Laboratory Analyses Used to Define the Nutritional Parameters and Quality Indexes of Some Unusual Forages
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Measured Parameters
2.3. Calculated Parameters
2.4. Calculated Indexes
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heydari, G.; Yansari, A.T.; Zali, H. Inspection on three plant spices as an animal forage source in Mazandran Wetland. Pak. J. Nutr. 2006, 5, 382–386. [Google Scholar] [CrossRef]
- Newman, Y.C.; Lambert, B.; Muir, J.P. Defining Forage Quality; EDIS Publication SS-AGR-322; Agronomy Department, UF/IFAS Extension Service: Gainesville, FL, USA, 2009. [Google Scholar]
- Moore, J.E. Forage quality indices: Development and application. In Forage Quality, Evaluation, and Utilization; Fahey, G.C., Jr., Ed.; ASA: Schaumburg, IL, USA, 1994; pp. 967–998. [Google Scholar] [CrossRef]
- Moore, J.E.; Burns, J.C.; Fisher, D.S. Multiple regression equations for predicting Relative Feed Value of grass hays. In American Forage and Grassland Council Conference Proceedings; Williams, M.J., Ed.; AFGC: Vancouver, BC, Canada; Georgetown, TX, USA, 1996; pp. 135–139. [Google Scholar]
- Sanson, D.W.; Kercher, C.J. Validation of equations used to estimate Relative Feed Value of alfalfa hay. Prof. Anim. Sci. 1996, 12, 162–166. [Google Scholar] [CrossRef]
- Moore, J.E.; Coleman, S.W. Forage intake, digestibility, NDF and ADF: How well are they related? In American Forage and Grassland Council Conference Proceedings; Terril, T., Ed.; AFGC: Springdale, AR, USA; Georgetown, TX, USA, 2001; pp. 238–242. [Google Scholar]
- Kellems, R.O.; Church, D.C. Livestock Feeds & Feeding, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Daniel, J.B.; Van Laar, H.; Dijkstra, J.; Sauvant, D. Evaluation of predicted ration nutritional values by NRC (2001) and INRA (2018) feed evaluation systems, and implications for the prediction of milk response. J. Dairy Sci. 2020, 103, 11268–11284. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Fox, D.G.; Fonseca, M.A.; Cavalcanti, L.F.L. Models of protein and aminoacid requirements for cattle. R. Bras. Zootec. 2015, 44, 109–132. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy of Sciences: Washington, DC, USA, 2001. [Google Scholar]
- Undersander, D.; Moore, J.E.; Schneider, N. Relative forage quality. Focus Forages 2010, 12, 1–3. [Google Scholar]
- Weiss, W.P.; Conrad, H.R.; St-Pierre, N.R. A theoretically-based model for predicting total digestible nutrient values of forages and concentrates. Anim. Feed Sci. Technol. 2001, 39, 95–110. [Google Scholar] [CrossRef]
- Moore, J.E.; Undersander, J.D. Relative forage quality: An alternative to relative feed value and quality index. In Proceedings of the 13th Annual Florida Ruminant Nutrition Symposium, Gainesville, FL, USA, 10–11 January 2002; pp. 16–29. [Google Scholar]
- Moore, J.E.; Brant, M.H.; Kunkle, W.E.; Hopkins, D.I. Effects of supplementation on voluntary forage intake, diet digestibility and animal performance. J. Anim. Sci. 1999, 77, 122–135. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, M.; Atalay, A.I.; Medjekal, S. Potential nutritive value of wild birdsfoot trefoil (Lotus corniculatus) plants grown in different sites. Livest. Res. Rural Develop. 2009, 21, 99–102. [Google Scholar]
- Peiretti, P.G.; Meineri, G.; Longato, E.; Tassone, S. Chemical composition, in vitro digestibility and fatty acid profile of Amaranthus caudatus herbage during its growth cycle. Anim. Feed Sci. Technol. 2018, 18, 107–116. [Google Scholar] [CrossRef]
- Peiretti, P.G.; Palmegiano, G.B.; Salamano, G. Quality and fatty acid content of borage (Borago officinalis L.) during the growth cycle. Ital. J. Food Sci. 2004, 2, 177–184. [Google Scholar]
- Peiretti, P.G.; Meineri, G. Fatty acids, chemical composition and organic matter digestibility of seeds and vegetative parts of false flax (Camelina sativa L.) after different lengths of growth. Anim. Feed Sci. Technol. 2007, 133, 341–350. [Google Scholar] [CrossRef]
- Shah, S.S.; Shi, L.; Li, Z.; Ren, G.; Zhou, B. Yield, agronomic and forage quality traits of different quinoa (Chenopodium quinoa Willd.) genotypes in northeast China. Agronomy 2020, 10, 1908. [Google Scholar] [CrossRef]
- Moore, K.J.; Moser, L.E.; Voger, K.P.; Waller, S.S.; Johnson, B.E.; Pedersen, J.F. Describing and quantifying growth stages of perennial forage grasses. Agron. J. 1991, 83, 10173–11077. [Google Scholar] [CrossRef]
- Tassone, S.; Fortina, R.; Peiretti, P.G. In vitro techniques using the DaisyII incubator for the assessment of digestibility: A review. Animals 2020, 10, 775. [Google Scholar] [CrossRef] [PubMed]
- Tassone, S.; Fortina, R.; Valle, E.; Cavallarin, L.; Raspa, F.; Boggero, S.; Bergero, D.; Giammarino, M.; Renna, M. Comparison of in vivo and in vitro digestibility in donkeys. Animals 2020, 10, 2100. [Google Scholar] [CrossRef] [PubMed]
- Rohweder, D.A.; Barnes, R.F.; Jorgnesen, N. Proposed hay grading standards based on laboratory analyses for evaluating quality. J. Anim. Sci. 1978, 47, 747–759. [Google Scholar] [CrossRef]
- Mertens, D.R. Predicting intake and digestibility using mathematical models of ruminal function. J. Anim. Sci. 1987, 64, 1548–1558. [Google Scholar] [CrossRef] [PubMed]
- Oba, M.; Allen, M.S. Evaluation of the importance of the digestibility of neutral detergent fiber from forage: Effects on dry matter intake and milk yield of dairy cows. J. Dairy Sci. 1999, 82, 589–596. [Google Scholar] [CrossRef]
- Atalay, H.; Kahriman, F. Estimation of relative feed value, relative forage quality and nete energy lactation values of some roughage samples by using near infrared reflectance spectroscopy. J. Istanbul Vet. Sci. 2020, 4, 109–118. [Google Scholar] [CrossRef]
- SAS. The SAS System for Windows, Release 9.4M7; SAS Institute Inc.: Cary, NC, USA, 2022; Available online: http://support.sas.com/documentation (accessed on 20 July 2022).
- Romero, J.J.; Castillo, M.; Burns, J.C.; Moriel, P. Forage Quality: Concepts and Practices. NC State Extension Publications 2014. Available online: https://content.ces.ncsu.edu/forage-quality-concepts-and-practices (accessed on 1 June 2022).
- Pospišil, A.; Pospišil, M.; Maæešiæ, D.; Sveènjak, Z. Yield and quality of forage sorghum and different amaranth species (Amaranthus spp.) biomass. Agric. Conspec. Sci. 2009, 74, 85–89. [Google Scholar]
- Nivinska, B.; Strwetelski, J.A.; Kowalczyk, J.; Borowiec, F.; Domanski, P. The effect of phenological stage and season on nutritive value, chemical composition and nutrient digestibility of lucerne (Medicago sativa L.) green forage in the alimentary tract of cattle. Czech J. Anim. Sci. 2005, 11, 511–518. [Google Scholar]
- Brown, A.N.; Ferreira, G.; Teets, C.L.; Thomason, W.E.; Teutsch, C.D. Nutritional composition and in vitro digestibility of grass and lugume winter (cover) crops. J. Dairy Sci. 2018, 101, 2037–2047. [Google Scholar] [CrossRef] [PubMed]
- Amiri, F.; Rashid, A.; Shariff, M. Comparison of nutritive values of grasses and legume species using forage quality index. Songkalnakarin J. Sci. Technol. 2012, 34, 577–586. [Google Scholar]
- INRA. Alimentation des Bovins, Ovins et Caprins. Besoins des Animaux—Valeurs des Aliments, 1st ed.; Éditions Quae: Versailles Cedex, France, 2010. [Google Scholar]
- Kambashi, B.; Picron, P.; Boudry, C.; Thewis, A.; Kiatoko, H.; Bindelle, J. Nutritive value of tropical forage plants fed to pigs in the Western provinces of the Democratic Republic of the Congo. Anim. Feed Sci. Technol. 2014, 191, 47–56. [Google Scholar] [CrossRef]
- Kishore, K.R.; Pathasarathy, M.; Ravi, A. Quality indices for leguminousus and non-leguminous tropical forages based on cell wall constituents. Indian J. Anim. Nutr. 2008, 25, 244–247. [Google Scholar]
- Peiretti, P.G.; Gai, F.; Alonzi, S.; Battelli, G.; Tassone, S. Characterisation of Alpine highland pastures located at different altitudes: Forage evaluation, chemical composition, in vitro digestibility, fatty acid and terpene contents. Plant Biosyst. 2015, 151, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Van Saun, R.J. Determinngi Forage Quality: Understanding Feed Analysis. Available online: https://extension.psu.edu/determining-forage-quality-understanding-feed-analysis (accessed on 20 July 2022).
- Collins, M.; Fritz, J.O. Forage quality. In Forages, Volume 1: An Introduction to Grassland Agriculture; Barnes, R.F., Nelson, C.J., Collins, M., Moore, K.J., Eds.; Iowa State University Press: Ames, IA, USA, 2003; pp. 363–389. [Google Scholar]
- Lardi, G. Interpreting Composition and Determining Market Value. Available online: https://www.ag.ndsu.edu/publications/livestock/quality-forage-series-interpreting-composition-and-determining-market-value (accessed on 20 July 2022).
- Redfearn, D.; Zhang, H.; Forage Quality Interpretations. Oklahoma Cooperative Extension Service PSS-2117. Available online: https://extension.okstate.edu/fact-sheets/forage-quality-interpretations.html (accessed on 30 July 2022).
- Cherian, G. Camelina sativa in poultry diets: Opportunities and challenges. In Biofuel Co-Products as Livestock Feed: Opportunities and Challenges; FAO: Rome, Italy, 2012; pp. 303–310. [Google Scholar]
- Bekuzarova, S.A.; Kuznetsow, I.Y.; Dzampaeva, M.V. Qualitative composition of amaranth plants depending on the altitude zone of mountains and foothills. Glob. J. Sci. Front. Res. D Agric. Vet. 2020, 20, 19–26. [Google Scholar]
- Sivagnanam, S.K.; Singh, M.K.; Manoharan, S.K.; Ram Krishna Rao, M. Preliminary phytochemical analysis of Amaranthus polygonoides. Res. J. Pharm. Biol. Chem. Sci. 2014, 5, 82–87. [Google Scholar]
- Manyelo, T.G.; Sebola, N.A.; van Rensburg, E.J.; Mabelebele, M. The probable use of Genus amaranthus as feed material for monogastric animals. Animals 2020, 10, 1504. [Google Scholar] [CrossRef] [PubMed]
- Russo, R.; Reggiani, R. Glucosinolates and sinapine in camelina meal. Food Nutr. Sci. 2017, 8, 1063–1073. [Google Scholar] [CrossRef] [Green Version]
Forage | Species | Botanic Family | Reference |
---|---|---|---|
Amaranth | Amaranthus caudatus | Amarantaceae | [16] |
Borage | Borago officinalis | Boraginaceae | [17] |
Camelina | Camelina sativa | Brassicaceae | [18] |
Parameter/Index | Acronym | Formula | Reference |
---|---|---|---|
Non-Fibrous Carbohydrate − g kg−1 DM | NFC | NFC = 100 − (NDFn + CP + EE + ash) | [10,11] |
Fatty Acids − g kg−1 DM | FA | FA = EE − 1 | [11] |
Nitrogen-free NDF g kg−1 DM | NDFn | NDFn = NDF × 0.93 | [11] |
Dry Matter Digestibility g kg−1 DM (ADF based) | DMDADF | DMDADF = 88.9 − (0.779 × ADF) | [23] [13] |
Total Digestible Nutrient g kg−1 DM | TDN | TDNlg = (NFC × 0.98) + (CP × 0.93) + (FA × 0.97 × 2.25) + (NDFn × (NDFD/100) − 7 TDNgr = (NFC × 0.98) + (CP × 0.87) + (FA × 0.97 × 2.25) + (NDFn × (NDFD/100) − 10 | [10] |
Dry Matter Intake (NDF based) % BW | DMINDF | DMINDF = 1.2/(NDF × 0.01) | [23] |
Dry Matter Intake % BW | DMI | DMIlg = 120/NDF + (NDFD − 45) × 0.374/1350 × 100 DMIgr = −2.318 + 0.442 × CP − 0.0100 × CP2 − 0.0638 × TDNgr + 0.000922 × TDNgr2 + 0.180 × ADF − 0.00196 × ADF2 − 0.00529 × CP × ADF | [24,25] |
Relative Feed Value | RFV | RFVvt = (DMINDF × DMDvt)/1.29 | |
RFVADF= (DMINDF × DMDADF)/1.29 | |||
Relative Forage Quality | RFQ | RFQlg = (DMIlg × TDNlg)/1.23 RFQgr = (DMIgr × TDNgr)/1.23 | [12] |
Net Energy of Lactation Mcal kg−1 (ADF basis) | NEL_ADF | NEL_ADF = (0.866 − (0.0077 × ADF)) × 2.2 | [10,26] |
Parameter | Unit | Species | Stage of Maturity | MSE | |||
---|---|---|---|---|---|---|---|
Vegetative | Elongation | Reproductive | Seed | ||||
DM | g kg−1 DM | Amaranth | 119 C | 142 B | 179 A | 160 AB | 58.7 |
Borage | 78 b | 78 b | 84 b | 99 a | 26 | ||
Camelina | 112 C | 176 B | 194 B | 254 A | 283 | ||
Ash | g kg−1 DM | Amaranth | 210 a | 163 b | 148 b | 153 b | 434 |
Borage | 261 a | 249 ab | 214 ab | 194 b | 354 | ||
Camelina | 139 A | 106 B | 85 C | 67 D | 40 | ||
CP | g kg−1 DM | Amaranth | 187 a | 102 b | 73 b | 106 ab | 1482 |
Borage | 199 aA | 155 bAB | 142 B | 126 B | 83 | ||
Camelina | 220 A | 147 B | 124 aBC | 100 bC | 105 | ||
NDF | g kg−1 DM | Amaranth | 360 cB | 444 bA | 427 bAB | 515 aA | 772 |
Borage | 288 C | 324 bAB | 320 B | 344 aA | 18 | ||
Camelina | 283 C | 442 B | 496 bA | 524 aA | 126 | ||
ADF | g kg−1 DM | Amaranth | 246 B | 321 A | 326 A | 349 A | 524 |
Borage | 180 B | 282 A | 283 bA | 304 aA | 46 | ||
Camelina | 259 C | 369 B | 408 bA | 434 aA | 94 | ||
EE | g kg−1 DM | Amaranth | 15 | 13 | 14 | 14 | 8.1 |
Borage | 26 aA | 20 bAB | 19 B | 17 B | 2.1 | ||
Camelina | 34 A | 27 B | 22 C | 22 C | 2.2 | ||
ADMDADII | g kg−1 DM | Amaranth | 968 A | 869 aB | 846 abB | 781 bB | 793 |
Borage | 941 aA | 907 bAB | 902 bAB | 887 B | 51 | ||
Camelina | 914 A | 778 B | 720 B | 651 C | 169 | ||
NDFDADII | g kg−1 NDF | Amaranth | 912 | 697 | 606 | 575 | 3032 |
Borage | 800 a | 713 ab | 693 b | 671 b | 488 | ||
Camelina | 695 A | 497 B | 436 B | 334 C | 731 |
Parameter | Unit | Species | Stage of Maturity | MSE | |||
---|---|---|---|---|---|---|---|
Vegetative | Elongation | Reproductive | Seed | ||||
NFC | g kg−1 DM | Amaranth | 228 b | 279 ab | 338 a | 212 b | 1945 |
Borage | 227 b | 253 ab | 305 a | 319 a | 613 | ||
Camelina | 324 A | 279 B | 272 B | 287 B | 145 | ||
FA | g kg−1 DM | Amaranth | 4.7 | 2.5 | 3.9 | 4.2 | 8.1 |
Borage | 16 aA | 10 bAB | 9 B | 7 B | 2.1 | ||
Camelina | 24 A | 17 B | 12 C | 12 C | 2.2 | ||
NDFn | g kg−1 DM | Amaranth | 335 cB | 413 bA | 397 bAB | 479 aA | 668 |
Borage | 268 C | 302 bAB | 297 B | 320 aA | 15 | ||
Camelina | 263 C | 411 B | 462 bA | 487 aA | 109 | ||
ADMDADF | g kg−1 DM | Amaranth | 698 A | 639 B | 635 B | 617 B | 318 |
Borage | 749 A | 669 aB | 668 aB | 652 bB | 28 | ||
Camelina | 687 A | 602 B | 571 aC | 551 bC | 57 | ||
DMINDF | % | Amaranth | 3.4 aA | 2.7 B | 2.8 bB | 2.3 B | 0.053 |
Borage | 4.2 A | 3.7 aBC | 3.8 B | 3.5 bC | 0.0029 | ||
Camelina | 4.2 A | 2.7 B | 2.4 C | 2.3 C | 0.0065 | ||
DMIlg | % | Amaranth | 4.6 A | 3.4 B | 3.2 B | 2.7 B | 0.097 |
Borage | 5.1 A | 4.4 aB | 4.4 aB | 4.1 bB | 0.0054 | ||
Camelina | 4.9 A | 2.8 B | 2.4 C | 2.0 D | 0.0083 | ||
DMIgr | % | Amaranth | 2..4 | 2.5 | 2.2 | 2.3 | 0.092 |
Borage | 2.4 | 2.5 | 2.6 | 2.6 | 0.0059 | ||
Camelina | 2.6 A | 2.5 aAB | 2.3 bBC | 2.1 cC | 0.0074 | ||
TDNlg | g kg−1 DM | Amaranth | 632 A | 584 AB | 574 AB | 514 B | 903 |
Borage | 572 | 548 | 578 | 582 | 486 | ||
Camelina | 675 A | 572 B | 532 C | 488 D | 81 | ||
TDNgr | g kg−1 DM | Amaranth | 575 a | 552 ab | 553 ab | 500 b | 628 |
Borage | 530 | 514 | 546 | 553 | 444 | ||
Camelina | 643 A | 567 B | 539 C | 514 D | 43 | ||
NEL_ADF | Amaranth | 1.5 A | 1.4 B | 1.4 B | 1.3 B | 0.0015 | |
Borage | 1.6 A | 1.4 B | 1.4 B | 1.4 B | 0.0001 | ||
Camelina | 1.47 A | 1.28 B | 1.21 aC | 1.17 bC | 0.0003 |
Species | Index | Stage of Maturity | MSE | |||
---|---|---|---|---|---|---|
Vegetative | Elongation | Reproductive | Seed | |||
Amaranth | RFVADF | 182 aA | 134 B | 138 bB | 112 B | 235 |
RFVvt | 252 A | 182 B | 184 B | 141 B | 396 | |
RFQlg | 238 Aa | 162 aB | 151 abB | 112 bB | 309 | |
RFQgr | 115 | 110 | 99 | 93 | 327 | |
Borage | RFVADF | 242 B | 192 B | 194 B | 176 C | 8.2 |
RFVvt | 299 A | 260 aBC | 262 B | 240 bC | 14 | |
RFQlg | 235 | 197 | 208 | 194 | 101 | |
RFQgr | 104 | 104 | 116 | 116 | 62 | |
Camelina | RFVADF | 226 A | 127 B | 107 C | 98 C | 25 |
RFVvt | 301 A | 164 B | 135 C | 116 D | 36 | |
RFQlg | 270 A | 133 B | 103 C | 78 D | 29 | |
RFQgr | 136 A | 114 aB | 99 bBC | 87 cC | 24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tassone, S.; Mabrouki, S.; Barbera, S.; Glorio Patrucco, S. Laboratory Analyses Used to Define the Nutritional Parameters and Quality Indexes of Some Unusual Forages. Animals 2022, 12, 2320. https://doi.org/10.3390/ani12182320
Tassone S, Mabrouki S, Barbera S, Glorio Patrucco S. Laboratory Analyses Used to Define the Nutritional Parameters and Quality Indexes of Some Unusual Forages. Animals. 2022; 12(18):2320. https://doi.org/10.3390/ani12182320
Chicago/Turabian StyleTassone, Sonia, Sabah Mabrouki, Salvatore Barbera, and Sara Glorio Patrucco. 2022. "Laboratory Analyses Used to Define the Nutritional Parameters and Quality Indexes of Some Unusual Forages" Animals 12, no. 18: 2320. https://doi.org/10.3390/ani12182320
APA StyleTassone, S., Mabrouki, S., Barbera, S., & Glorio Patrucco, S. (2022). Laboratory Analyses Used to Define the Nutritional Parameters and Quality Indexes of Some Unusual Forages. Animals, 12(18), 2320. https://doi.org/10.3390/ani12182320