Progress in Genomic Mating in Domestic Animals
Abstract
:Simple Summary
Abstract
1. Introduction
2. Concept of Genomic Mating
3. Usage of Genomic Mating
3.1. Inbreeding Control
3.2. Breed Conservation
3.3. Heterozygous Advantage
4. Methodology of Genomic Mating
4.1. Linear Programming
4.2. Genomic Optimal Contribution Selection
4.3. Genetic Algorithm
4.4. Other Methods
5. Current Status of the Implementation of Genomic Mating in Livestock and Poultry
5.1. GM in Cattle
5.2. GM in Pigs
5.3. GM in Other Livestock and Poultry
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Daetwyler, H.D.; Villanueva, B.; Bijma, P.; Woolliams, J.A. Inbreeding in genome-wide selection. J. Anim. Breed. Genet. 2007, 124, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Henryon, M.; Berg, P.; Sørensen, A. Animal-breeding schemes using genomic information need breeding plans designed to maximise long-term genetic gains. Livest. Sci. 2014, 166, 38–47. [Google Scholar] [CrossRef]
- Pryce, J.E.; Hayes, B.J.; Goddard, M.E. Novel strategies to minimize progeny inbreeding while maximizing genetic gain using genomic information. J. Dairy Sci. 2012, 95, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Wiggans, G.R.; Cole, J.B.; Hubbard, S.M.; Sonstegard, T.S. Genomic Selection in Dairy Cattle: The USDA Experience. Annu. Rev. Anim. Biosci. 2017, 5, 309–327. [Google Scholar] [CrossRef]
- Lillehammer, M.; Meuwissen, T.H.; Sonesson, A.K. A comparison of dairy cattle breeding designs that use genomic selection. J. Dairy Sci. 2011, 94, 493–500. [Google Scholar] [CrossRef]
- Meuwissen, T.H. Maximizing the response of selection with a predefined rate of inbreeding. J. Anim. Sci. 1997, 75, 934–940. [Google Scholar] [CrossRef]
- Akdemir, D.; Sanchez, J.I. Efficient Breeding by Genomic Mating. Front. Genet. 2016, 7, 210. [Google Scholar] [CrossRef] [PubMed]
- Wellmann, R. Optimum contribution selection for animal breeding and conservation: The R package optiSel. BMC Bioinform. 2019, 20, 25. [Google Scholar] [CrossRef]
- Zhao, Y. Animal Breeding, 2020/12/2 ed.; China Agriculture Press: Beijing, China, 2020; p. 147. [Google Scholar]
- Hedrick, P.W. Assortative Mating and Linkage Disequilibrium. G3 2017, 7, 55–62. [Google Scholar] [CrossRef]
- Banie, A. Assortative Mating; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Weigel, K. Controlling inbreeding in modern breeding programs. J. Dairy Sci. 2001, 84, E177–E184. [Google Scholar] [CrossRef]
- Purfield, D.C.; McClure, M.; Berry, D.P. Justification for setting the individual animal genotype call rate threshold at eighty-five percent. J. Anim. Sci. 2016, 94, 4558–4569. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; VanRaden, P.M.; O’Connell, J.R.; Weigel, K.A.; Gianola, D. Mating programs including genomic relationships and dominance effects. J. Dairy Sci. 2013, 96, 8014–8023. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Romano, F.; Villanueva, B.; Fernandez, J.; Woolliams, J.A.; Pong-Wong, R. The use of genomic coancestry matrices in the optimisation of contributions to maintain genetic diversity at specific regions of the genome. Genet. Sel. Evol. 2016, 48, 2. [Google Scholar] [CrossRef]
- Ogawa, S.; Satoh, M. Genetic contributions of genes on sex chromosomes and mitochondrial DNA in a pedigreed population. Diversity 2022, 14, 142. [Google Scholar] [CrossRef]
- Vanavermaete, D.; Fostier, J.; Maenhout, S.; De Baets, B. Preservation of Genetic Variation in a Breeding Population for Long-Term Genetic Gain. G3 2020, 10, 2753–2762. [Google Scholar] [CrossRef] [PubMed]
- Marsden, C.D.; Ortega-Del Vecchyo, D.; O’Brien, D.P.; Taylor, J.F.; Ramirez, O.; Vilà, C.; Marques-Bonet, T.; Schnabel, R.D.; Wayne, R.K.; Lohmueller, K.E. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. Proc. Natl. Acad. Sci. USA 2016, 113, 152–157. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, H.; Qadri, Q.R.; Wang, Q.; Pan, Y.; Su, G. Long-term impact of conventional and optimal contribution conservation methods on genetic diversity and genetic gain in local pig breeds. Heredity 2021, 127, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Molano, E.; Pong-Wong, R.; Banos, G. Genomic-Based Optimum Contribution in Conservation and Genetic Improvement Programs with Antagonistic Fitness and Productivity Traits. Front. Genet. 2016, 7, 25. [Google Scholar] [CrossRef]
- Hoeschele, I.; VanRaden, P.M. Rapid inversion of dominance relationship matrices for noninbred populations by including sire by dam subclass effects. J. Dairy Sci. 1991, 74, 557–569. [Google Scholar] [CrossRef]
- Misztal, I.; Varona, L.; Culbertson, M.; Bertrand, J.K.; Mabry, J.; Lawlor, T.J.; Van Tassel, C.P.; Gengler, N. Studies on the value of incorporating the effect of dominance in genetic evaluations of dairy cattle, beef cattle and swine. Biotechnol. Agron. Soc. Environ. 1998, 227–233. [Google Scholar]
- Vitezica, Z.G.; Varona, L.; Legarra, A. On the additive and dominant variance and covariance of individuals within the genomic selection scope. Genetics 2013, 195, 1223–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeStefano, A.; Hoeschele, I. Utilization of dominance variance through mate allocation strategies. J. Dairy Sci. 1992, 75, 1680–1690. [Google Scholar] [CrossRef]
- Bijma, P.; Bastiaansen, J.W. Standard error of the genetic correlation: How much data do we need to estimate a purebred-crossbred genetic correlation? Genet. Sel. Evol. 2014, 46, 79. [Google Scholar] [CrossRef]
- Wei, M.; Van der Steen, H. Comparison of reciprocal recurrent selection with pure-line selection systems in animal breeding (a review). Anim. Breed. Abstr. 1991, 59, 281–298. [Google Scholar]
- Jansen, G.B.; Wilton, J.W. Selecting mating pairs with linear programming techniques. J. Dairy Sci. 1985, 68, 1302–1305. [Google Scholar] [CrossRef]
- Wilton, J.; Morris, C.; Leigh, A.; Jenson, E.; Pfeiffer, W. A linear programming model for beef cattle production. Can. J. Anim. Sci. 1974, 54, 693–707. [Google Scholar] [CrossRef]
- Woolliams, J.A.; Thompson, R. A theory of genetic contributions. In Proceedings of the 5th World Congress on Genetics Applied to Livestock Production, Guelph, ON, Canada, 7–12 August 1994; pp. 127–134. [Google Scholar]
- Meuwissen, T.H.; Sonesson, A.K. Maximizing the response of selection with a predefined rate of inbreeding: Overlapping generations. J. Anim. Sci. 1998, 76, 2575–2583. [Google Scholar] [CrossRef]
- Wray, N.; Goddard, M. Increasing long-term response to selection. Genet. Sel. Evol. 1994, 26, 431–451. [Google Scholar] [CrossRef]
- Grundy, B.; Villanueva, B.; Woolliams, J. Dynamic selection procedures for constrained inbreeding and their consequences for pedigree development. Genet. Res. 1998, 72, 159–168. [Google Scholar] [CrossRef]
- Grundy, B.; Villanueva, B.; Woolliams, J. Dynamic selection for maximizing response with constrained inbreeding in schemes with overlapping generations. Anim. Sci. 2000, 70, 373–382. [Google Scholar] [CrossRef]
- Sonesson, A.K.; Woolliams, J.A.; Meuwissen, T.H. Genomic selection requires genomic control of inbreeding. Genet. Sel. Evol. 2012, 44, 27. [Google Scholar] [CrossRef] [PubMed]
- Hill, W.G.; Weir, B.S. Variation in actual relationship as a consequence of Mendelian sampling and linkage. Genet. Res. 2011, 93, 47–64. [Google Scholar] [CrossRef] [Green Version]
- Caballero, A.; Santiago, E.; Toro, M. Systems of mating to reduce inbreeding in selected populations. Anim. Sci. 1996, 62, 431–442. [Google Scholar]
- Meuwissen, T. Chapter. Operation of conservation schemes. In Proceedings of the Utilisation and Conservation Farm Animal Genetic Resource; Wageningen Academic Publishers: Wageningen, The Netherlands, 2007; pp. 167–193. [Google Scholar]
- Woolliams, J.; Pong-Wong, R.; Villanueva, B. Strategic optimisation of short-and long-term gain and inbreeding in MAS and non-MAS schemes. In Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, 19–23 August 2002; pp. 155–162. [Google Scholar]
- Sorensen, A.C.; Berg, P.; Woolliams, J.A. The advantage of factorial mating under selection is uncovered by deterministically predicted rates of inbreeding. Genet. Sel. Evol. 2005, 37, 57–81. [Google Scholar] [CrossRef] [PubMed]
- Kinghorn, B. 19. Mate Selection for the tactical implementation of breeding programs. Proc. Adv. Anim. Breed. Genet. 1999, 13, 130–133. [Google Scholar]
- Kinghorn, B.P. Mate selection by groups. J. Dairy Sci. 1998, 81 (Suppl. 2), 55–63. [Google Scholar] [CrossRef]
- Kinghorn, B.P. An algorithm for efficient constrained mate selection. Genet. Sel. Evol. 2011, 43, 4. [Google Scholar]
- Hayes, B.; Shepherd, R.; Newman, S. Look ahead mate selection schemes for multi-breed beef populations. Anim. Sci. 2000, 74, 13–23. [Google Scholar]
- Shepherd, R.; Kinghorn, B. A tactical approach to the design of crossbreeding programs. In Proceedings of the Sixth World Congress on Genetics Applied to Livestock Production, Armidale, Australia, 11–16 January 1998; pp. 431–438. [Google Scholar]
- Clark, S.A.; Kinghorn, B.P.; Hickey, J.M.; van der Werf, J.H. The effect of genomic information on optimal contribution selection in livestock breeding programs. Genet. Sel. Evol. 2013, 45, 44. [Google Scholar] [CrossRef]
- Carthy, T.R.; McCarthy, J.; Berry, D.P. A mating advice system in dairy cattle incorporating genomic information. J. Dairy Sci. 2019, 102, 8210–8220. [Google Scholar] [CrossRef]
- Schierenbeck, S.; Pimentel, E.; Tietze, M.; Körte, J.; Reents, R.; Reinhardt, F.; Simianer, H.; König, S. Controlling inbreeding and maximizing genetic gain using semi-definite programming with pedigree-based and genomic relationships. J. Dairy Sci. 2011, 94, 6143–6152. [Google Scholar]
- Meuwissen, T.H. GENCONT: An operational tool for controlling inbreeding in selection and conservation schemes. In Proceedings of the 7th Congress on Genetics Applied to Livestock Production, Montpellier, France, 19–23 August 2002; p. 20. [Google Scholar]
- Aliloo, H.; Pryce, J.E.; Gonzalez-Recio, O.; Cocks, B.G.; Goddard, M.E.; Hayes, B.J. Including nonadditive genetic effects in mating programs to maximize dairy farm profitability. J. Dairy Sci. 2017, 100, 1203–1222. [Google Scholar] [CrossRef]
- Bengtsson, C.; Stalhammar, H.; Thomasen, J.R.; Eriksson, S.; Fikse, W.F.; Strandberg, E. Mating allocations in Nordic Red Dairy Cattle using genomic information. J. Dairy Sci. 2022, 105, 1281–1297. [Google Scholar] [CrossRef] [PubMed]
- Bérodier, M.; Berg, P.; Meuwissen, T.; Boichard, D.; Brochard, M.; Ducrocq, V. Improved dairy cattle mating plans at herd level using genomic information. Animal 2021, 15, 100016. [Google Scholar] [PubMed]
- He, J.; Wu, X.L.; Zeng, Q.; Li, H.; Ma, H.; Jiang, J.; Rosa, G.J.M.; Gianola, D.; Tait, R.G., Jr.; Bauck, S. Genomic mating as sustainable breeding for Chinese indigenous Ningxiang pigs. PLoS ONE 2020, 15, e0236629. [Google Scholar] [CrossRef]
- Gonzalez-Dieguez, D.; Tusell, L.; Carillier-Jacquin, C.; Bouquet, A.; Vitezica, Z.G. SNP-based mate allocation strategies to maximize total genetic value in pigs. Genet. Sel. Evol. 2019, 51, 55. [Google Scholar] [CrossRef]
- Raoul, J.; Palhiere, I.; Astruc, J.M.; Swan, A.; Elsen, J.M. Optimal mating strategies to manage a heterozygous advantage major gene in sheep. Animal 2018, 12, 454–463. [Google Scholar] [CrossRef]
- Fernandez, J.; Villanueva, B.; Pong-Wong, R.; Toro, M.A. Efficiency of the use of pedigree and molecular marker information in conservation programs. Genetics 2005, 170, 1313–1321. [Google Scholar] [CrossRef]
- Toro, M.A.; Varona, L. A note on mate allocation for dominance handling in genomic selection. Genet. Sel. Evol. 2010, 42, 33. [Google Scholar] [CrossRef]
- Liu, H.; Henryon, M.; Sorensen, A.C. Mating strategies with genomic information reduce rates of inbreeding in animal breeding schemes without compromising genetic gain. Animal 2017, 11, 547–555. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Qiu, X.; Wang, L.; Zhao, F. Progress in Genomic Mating in Domestic Animals. Animals 2022, 12, 2306. https://doi.org/10.3390/ani12182306
Zhang P, Qiu X, Wang L, Zhao F. Progress in Genomic Mating in Domestic Animals. Animals. 2022; 12(18):2306. https://doi.org/10.3390/ani12182306
Chicago/Turabian StyleZhang, Pengfei, Xiaotian Qiu, Lixian Wang, and Fuping Zhao. 2022. "Progress in Genomic Mating in Domestic Animals" Animals 12, no. 18: 2306. https://doi.org/10.3390/ani12182306
APA StyleZhang, P., Qiu, X., Wang, L., & Zhao, F. (2022). Progress in Genomic Mating in Domestic Animals. Animals, 12(18), 2306. https://doi.org/10.3390/ani12182306