Feeding Dairy Ewes with Fresh or Dehydrated Sulla (Sulla coronarium L.) Forage. 1. Effects on Feed Utilization, Milk Production, and Oxidative Status
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design, and Feeding Treatments
2.2. Measurements and Sampling
2.3. Analyses
2.4. Statistical Analysis
3. Results and Discussion
3.1. Feeding Resources and Feed Intake
3.2. Ewes’ Live Weight and Milk Production
3.3. Ewes’ Oxidative and Metabolic Status
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruisi, P.; Siragusa, M.; Di Giorgio, G.; Graziano, D.; Amato, G.; Carimi, F.; Giambalvo, D. Pheno-morphological agronomic and genetic diversity among natural populations of sulla (Hedysarum coronarium L.) collected in Sicily, Italy. Gen. Res. Crop Evol. 2011, 58, 245–257. [Google Scholar] [CrossRef]
- Burke, J.L.; Waghorn, G.C.; McNabb, W.C.; Brookes, I.M. The potential of sulla in pasture-based system. Anim. Prod. Sci. 2004, 25, 25–28. [Google Scholar]
- Molle, G.; Decandia, M.; Giovannetti, V.; Cabiddu, A.; Fois, N.; Sitzia, M. Responses to condensed tannins of flowering sulla (Hedysarum coronarium L.) grazed by dairy sheep. Part 1: Effects on feeding behaviour, intake, diet digestibility and performance. Livest. Sci. 2009, 123, 138–146. [Google Scholar] [CrossRef]
- Bonanno, A.; Di Grigoli, A.; Mazza, F.; De Pasquale, C.; Giosuè, C.; Vitale, F.; Alabiso, M. Effects of ewes grazing sulla or ryegrass pasture for different daily durations on forage intake, milk production and fatty acid composition of cheese. Animal 2016, 10, 2074–2082. [Google Scholar] [CrossRef]
- Piluzza, G.; Bullitta, S. The dynamics of phenolic concentration in some pasture species and implications for animal husbandry. J. Sci. Food Agric. 2010, 90, 1452–1459. [Google Scholar] [CrossRef] [PubMed]
- Piluzza, G.; Sulas, L.; Bullitta, S. Tannins in forage plants and their role in animal husbandry and environmental sustainability: A review. Grass Forage Sci. 2014, 69, 32–48. [Google Scholar] [CrossRef]
- Tava, A.; Biazzi, E.; Ronga, D.; Mella, M.; Doria, F.; D’Addabbo, T.; Candido, V.; Avato, P. Chemical identification of specialized metabolites from sulla (Hedysarum coronarium L.) collected in southern Italy. Molecules 2021, 26, 4606. [Google Scholar] [CrossRef]
- Soldado, D.; Bessa, R.J.; Jerónimo, E. Condensed Tannins as Antioxidants in Ruminants -Effectiveness and Action Mechanisms to Improve Animal Antioxidant Status and Oxidative Stability of Products. Animals 2021, 11, 3243. [Google Scholar] [CrossRef] [PubMed]
- Vasta, V.; Daghio, M.; Cappucci, A.; Buccioni, A.; Serra, A.; Viti, C.; Mele, M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci. 2019, 102, 3781–3804. [Google Scholar] [CrossRef]
- Makkar, H.P.S. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effect of feeding tannin rich feeds. Small Rumin. Res. 2003, 49, 241–256. [Google Scholar] [CrossRef]
- Min, B.R.; Barry, T.N.; Attwood, G.T.; McNabb, W.C. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: A review. Anim. Feed Sci. Technol. 2003, 106, 3–19. [Google Scholar] [CrossRef]
- Frutos, P.; Hervás, G.; Natalello, A.; Luciano, G.; Fondevila, M.; Priolo, A.; Toral, P.G. Ability of tannins to modulate ruminal lipid metabolism and milk and meat fatty acid profiles. Anim. Feed Sci. Technol. 2020, 269, 114623. [Google Scholar] [CrossRef]
- Hoste, H.; Jackson, F.; Athanasiadou, S.; Thamsborg, S.M.; Hoskin, S.O. The effects of tannin-rich plants on parasitic nematodes in ruminants. Trends Parasitol. 2006, 22, 253–261. [Google Scholar] [CrossRef]
- Di Trana, A.; Bonanno, A.; Cecchini, S.; Giorgio, D.; Di Grigoli, A.; Claps, S. Effects of Sulla forage (Sulla coronarium L.) on the oxidative status and milk polyphenol content in goats. J. Dairy Sci. 2015, 98, 37–46. [Google Scholar] [CrossRef]
- Giorgio, D.; Di Trana, A.; Di Gregorio, P.; Rando, A.; Avondo, M.; Bonanno, A.; Valenti, B.; Di Grigoli, A. Oxidative status of goats with different CSN1S1 genotypes fed ad libitum with fresh and dry forages. Antioxidants 2020, 9, 224. [Google Scholar] [CrossRef] [PubMed]
- Amato, G.; Di Miceli, G.; Giambalvo, D.; Scarpello, C.; Stringi, L. Condensed tannins content in sulla (Hedysarum coronarium L) as affected by environment, genotype and growth stage. In Bioactive Compounds in Pasture Species for Phytotherapy and Animal Welfare; Bullitta, S., Ed.; CNR-ISPAAM: Sassari, Italy, 2005; pp. 41–54. [Google Scholar]
- Barry, T.N.; McNabb, W.C. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Br. J. Nutr. 1999, 81, 263–272. [Google Scholar] [CrossRef]
- Landau, S.; Silanikove, N.; Nitsan, Z.; Barkai, D.; Baram, H.; Provenza, P.D.; Perevolotsky, A. Short-term changes in eating patterns explain the effects of condensed tannins of feed intake in heifers. Appl. Anim. Behav. Sci. 2000, 69, 199–213. [Google Scholar] [CrossRef]
- Bonanno, A.; Di Grigoli, A.; Di Trana, A.; Di Gregorio, P.; Tornambè, G.; Bellina, V.; Claps, S.; Maggio, G.; Todaro, M. Influence of fresh forage-based diets and αS1-casein (CSN1S1) genotype on nutrient intake and productive, metabolic, and hormonal responses in milking goats. J. Dairy Sci. 2013, 96, 2107–2117. [Google Scholar] [CrossRef] [PubMed]
- Bonanno, A.; Di Grigoli, A.; Montalbano, M.; Bellina, V.; Mazza, F.; Todaro, M. Effects of diet on casein and fatty acid profiles of milk from goats differing in genotype for αS1-casein synthesis. Eur. Food Res. Technol. 2013, 237, 951–963. [Google Scholar] [CrossRef]
- Cabiddu, A.; Molle, G.; Decandia, M.; Spada, S.; Fiori, M.; Piredda, G.; Addis, M. Responses to condensed tannins of flowering sulla (Hedysarum coronarium L.) grazed by dairy sheep. Part 2: Effects on milk fatty acid profile. Livest. Sci. 2009, 123, 230–240. [Google Scholar] [CrossRef]
- Gladine, C.; Rock, E.; Morand, C.; Cauchart, D.; Durand, D. Bioavailability and antioxidant capacity of plant extracts rich in polyphenols, given as a single acute dose, in sheep made highly susceptible to lipoperoxidation. Br. J. Nutr. 2007, 98, 691–701. [Google Scholar] [CrossRef] [Green Version]
- Olagaray, K.E.; Bradford, B.J. Plant flavonoids to improve productivity of ruminants—A review. Anim. Feed Sci. Technol. 2019, 251, 21–36. [Google Scholar] [CrossRef]
- McSweeney, M.; Seetharaman, K. State of polyphenols in the drying process of fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2015, 55, 660–669. [Google Scholar] [CrossRef]
- Nitasha Thakur, N.; Raigond, P.; Singh, Y.; Mishra, T.; Singh, B.; Lal, M.K.; Dutt, S. Recent updates on bioaccessibility of phytonutrients. Trends Food Sci. Technol. 2020, 97, 366–380. [Google Scholar] [CrossRef]
- Ponte, M.; Maniaci, G.; Di Grigoli, A.; Gannuscio, R.; Ashkezary, M.R.; Addis, M.; Alabiso, M.; Todaro, M.; Bonanno, A. Feeding dairy ewes with fresh or dehydrated sulla (Sulla coronarium L.) forage. 2. Effects on cheese enrichment in bioactive molecules. Animals 2022, 12, 2462. [Google Scholar]
- INRA. INRA Feeding System for Ruminants; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018; p. 640. [Google Scholar]
- AOAC International. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Panfili, G.; Manzi, P.; Pizzoferrato, L. High-performance Liquid Chromatographic Method for the Simultaneous Determination of Tocopherols, Carotenes, and Retinol and its Geometric Isomers in Italian Cheese. Analyst 1994, 169, 1161–1165. [Google Scholar] [CrossRef]
- Manzi, P.; Panfili, G.; Pizzoferrato, L. Normal and Reversed- Phase HPLC for more complete evaluation of tocopherols, retinols, carotenes and sterols in dairy products. Chromatographia 1996, 43, 89–93. [Google Scholar] [CrossRef]
- Tava, A.; de Benedetto, M.G.; Tedesco, D.; Di Miceli, G.; Piluzza, G. Proanthocyanidins from Hedysarum, Lotus and Onobrychis spp. growing in Sardinia and Sicily and their antioxidant activity. In Proceedings of the 20th International Grassland Congress, Dublin, Ireland, 26 June–1 July 2005; Wageningen Academic Publishers: Wageningen, The Netherlands, 2005; p. 271. [Google Scholar]
- Porter, L.J.; Hrstick, L.N.; Chan, B.G. The conversion of procyanidins and prodelphinidins to cyniadin and delphinidin. Phytochemistry 1986, 25, 223–230. [Google Scholar] [CrossRef]
- ISO (International Organization for Standardization). Determination of Substances Characteristic of Green and Black Tea. Part 1: Content of Total Polyphenols in Tea. Colorimetric Method Using Folin-Ciocalteu Reagent; International Organization for Standardization: Geneva, Switzerland, 2005; Volume 14502-1, p. 28. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Todaro, M.; Alabiso, M.; Scatassa, M.L.; Di Grigoli, A.; Mazza, F.; Maniaci, G.; Bonanno, A. Effect of the inclusion of fresh lemon pulp in the diet of lactating ewes on the properties of milk and cheese. Anim. Feed Sci. Technol. 2017, 225, 213–223. [Google Scholar] [CrossRef]
- Sunvold, G.D.; Cochran, R.C. Technical note: Evaluation of acid detergent lignin, alkaline peroxide lignin, acid insoluble ash, and indigestible acid detergent fiber as internal markers for prediction of alfalfa, bromegrass, and prairie hay digestibility by beef steers. J. Anim. Sci. 1991, 69, 4951–4955. [Google Scholar] [CrossRef] [Green Version]
- Ranade, R.; Talukder, S.; Muscatello, G.; Celi, P. Assessment of oxidative stress biomarkers in exhaled breath condensate and blood of dairy heifer calves from birth to weaning. Vet. J. 2014, 202, 583–587. [Google Scholar] [CrossRef]
- Serafini, M.; Maiani, G.; Ferro-Luzzi, A. Alcohol-free red wine enhances plasma antioxidant capacity in humans. J. Nutr. 1998, 128, 1003–1007. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Arteche, R.; Muniz, P.; Cavia-Saiz, M.; Garcia-Giron, C.; Garcia-Gonzalez, M.; Llorente-Ayala, B.; Coma-del Corral, M.J. Cancer chemotherapy reduces plasma total polyphenols and total antioxidants capacity in colorectal cancer patients. Mol. Biol. Rep. 2012, 39, 9355–9360. [Google Scholar] [CrossRef]
- SAS (Statistical Analysis Systems Institute). SAS/STAT Qualification Tools ser’s gGuide, Version 9.2.; SAS Institute Inc.: Cary, NC, USA, 2010. [Google Scholar]
- Rufino-Moya, P.J.; Bertolín, J.R.; Blanco, M.; Lobón, S.; Joy, M. Fatty acid profile, secondary compounds and antioxidant activities in the fresh forage, hay and silage of sainfoin (Onobrychis viciifolia) and sulla (Hedysarum coronarium). J. Sci. Food Agric. 2022, 102, 4736–4743. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.; Zhang, Y.; Shen, X.; Cao, Y.; Shi, J.; Ye, X.; Chen, S. Rethinking the mechanism of the health benefits of proanthocyanidins: Absorption, metabolism, and interaction with gut microbiota. Comp. Rev. Food Sci. Food Saf. 2019, 18, 971–985. [Google Scholar] [CrossRef] [PubMed]
- Giorgio, D.; Di Trana, A.; Di Napoli, M.A.; Sepe, L.; Cecchini, S.; Rossi, R.; Claps, S. Comparison of cheeses from goats fed 7 forages based on a new health index. J. Dairy Sci. 2019, 102, 6790–6801. [Google Scholar] [CrossRef] [PubMed]
- Di Trana, A.; Celi, P.; Claps, S.; Fedele, V.; Rubino, R. The effect of hot season and nutrition on the oxidative status and metabolic profile in dairy goats during mid lactation. Anim. Sci. 2006, 82, 717–722. [Google Scholar] [CrossRef]
- Dunshea, F.R.; Bell, A.W. Relations between plasma nonesterified fatty acid metabolism and body fat mobilization in primiparous lactating goats. Br. J. Nutr. 1989, 62, 51–61. [Google Scholar] [CrossRef] [PubMed]
Sulla Hay | Pelleted Dehydrated Sulla Forage | Fresh Sulla Forage | Concentrate Feed | ||
---|---|---|---|---|---|
Pre Dehydration | Post Dehydration and Pelleting | ||||
Dry matter (DM), % | 90.74 | 14.23 | 90.84 | 18.46 | 90.90 |
Crude protein (CP) | 7.49 | 15.88 | 14.72 | 14.82 | 17.71 |
Ether extract (EE) | 1.03 | 2.40 | 2.02 | 2.11 | 3.26 |
Ash | 9.23 | 11.85 | 11.92 | 11.53 | 5.93 |
aNDFom | 64.66 | 48.50 | 51.20 | 41.71 | 19.69 |
ADFom | 52.69 | 39.54 | 44.12 | 33.58 | 11.36 |
ADL | 10.27 | 4.57 | 5.53 | 7.15 | 3.28 |
Cellulose | 41.19 | 34.82 | 37.88 | 26.02 | 7.83 |
Hemicellulose | 11.97 | 8.96 | 7.08 | 8.13 | 8.33 |
Non-structural carbohydrates (NSC) | 17.59 | 21.38 | 20.14 | 29.84 | 53.41 |
NEL, kcal/kg DM | 695 | 1101 | 933 | 1349 | 1791 |
Vitamin E, mg/kg DM | 4.96 | - | 23.63 | 22.81 | 15.22 |
Condensed tannins, g DE/kg DM | 2.28 | 17.91 | 5.36 | 27.96 | 0.76 |
Polyphenols, g GAE/kg DM | 8.29 | 23.62 | 11.80 | 29.40 | 5.30 |
TEAC, mmol trolox/kg DM | 57.28 | 122.75 | 87.47 | 135.42 | 36.07 |
Lauric acid, C12:0 | 0.048 | 0.066 | 0.086 | 0.027 | |
Myristic acid, C14:0 | 0.11 | 0.078 | 0.10 | 0.13 | |
Palmitic acid, C16:0 | 2.31 | 2.84 | 3.04 | 7.06 | |
Stearic acid, C18:0 | 0.44 | 0.51 | 0.68 | 0.75 | |
Oleic acid (OLA), C18:1 c9 | 0.85 | 0.63 | 0.82 | 7.43 | |
Linoleic acid (LA), C18:2 n − 6 | 1.13 | 2.00 | 1.86 | 8.05 | |
α-linolenic acid (ALA), C18:3 n − 3 | 0.54 | 7.04 | 6.24 | 0.51 |
Diet (D) | Parity (P) | Significance p < (1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SHL | DSF2 | FSF2 | FSF4 | FSFL | SEM | TL | FL | SEM | D | p | |
Daily forage intake | |||||||||||
Dry matter (DM), g | 1442 b | 1890 a | 1524 ab | 1392 b | 1152 b | 107.07 | 1500 | 1495 | 67.72 | 0.0002 | 0.6686 |
Crude protein (CP), g | 121 c | 260 a | 150 c | 155 c | 208 b | 9.82 | 179 | 179 | 7.30 | <0.0001 | 0.9881 |
aNDFom, g | 862 a | 804 a | 809 a | 695 ab | 417 b | 76.90 | 716 | 719 | 50.63 | 0.0004 | 0.9743 |
NEL, kcal | 1086 b | 2006 a | 1448 b | 1221 b | 2132 a | 133.13 | 1604 | 1553 | 144.76 | <0.0001 | 0.8028 |
Vitamin E, mg | 9.70 d | 41.39 a | 16.21 c | 20.54 c | 30.84 b | 1.19 | 23.93 | 23.55 | 1.00 | <0.0001 | 0.7897 |
Condensed tannins, g DE | 7.32 d | 8.09 d | 10.99 c | 23.10 b | 42.35 a | 1.52 | 18.52 | 18.22 | 1.91 | <0.0001 | 0.9107 |
Polyphenols, g GAE | 17.78 c | 28.19 b | 23.96 b | 28.36 b | 45.42 a | 2.10 | 28.95 | 28.53 | 2.45 | <0.0001 | 0.9034 |
Total daily feed intake | |||||||||||
Dry matter (DM), g | 2351 b | 2799 a | 2433 ab | 2301 b | 2061 b | 107.07 | 2591 | 2186 | 67.72 | 0.0002 | <0.0001 |
Crude protein (CP), g | 282 c | 421 a | 311 c | 316 c | 369 b | 9.82 | 372 | 308 | 7.29 | <0.0001 | <0.0001 |
aNDFom, g | 1041 a | 983 a | 988 a | 874 ab | 596 b | 76.90 | 931 | 862 | 50.63 | 0.0004 | 0.3360 |
NEL, kcal | 2714 b | 3634 a | 3076 b | 2849 b | 3761 a | 133.13 | 3558 | 2855 | 144.75 | <0.0001 | 0.0009 |
Vitamin E, mg | 23.53 d | 55.22 a | 30.05 c | 34.37 c | 44.67 b | 1.93 | 40.52 | 34.61 | 1.00 | <0.0001 | <0.0001 |
Condensed tannins, g DE | 8.02 d | 8.78 d | 11.68 c | 23.79 b | 43.04 a | 1.52 | 19.36 | 18.7 | 1.91 | <0.0001 | 0.8303 |
Polyphenols, g GAE | 22.60 c | 33.01 b | 28.78 b | 33.18 b | 50.24 a | 2.10 | 34.73 | 32.38 | 2.45 | <0.0001 | 0.4995 |
Digestibility, % | |||||||||||
Dry matter (DM) | 81.39 | 81.87 | 81.19 | 80.38 | 82.48 | 3.75 | 82.65 | 80.27 | 2.37 | 0.9959 | 0.4892 |
Crude protein (CP) | 75.05 | 79.60 | 77.13 | 75.72 | 79.39 | 4.79 | 79.08 | 75.67 | 3.03 | 0.9402 | 0.4401 |
aNDFom | 75.81 | 69.25 | 67.88 | 68.84 | 69.79 | 6.20 | 70.05 | 70.58 | 3.92 | 0.8997 | 0.9247 |
NEL | 81.37 | 81.97 | 80.68 | 80.22 | 82.28 | 3.78 | 82.41 | 80.20 | 2.39 | 0.9943 | 0.5240 |
Condensed tannins | 87.68 a | 90.95 a | 95.06 bc | 96.84 bc | 98.32 c | 1.57 | 93.82 | 93.72 | 0.99 | 0.0019 | 0.9488 |
Polyphenols | 82.74 | 89.60 | 89.89 | 92.77 | 94.92 | 2.75 | 90.08 | 89.89 | 1.74 | 0.0701 | 0.9419 |
Concentrate, % diet DM | 41.44 a | 32.41 b | 38.46 a | 40.18 a | 44.20 a | 1.52 | 43.66 | 35.0 | 0.96 | <0.0001 | <0.0001 |
Fresh sulla forage, % diet DM | - | - | 15.06 c | 30.44 b | 55.26 | 1.40 | 30.69 | 36.48 | 1.24 | <0.0001 | 0.0018 |
Diet (D) | Parity (P) | Significance p < (1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SHL | DSF2 | FSF2 | FSF4 | FSFL | SEM | TL | FL | SEM | D | p | |
Initial live weight, kg | 50.27 | 49.41 | 47.35 | 49.96 | 49.09 | 1.32 | 52.69 | 45.74 | 1.48 | 0.2905 | 0.0046 |
Final live weight, kg | 50.65 a | 50.96 a | 49.97 ab | 51.45 a | 48.86 b | 1.18 | 53.62 | 47.14 | 1.59 | 0.0105 | 0.0115 |
Weight gain, kg | 0.35 ab | 1.91 ab | 2.61 a | 1.53 ab | −0.59 b | 0.70 | 0.93 | 1.40 | 0.44 | 0.0396 | 0.4708 |
Milk yield, g/day | 1781 b | 1914 a | 1780 b | 1872 ab | 1925 a | 77.23 | 2046 | 1662 | 93.75 | 0.0029 | 0.0042 |
DM intake/milk yield, kg/kg | 1.38 a | 1.35 a | 1.33 ab | 1.17 bc | 1.15 c | 0.063 | 1.26 | 1.29 | 0.041 | 0.0170 | 0.5626 |
Lactose, % | 4.56 | 4.52 | 4.59 | 4.55 | 4.59 | 0.041 | 4.60 | 4.53 | 0.047 | 0.2693 | 0.3265 |
Fat, % | 5.34 a | 5.24 ab | 5.07 ab | 5.28 ab | 4.76 b | 0.18 | 5.11 | 5.17 | 0.19 | 0.0310 | 0.8149 |
Protein, % | 4.62 | 4.73 | 4.70 | 4.77 | 4.82 | 0.095 | 4.54 | 4.91 | 0.11 | 0.0821 | 0.0172 |
Casein, % | 3.40 | 3.51 | 3.46 | 3.54 | 3.57 | 0.083 | 3.34 | 3.66 | 0.095 | 0.0767 | 0.0206 |
Lactose, g/day | 73.55 b | 84.79 a | 79.92 ab | 79.30 ab | 84.07 a | 3.74 | 91.38 | 69.27 | 4.43 | 0.0017 | 0.0009 |
Fat, g/day | 85.14 b | 98.54 a | 87.93 b | 92.55 ab | 86.83 b | 4.96 | 100.31 | 80.09 | 5.24 | 0.1240 | 0.0082 |
Protein, g/day | 73.81 b | 88.73 a | 81.51 ab | 82.72 a | 86.80 a | 3.88 | 90.00 | 75.42 | 4.49 | 0.0001 | 0.0255 |
Casein, g/day | 54.25 b | 65.97 a | 60.06 ab | 61.24 a | 64.11 a | 2.94 | 66.05 | 56.20 | 3.37 | 0.0001 | 0.0436 |
Urea, mg/dl | 27.22 | 27.25 | 30.77 | 29.48 | 27.79 | 1.84 | 30.42 | 26.59 | 1.72 | 0.2578 | 0.1208 |
Coagulation time (r), min | 17.68 | 17.27 | 16.52 | 17.99 | 18.94 | 1.01 | 18.32 | 17.04 | 1.10 | 0.1213 | 0.4146 |
Curd firming time (k20), min | 1.90 a | 1.74 ab | 1.37 b | 1.61 ab | 1.78 ab | 0.13 | 1.87 | 1.49 | 0.11 | 0.0084 | 0.0217 |
Curd firmness (a30), mm | 50.56 | 55.04 | 57.64 | 52.12 | 53.47 | 2.36 | 50.95 | 56.58 | 2.13 | 0.2046 | 0.0679 |
Curd firmness (a2r), mm | 54.81 | 59.39 | 60.99 | 58.28 | 59.21 | 1.75 | 56.91 | 60.16 | 1.26 | 0.1048 | 0.0771 |
Diet (D) | Parity (P) | Significance p< (1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SHL | DSF2 | FSF2 | FSF4 | FSFL | SEM | TL | FL | SEM | D | p | |
Reactive Oxigen metabolites (ROMs), Unit Carr | 79.68 ab | 72.47 b | 82.96 a | 86.39 a | 84.22 a | 5.13 | 79.14 | 83.15 | 5.47 | 0.0462 | 0.6073 |
Biological antioxidant potential (BAP), mmol/l | 2.13 | 2.51 | 2.21 | 2.19 | 2.31 | 0.18 | 2.04 | 2.50 | 0.22 | 0.1526 | 0.1473 |
Oxidative Stress Index (OSI = ROMs/BAP) | 40.77 a | 30.4 b | 41.21 a | 42.09 a | 37.54 ab | 3.46 | 41.05 | 35.78 | 3.47 | 0.0003 | 0.3661 |
Plasma Total Polyphenols (PTP), μg GAE/ml | 18.09 | 18.40 | 18.12 | 17.25 | 18.23 | 0.42 | 17.65 | 18.39 | 0.34 | 0.1602 | 0.1396 |
Plasma Free Polyphenols (PFreeP), μg GAE/ml | 11.44 b | 13.13 a | 12.52 ab | 12.61 a | 12.63 a | 0.46 | 12.46 | 12.47 | 0.45 | 0.0335 | 0.9862 |
NEFA, mmol/l | 0.093 | 0.090 | 0.111 | 0.109 | 0.084 | 0.015 | 0.078 | 0.117 | 0.011 | 0.5258 | 0.0113 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gannuscio, R.; Ponte, M.; Di Grigoli, A.; Maniaci, G.; Di Trana, A.; Bacchi, M.; Alabiso, M.; Bonanno, A.; Todaro, M. Feeding Dairy Ewes with Fresh or Dehydrated Sulla (Sulla coronarium L.) Forage. 1. Effects on Feed Utilization, Milk Production, and Oxidative Status. Animals 2022, 12, 2317. https://doi.org/10.3390/ani12182317
Gannuscio R, Ponte M, Di Grigoli A, Maniaci G, Di Trana A, Bacchi M, Alabiso M, Bonanno A, Todaro M. Feeding Dairy Ewes with Fresh or Dehydrated Sulla (Sulla coronarium L.) Forage. 1. Effects on Feed Utilization, Milk Production, and Oxidative Status. Animals. 2022; 12(18):2317. https://doi.org/10.3390/ani12182317
Chicago/Turabian StyleGannuscio, Riccardo, Marialetizia Ponte, Antonino Di Grigoli, Giuseppe Maniaci, Adriana Di Trana, Monica Bacchi, Marco Alabiso, Adriana Bonanno, and Massimo Todaro. 2022. "Feeding Dairy Ewes with Fresh or Dehydrated Sulla (Sulla coronarium L.) Forage. 1. Effects on Feed Utilization, Milk Production, and Oxidative Status" Animals 12, no. 18: 2317. https://doi.org/10.3390/ani12182317
APA StyleGannuscio, R., Ponte, M., Di Grigoli, A., Maniaci, G., Di Trana, A., Bacchi, M., Alabiso, M., Bonanno, A., & Todaro, M. (2022). Feeding Dairy Ewes with Fresh or Dehydrated Sulla (Sulla coronarium L.) Forage. 1. Effects on Feed Utilization, Milk Production, and Oxidative Status. Animals, 12(18), 2317. https://doi.org/10.3390/ani12182317