–1449. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, X.; Ma, J.; Zhang, Y.; Zhang, H. Integrating genome and transcriptome profiling for elucidating the mechanism of muscle growth and lipid deposition in Pekin ducks. Sci. Rep. 2017, 7, 3837. [Google Scholar] [CrossRef]
- Walther, T.C.; Chung, J.; Farese, R.V., Jr. Lipid Droplet Biogenesis. Annu. Rev. Cell Dev. Biol. 2017, 33, 491–510. [Google Scholar] [CrossRef]
- Bell, M.; Wang, H.; Chen, H.; McLenithan, J.C.; Gong, D.W.; Yang, R.Z.; Yu, D.; Fried, S.K.; Quon, M.J.; Londos, C.; et al. Consequences of lipid droplet coat protein downregulation in liver cells: Abnormal lipid droplet metabolism and induction of insulin resistance. Diabetes 2008, 57, 2037–2045. [Google Scholar] [CrossRef]
- Sztalryd, C.; Brasaemle, D.L. The perilipin family of lipid droplet proteins: Gatekeepers of intracellular lipolysis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2017, 1862, 1221–1232. [Google Scholar] [CrossRef]
- Isabelle, J.; Marie-Christine, V.; Elise, B.; Pascale, C.; Sara, B.; Martine, A.; Camille, V.; Olivier, L.; Savage, D.B.; Vigouroux, C. Metabolism. Diagnostic challenge in PLIN1-associated Familial Partial Lipodystrophy. J. Clin. Endocrinol. Metab. 2019, 104, 6025–6032. [Google Scholar]
- Li, Y.; Khanal, P.; Norheim, F.; Hjorth, M.; Bjellaas, T.; Drevon, C.A.; Vaage, J.; Kimmel, A.R.; Dalen, K.T. Plin2 deletion increases cholesteryl ester lipid droplet content and disturbs cholesterol balance in adrenal cortex. J. Lipid Res. 2021, 62, 100048. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.H.; Chen, E.; Li, L.; Saha, P.; Lee, H.J.; Huang, L.S.; Shelness, G.S.; Chan, L.; Chang, B.H. The constitutive lipid droplet protein PLIN2 regulates autophagy in liver. Autophagy 2017, 13, 1130–1144. [Google Scholar] [CrossRef] [PubMed]
- Libby, A.E.; Bales, E.S.; Monks, J.; Orlicky, D.J.; McManaman, J.L. Perilipin-2 deletion promotes carbohydrate-mediated browning of white adipose tissue at ambient temperature. J. Lipid Res. 2018, 59, 1482–1500. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.C.; Zhang, P.P.; Li, B.C.; Dang, H.W.; Jiang, J.F.; Meng, L.; Zhang, H.J.; Zhang, Y.Y.; Wang, X.M.; Li, Q.R.; et al. The Expression of Perilipin Family Proteins can be used as Diagnostic Markers of Liposarcoma and to Differentiate Subtypes. J. Cancer 2020, 11, 4081–4090. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhai, G.; Li, R.; Zhou, W.; Li, Y.; Cao, Z.; Wang, N.; Li, H.; Wang, Y. RXRalpha Positively Regulates Expression of the Chicken PLIN1 Gene in a PPARgamma-Independent Manner and Promotes Adipogenesis. Front. Cell Dev. Biol. 2020, 8, 349. [Google Scholar] [CrossRef]
- Bojiang, L.; Qiannan, W.; Chao, D.; Zengkai, Z.; Rongyang, L.; Jingge, L.; Aiwen, J.; Qifa, L.; Chao, J.; Wangjun, W.J.G. A Key Gene, PLIN1, Can Affect Porcine Intramuscular Fat Content Based on Transcriptome Analysis. Genes 2018, 9, 194. [Google Scholar]
- Feng, C.; Xu, X.; Dong, W.; Chen, Z.; Yan, J. CRISPR/Cas9 knockout plin1 enhances lipolysis in 3T3-L1 adipocytes. Sheng Wu Gong Cheng Xue Bao 2020, 36, 1386–1394. [Google Scholar]
- Barja-Fernandez, S.; Moreno-Navarrete, J.M.; Folgueira, C.; Xifra, G.; Sabater, M.; Castelao, C.; Fern, O.J.; Leis, R.; Dieguez, C.; Casanueva, F.F.; et al. Plasma ANGPTL-4 is Associated with Obesity and Glucose Tolerance: Cross-Sectional and Longitudinal Findings. Mol. Nutr. Food. Res. 2018, 62, e1800060. [Google Scholar] [CrossRef]
- Feng, S.Q.; Chen, X.D.; Xia, T.; Gan, L.; Qiu, H.; Dai, M.H.; Zhou, L.; Peng, Y.; Yang, Z.Q. Cloning, chromosome mapping and expression characteristics of porcine ANGPTL3 and -4. Cytogenet. Genome Res. 2006, 114, 44–49. [Google Scholar] [CrossRef]
Item 1 | Content |
---|---|
Product guarantee value composition (1–21 D), % | |
Crude protein | ≥19.0 |
Crude ash | ≤8.0 |
Crude fiber | ≤6.0 |
Calcium | 0.5–1.5 |
Phosphorus | ≥0.3 |
Sodium chloride | 0.2–0.8 |
Methionine | ≥0.3 |
Moisture | ≤14.0 |
Product guarantee value composition (22–35 D), % | |
Crude protein | ≥16.0 |
Crude ash | ≤9.0 |
Crude fiber | ≤6.0 |
Calcium | 0.9–1.5 |
Phosphorus | ≥0.3 |
Sodium chloride | 0.2–0.8 |
Methionine | ≥0.2 |
Moisture | ≤14.0 |
Gene | Sequence (5′→3′) | Product Size (bp) | GenBank Accession |
---|---|---|---|
GAPDH | F: AGATGCTGGTGCTGAATACG R: CGGAGATGATGACACGCTTA | 104 | XM_0050106 |
PLIN1 | F: GGTATCGGCAGCAGTCTTA R: TTCACAGAGGCGAGTAACTT | 200 | NM_00131042.1 |
PLIN2 | F: CACCACACCGTTAATCTGATCG R: AGTTCTTGACTCTATGTGCTC | 171 | NM_001310418 |
ATGL | F: TGATGTTATTTACATAGCAATGTC R: TATTAGAAGATATATTTCTGCCAA | 157 | EU747707 |
ABHD5 | F: CCACTTCGACGCTGATGCTC R: ATAAGGTGTTTGACCCTCGAT | 168 | XM_038174904 |
ANGPTL4 | F: CCTGATGGATGCCCAGAACTCCC R: AGACTGCGTTTTGTTGTCCTT | 157 | XM_038169204 |
STK17A | F: ATTAAACAAGATTTCAAGTGGCT R: TCACTGAAACACCTGCTATGTC | 159 | XM_013095211 |
Item 1 | Lean-Type | Fatty-Type | p-Value |
---|---|---|---|
GLU/(mmol/L) | 9.12 ± 0.31 | 9.04 ± 0.22 | 0.846 |
TG/(mmol/L) | 0.39 ± 0.02 | 0.39 ± 0.02 | 0.953 |
HDL-C/(mmol/L) | 2.91 ± 0.11 b | 3.30 ± 0.12 a | 0.024 |
LDL-C/(mmol/L) | 1.32 ± 0.07 b | 1.91 ± 0.14 a | 0.001 |
CHOL/(mmol/L) | 5.05 ± 0.21 b | 5.90 ± 0.26 a | 0.015 |
UA/(μmol/L) | 206.45 ± 9.42 | 210.30 ± 13.11 | 0.813 |
TBIL/(umol/L) | 2.03 ± 0.13 a | 1.41 ± 0.12 b | 0.001 |
DBIL/(umol/L) | 4.72 ± 0.28 | 4.41 ± 0.18 | 0.364 |
TP/(g/L) | 44.27 ± 1.18 | 47.77 ± 2.31 | 0.186 |
ALB/(g/L) | 17.38 ± 0.38 b | 19.24 ± 0.54 a | 0.007 |
LDH/(U/L) | 533.65 ± 33.37 | 582.40 ± 62.00 | 0.493 |
CK/(U/L) | 1212.15 ± 120.68 a | 820.65 ± 39.86 b | 0.004 |
HBDH/(U/L) | 681.25 ± 31.01 b | 926.45 ± 100.64 a | 0.025 |
ALP/(U/L) | 528.30 ± 36.66 | 448.63 ± 18.17 | 0.059 |
ALT/(U/L) | 39.96 ± 1.92 | 40.70 ± 2.51 | 0.816 |
AST/(U/L) | 41.18 ± 3.45 | 40.46 ± 5.09 | 0.906 |
AST/ALT | 1.03 ± 0.07 | 1.01 ± 0.11 | 0.858 |
Growth Ages 1 | Strain | Abdominal Fat | Subcutaneous Fat | ||||
---|---|---|---|---|---|---|---|
Diameter/(μm) | Area/(μm2) | Density/(per, mm2) | Diameter/(μm) | Area/(μm2) | Density/(per, mm2) | ||
21 D | Lean-type | 59.70 | 2511.49 | 392.47 | 77.00 e | 4592.73 e | 230.26 a |
Fatty-type | 61.37 | 2844.33 | 375.84 | 74.50 e | 4328.61 e | 236.37 a | |
28 D | Lean-type | 61.60 | 2913.60 | 350.93 | 81.18 d | 5056.56 d | 218.77 a |
Fatty-type | 65.07 | 3249.38 | 335.98 | 86.70 c | 5850.40 c | 183.42 b | |
35 D | Lean-type | 67.97 | 3639.73 | 287.29 | 91.69 b | 6661.35 b | 165.11 b |
Fatty-type | 71.20 | 4022.22 | 252.15 | 96.28 a | 7007.48 a | 143.01 c | |
Pooled SE line | 0.69 | 68.69 | 8.79 | 0.85 | 116.47 | 7.17 | |
21 D | 60.53 c | 2677.91 c | 384.15 a | 75.75 | 4460.67 | 233.31 | |
28 D | 63.33 b | 3081.49 b | 343.45 b | 83.94 | 5453.48 | 201.10 | |
35 D | 69.58 a | 3830.97 a | 269.72 c | 93.99 | 6834.41 | 154.07 | |
Pooled SE | 0.49 | 48.57 | 6.21 | 0.60 | 82.36 | 5.07 | |
Strain | Lean-type | 63.09 b | 3021.61 b | 343.56 a | 83.29 | 5436.89 | 204.72 |
Fatty-type | 65.88 a | 3371.98 a | 321.32 b | 85.83 | 5728.83 | 187.60 | |
Pooled SE | 0.40 | 39.66 | 5.07 | 0.49 | 67.25 | 4.14 | |
p-value (2-way ANOVA) | Growth ages | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Strain | <0.001 | <0.001 | 0.003 | 0.01 | 0.002 | 0.006 | |
Growth ages * Strain | 0.727 | 0.777 | 0.450 | 0.001 | <0.001 | 0.019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, Z.; Yang, T.; Jia, W.; Bai, M.; Bai, H.; Wang, Z.; Chen, G.; Jiang, Y.; Chang, G. Effects of Fatty-Type and Lean-Type on Growth Performance and Lipid Droplet Metabolism in Pekin Ducks. Animals 2022, 12, 2268. https://doi.org/10.3390/ani12172268
Zhuang Z, Yang T, Jia W, Bai M, Bai H, Wang Z, Chen G, Jiang Y, Chang G. Effects of Fatty-Type and Lean-Type on Growth Performance and Lipid Droplet Metabolism in Pekin Ducks. Animals. 2022; 12(17):2268. https://doi.org/10.3390/ani12172268
Chicago/Turabian StyleZhuang, Zhong, Tingshuo Yang, Wenqian Jia, Meng Bai, Hao Bai, Zhixiu Wang, Guohong Chen, Yong Jiang, and Guobin Chang. 2022. "Effects of Fatty-Type and Lean-Type on Growth Performance and Lipid Droplet Metabolism in Pekin Ducks" Animals 12, no. 17: 2268. https://doi.org/10.3390/ani12172268
APA StyleZhuang, Z., Yang, T., Jia, W., Bai, M., Bai, H., Wang, Z., Chen, G., Jiang, Y., & Chang, G. (2022). Effects of Fatty-Type and Lean-Type on Growth Performance and Lipid Droplet Metabolism in Pekin Ducks. Animals, 12(17), 2268. https://doi.org/10.3390/ani12172268