In Vitro Screening of Non-Antibiotic Components to Mitigate Intestinal Lesions Caused by Brachyspira hyodysenteriae, Lawsonia intracellularis and Salmonella enterica Serovar Typhimurium
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Spiral Colon Collection and Explant Culture
2.2. Inocula Preparation
2.3. Challenge Trials
2.4. Histopathology Analysis
2.5. Reverse Transcriptase Real-Time PCR (RT-PCR) Assays
2.6. Statistical Analysis
3. Results
3.1. Brachyspira Hyodysenteriae
3.1.1. Early Time Point
3.1.2. Late Time Point
3.2. Lawsonia Intracellularis
3.2.1. Early Time Point
3.2.2. Late Time Point
3.3. Salmonella enterica Serovar Typhimurium
3.3.1. Early Time Point
3.3.2. Late Time Point
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vannucci, F.A.; Gebhart, C.J. Recent Advances in Understanding the Pathogenesis of Lawsonia intracellularis Infections. Vet. Pathol. 2014, 51, 465–477. [Google Scholar] [CrossRef] [PubMed]
- Patterson, S.K.; Kim, H.B.; Borewicz, K.; Isaacson, R.E. Towards an understanding of Salmonella enterica serovar Typhimurium persistence in swine. In Animal Health Research Reviews; Cambridge University Press: Cambridge, UK, 2016; Volume 17, pp. 159–168. [Google Scholar]
- Burrough, E.R. Swine dysentery: Etiopathogenesis and diagnosis of a reemerging disease. Vet. Pathol. 2017, 54, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Rubin, J.; Costa, M.O.; Hill, J.; Kittrell, H.E.; Fernando, C.; Huang, Y.; O’Connor, B.; Harding, J.C.S. Reproduction of Mucohaemorrhagic Diarrhea and Colitis Indistinguishable from Swine Dysentery following Experimental Inoculation with “Brachyspira hampsonii” Strain 30446. PLoS ONE 2013, 8, e57146. [Google Scholar] [CrossRef] [PubMed]
- Rohde, J.; Majzoub-Altweck, M.; Falkenau, A.; Hermanns, W.; Burrough, E.; Ritzmann, M.; Stadler, J. Occurrence of dysentery-like diarrhoea associated with Brachyspira suanatina infection on a German fattening pig farm. Vet. Rec. 2018, 182, 195. [Google Scholar] [CrossRef] [PubMed]
- Lawson, G.H.K.; Gebhart, C.J. Proliferative enteropathy. J. Comp. Pathol. 2000, 12, 77–100. [Google Scholar] [CrossRef] [PubMed]
- Hampson, D.; Robertson, I.; Mhoma, J. Experiences with a vaccine being developed for the control of swine dysentery. Aust. Vet. J. 1993, 70, 18–20. [Google Scholar] [CrossRef]
- Diego, R.; Lanza, I.; Carvajal, A.; Rubio, P.; Cármenes, P. Serpulina hyodysenteriae challenge of fattening pigs vaccinated with an adjuvanted bivalent bacterin against swine dysentery. Vaccine 1995, 13, 663–667. [Google Scholar] [CrossRef]
- Mahu, M.; Boyen, F.; Canessa, S.; Marchan, J.Z.; Haesebrouck, F.; Martel, A.; Pasmans, F. An avirulent Brachyspira hyodysenteriae strain elicits intestinal IgA and slows down spread of swine dysentery. Vet. Res. 2017, 48, 59. [Google Scholar] [CrossRef]
- Waters, W.; Sacco, R.; Dorn, A.; Hontecillas, R.; Zuckermann, F.; Wannemuehler, M. Systemic and mucosal immune responses of pigs to parenteral immunization with a pepsin-digested Serpulina hyodysenteriae bacterin. Vet. Immunol. Immunopathol. 1999, 69, 75–87. [Google Scholar] [CrossRef]
- Waters, W.; Pesch, B.; Hontecillas, R.; Sacco, R.; Zuckermann, F.; Wannemuehler, M. Cellular immune responses of pigs induced by vaccination with either a whole cell sonicate or pepsin-digested Brachyspira (Serpulina) hyodysenteriae bacterin. Vaccine 1999, 18, 711–719. [Google Scholar] [CrossRef]
- Song, Y.; La, T.; Phillips, N.D.; Bellgard, M.I.; Hampson, D.J. A reverse vaccinology approach to swine dysentery vaccine development. Vet. Microbiol. 2009, 137, 111–119. [Google Scholar] [CrossRef] [PubMed]
- McOrist, S.; Smits, R.J. Field evaluation of an oral attenuated Lawsonia intracellularis vaccine for porcine proliferative enteropathy (ileitis). Vet. Rec. 2007, 161, 26–28. [Google Scholar] [CrossRef] [PubMed]
- de la Cruz, M.; Conrado, I.; Nault, A.; Perez, A.; Dominguez, L.; Alvarez, J. Vaccination as a control strategy against Salmonella infection in pigs: A systematic review and meta-analysis of the literature. Res. Vet. Sci. 2017, 114, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Roerink, F.; Morgan, C.; Knetter, S.; Passat, M.-H.; Archibald, A.; Ait-Ali, T.; Strait, E. A novel inactivated vaccine against Lawsonia intracellularis induces rapid induction of humoral immunity, reduction of bacterial shedding and provides robust gut barrier function. Vaccine 2018, 36, 1500–1508. [Google Scholar] [CrossRef]
- Holyoake, P.; Collins, A.; Donahoo, M.; Lising, R.; Emery, D. Identifying obstacles to reducing the use of antibiotics to control porcine proliferative enteropathy. Aust. Vet. J. 2009, 87, 33–34. [Google Scholar] [CrossRef]
- Karuppannan, A.K.; Opriessnig, T. Lawsonia intracellularis: Revisiting the Disease Ecology and Control of This Fastidious Pathogen in Pigs. Front. Vet. Sci. 2018, 5, 181. [Google Scholar] [CrossRef]
- Wales, A.D.; Davies, R.H. Salmonella Vaccination in Pigs: A Review. Zoonoses Public Health 2016, 64, 1–13. [Google Scholar] [CrossRef]
- Hoelzer, K.; Bielke, L.; Blake, D.P.; Cox, E.; Cutting, S.M.; Devriendt, B.; Erlacher-Vindel, E.; Goossens, E.; Karaca, K.; Lemiere, S.; et al. Vaccines as alternatives to antibiotics for food producing animals. Part 1: Challenges and needs. Vet. Res. 2018, 49, 70. [Google Scholar] [CrossRef]
- Jia, A.Q.; Liu, W.H.; Guo, A.Z.; Chen, H.C. Characterization of Salmonella typhimurium multidrug resistance and the reversal of antimicrobial resistance. Acta Microbiol. Sin. 2006, 46, 789–795. [Google Scholar]
- Coculescu, B.; Palade, A.; Purcarea, V. Multiresistance to antibiotics of Salmonella enterica serovar Typhimurium strains producing extended spectrum beta-lactamases (ESBLs). J. Med. Life 2014, 7, 80–82. [Google Scholar]
- Mirajkar, N.S.; Davies, P.R.; Gebhart, C.J. Antimicrobial Susceptibility Patterns of Brachyspira Species Isolated from Swine Herds in the United States. J. Clin. Microbiol. 2016, 54, 2109–2119. [Google Scholar] [CrossRef] [PubMed]
- Hayes, D.J.; Jensen, H.H.; Backstrom, L.; Fabiosa, J. Economic impact of a ban on the use of over the counter antibiotics in U.S. swine rations. Int. Food Agribus. Manag. Rev. 2001, 4, 81–97. [Google Scholar] [CrossRef]
- Turner, J.; Dritz, S.; Minton, J. REVIEW: Alternatives to Conventional Antimicrobials in Swine Diets11Contribution 01-488-J from the Kansas Agricultural Experiment Station. Prof. Anim. Sci. 2001, 17, 217–226. [Google Scholar] [CrossRef]
- Diário Oficial da União. Instrução Normativa No 45, De 22 De Novembro De 2016. 2016; p. 6. Available online: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-pecuarios/alimentacao-animal/arquivos-alimentacao-animal/legislacao/instrucao-normativa-no-45-de-22-de-novembro-de-2016.pdf/view (accessed on 5 September 2022).
- U.S. Food & Drug Administration. FDA takes steps to withdraw approval of the swine drug carbadox due to safety concerns. FDA News Release, 8 April 2016. [Google Scholar]
- Dibner, J.J.; Buttin, P. Use of Organic Acids as a Model to Study the Impact of Gut Microflora on Nutrition and Metabolism. J. Appl. Poult. Res. 2002, 11, 453–463. [Google Scholar] [CrossRef]
- Tugnoli, B.; Giovagnoni, G.; Piva, A.; Grilli, E. From Acidifiers to Intestinal Health Enhancers: How Organic Acids Can Improve Growth Efficiency of Pigs. Animals 2020, 10, 134. [Google Scholar] [CrossRef] [PubMed]
- Cook, S.; Sellin, J.H. Review article: Short chain fatty acids in health and disease. Aliment. Pharmacol. Ther. 1998, 12, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Schönfeld, P.; Wojtczak, L. Short- and medium-chain fatty acids in energy metabolism: The cellular perspective. J. Lipid Res. 2016, 57, 943–954. [Google Scholar]
- Bindels, L.B.; Delzenne, N.M.; Cani, P.D.; Walter, J. Opinion: Towards a more comprehensive concept for prebiotics. Rev. Gastroenterol. Hepatol. 2015, 12, 303–310. [Google Scholar]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- Gadde, U.; Kim, W.H.; Oh, S.T.; Lillehoj, H.S. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: A review. Anim. Health Res. Rev. 2017, 18, 26–45. [Google Scholar] [CrossRef]
- Keyser, P.; Elofsson, M.; Rosell, S.; Wolf-Watz, H. Virulence blockers as alternatives to antibiotics: Type III secretion inhibitors against Gram-negative bacteria. J. Intern. Med. 2008, 264, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.O.; Hill, J.E.; Dame, M.K.; Harding, J.C.S. In vitro porcine colon culture. In Methods in Molecular Biology; Humana Press Inc.: Torowa, NJ, USA, 2018; pp. 185–195. [Google Scholar]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research. PLoS Biol. 2010, 8, e1000412. [Google Scholar] [CrossRef] [PubMed]
- Riber, U.; Heegaard, P.; Cordes, H.; Ståhl, M.; Jensen, T.K.; Jungersen, G. Vaccination of pigs with attenuated Lawsonia intracellularis induced acute phase protein responses and primed cell-mediated immunity without reduction in bacterial shedding after challenge. Vaccine 2015, 33, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Pasternak, J.A.; MacPhee, D.J.; Harding, J.C. Fetal cytokine response to porcine reproductive and respiratory syndrome virus-2 infection. Cytokine 2019, 126, 154883. [Google Scholar] [CrossRef]
- Duvigneau, J.; Hartl, R.; Groiss, S.; Gemeiner, M. Quantitative Simultaneous Multiplex Real-Time PCR for the Detection of Porcine Cytokines. J. Immunol. Methods 2005, 306, 16–27. [Google Scholar] [CrossRef]
- Bernardini, C.; Greco, F.; Zannoni, A.; Bacci, M.L.; Seren, E.; Forni, M. Differential expression of nitric oxide synthases in porcine aortic endothelial cells during LPS-induced apoptosis. J. Inflamm. 2012, 9, 47. [Google Scholar] [CrossRef]
- Matz, M.V.; Wright, R.M.; Scott, J.G. No control genes required: Bayesian analysis of qRT-PCR data. PLoS ONE 2013, 8, e71448. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; RStudio: Vienna, Austria, 2020. [Google Scholar]
- Al-Sadi, R.; Boivin, M.; Ma, T. Mechanism of cytokine modulation of epithelial tight junction barrier. Front. Biosci. 2009, 14, 2765–2778. [Google Scholar] [CrossRef]
- Capaldo, C.T.; Nusrat, A. Cytokine regulation of tight junctions. Biochim. Biophys. Acta Biomembr. 2009, 1788, 864–871. [Google Scholar]
- Rescigno, M. The intestinal epithelial barrier in the control of homeostasis and immunity. Trends Immunol. 2011, 32, 256–264. [Google Scholar] [CrossRef]
- Chelakkot, C.; Ghim, J.; Ryu, S.H. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp. Mol. Med. 2018, 50, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ohata, A.; Usami, M.; Miyoshi, M. Short-chain fatty acids alter tight junction permeability in intestinal monolayer cells via lipoxygenase activation. Nutrition 2005, 21, 838–847. [Google Scholar] [CrossRef]
- Liu, Y. Fatty acids, inflammation and intestinal health in pigs. J. Anim. Sci. Biotechnol. 2015, 6, 41. [Google Scholar]
- Yan, H.; Ajuwon, K.M. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. PLoS ONE 2017, 12, e0179586. [Google Scholar] [CrossRef]
- Stolpen, A.H.; Guinan, E.C.; Fiers, W.; Pober, J.S. Recombinant tumor necrosis factor and immune interferon act singly and in combination to reorganize human vascular endothelial cell monolayers. Am. J. Pathol. 1986, 123, 16–24. [Google Scholar] [PubMed]
- Madara, J.L.; Stafford, J. Interferon-γ directly affects barrier function of cultured intestinal epithelial monolayers. J. Clin. Investig. 1989, 83, 724–727. [Google Scholar] [CrossRef]
- Kita, A.T.; Kawamoto, T.; Okawa, K.; Harunobu Ozaki, A.; Ishii, K.; Horiuchi, H. Endothelial Cells Junctional Adhesion Molecule in Human Causes Redistribution of γ and IFN-α Cutting Edge: Combined Treatment of TNF. J. Immunol. Ref. 1999, 553, 2048–2057. [Google Scholar]
- Kvale, D.; Brandtzaeg, P. Constitutive and cytokine induced expression of HLA molecules, secretory component, and intercellular adhesion molecule-i is modulated by butyrate in the colonic epithelial cell line HT-29. Gut 1995, 36, 737–742. [Google Scholar]
- Segain, J.P.; Galmiche, J.P.; De La Blétière, D.R.; Bourreille, A.; Leray, V.; Gervois, N.; Rosales, C.; Ferrier, L.; Bonnet, C.; Blottiere, H. Butyrate inhibits inflammatory responses through NFκB inhibition: Implications for Crohn’s disease. Gut 2000, 47, 397–403. [Google Scholar]
- Yin, L.; Laevsky, G.; Giardina, C. Butyrate Suppression of Colonocyte NF-κB Activation and Cellular Proteasome Activity. J. Biol. Chem. 2001, 276, 44641–44646. [Google Scholar]
- Wen, Z.S.; Lu, J.J.; Zou, X.T. Effects of sodium butyrate on the intestinal morphology and dna-binding activity of intestinal nuclear factor-κB hi weanling pigs. J. Anim. Vet. Adv. 2012, 11, 814–821. [Google Scholar]
- Hiribarren, A.; Heyman, M.; L’Helgouac’H, A.; Desjeux, J.F. Effect of cytokines on the epithelial function of the human colon carcinoma cell line HT29 cl 19A. Gut 1993, 34, 616–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fish, S.M.; Proujansky, R.; Reenstra, W.W. Synergistic effects of interferon γ and tumour necrosis factor α on T84 cell function. Gut 1999, 45, 191–198. [Google Scholar] [CrossRef]
- Resta-Lenert, S.; Barrett, K.E. Probiotics and commensals reverse TNF-α- and IFN-γ-induced dysfunction in human intestinal epithelial cells. Gastroenterology 2006, 130, 731–746. [Google Scholar] [CrossRef]
- Bansil, R.; Turner, B.S. The biology of mucus: Composition, synthesis and organization. Adv. Drug Deliv. Rev. 2018, 124, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, V.M.; Schulzke, J.D.; Seidler, U.E. Ion Channels of the Gastrointestinal Epithelial Cells. In Physiology of the Gastrointestinal Tract, 6th ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 1363–1404. [Google Scholar]
- Enns, C.B.; Harding, J.C.S.; Loewen, M.E. Decreased electrogenic anionic secretory response in the porcine colon following in vivo challenge with Brachyspira spp. supports an altered mucin environment. Am. J. Physiol. Liver Physiol. 2019, 316, G495–G508. [Google Scholar]
- Ariandi, Y.; Meryandi, A. Enzymatic Hydrolysis of Copra Meal by Mannanase from Streptomyces sp. BF3.1 for the Production of Mannooligosaccharides. Hayati. J. Biosci. 2015, 22, 79–86. [Google Scholar] [CrossRef]
- Shoaf, K.; Mulvey, G.L.; Armstrong, G.D.; Hutkins, R.W. Prebiotic Galactooligosaccharides Reduce Adherence of Enteropathogenic Escherichia coli to Tissue Culture Cells. Infect. Immun. 2006, 74, 6920–6928. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Mou, H.; Luo, B.; Jiang, X. Inhibition of Adhesion of Intestinal Pathogens (Escherichia coli, Vibrio cholerae, Campylobacter jejuni, and Salmonella Typhimurium) by Common Oligosaccharides. Foodborne Pathog. Dis. 2015, 12, 360–365. [Google Scholar] [CrossRef]
- Van Nevel, C.J.; Decuypere, J.A.; Dierick, N.; Molly, K. The influence of Lentinus Edodes (Shiitake mushroom) preparations on bacteriological and morphological aspects of the small intestine in piglets 1. Arch. Anim. Nutr. 2003, 57, 399–412. [Google Scholar] [CrossRef]
- Allaart, J.; Silva, C.; van der Heijden, M.; Roubos-van den Hil, P. Novel Feed Additives Controlling Salmonella Typhimurium in Pigs. Anim. Prod. Sci. 2017, 57, 2496. [Google Scholar] [CrossRef]
- Fabà, L.; Litjens, R.; Allaart, J.; Hil, P.R.V.D. Feed additive blends fed to nursery pigs challenged with Salmonella. J. Anim. Sci. 2019, 98, 1–10. [Google Scholar] [CrossRef]
- de Groot, N.; Fariñas, F.; Fabà, L.; Hambrecht, E.; Cabrera-Gómez, C.G.; Pallares, F.J.; Ramis, G. Fermented rye with Agaricus subrufescens and mannan-rich hydrolysate based feed additive to modulate post-weaning piglet immune response. Porc. Health Manag. 2021, 7, 60. [Google Scholar] [CrossRef] [PubMed]
- Boutrup, T.S.; Schauser, K.; Agerholm, J.S.; Jensen, T.K. Application of a pig ligated intestinal loop model for early Lawsonia intracellularis infection. Acta Vet. Scand. 2010, 52, 17. [Google Scholar] [CrossRef] [PubMed]
- Boutrup, T.; Boesen, H.; Boye, M.; Agerholm, J.; Jensen, T. Early Pathogenesis in Porcine Proliferative Enteropathy caused by Lawsonia intracellularis. J. Comp. Pathol. 2010, 143, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.O.; Fouhse, J.; Silva, A.P.P.; Willing, B.; Harding, J.C.S. Putting the microbiota to work: Epigenetic effects of early life antibiotic treatment are associated with immune-related pathways and reduced epithelial necrosis following Salmonella Typhimurium challenge in vitro. PLoS ONE 2020, 15, e0231942. [Google Scholar] [CrossRef]
- Fachini-Queiroz, F.C.; Kummer, R.; Estevão-Silva, C.F.; Carvalho, M.D.; Cunha, J.M.; Grespan, R.; Bersani-Amado, C.A.; Cuman, R.K. Effects of thymol and carvacrol, constituents of Thymus vulgaris L. essential oil, on the inflammatory response. Evid. Based Complement. Altern. Med. 2012, 2012, 657026. [Google Scholar] [CrossRef]
- Oliveira, I.S.; Da Silva, F.V.; Viana, A.F.S.C.; Dos Santos, M.R.V.; Quintans-Júnior, L.J.; Martins, M.D.C.C.; Nunes, P.H.M.; Oliveira, F.D.A.; Oliveira, R.D.C.M. Gastroprotective activity of carvacrol on experimentally induced gastric lesions in rodents. Naunyn Schmiedebergs Arch. Pharmacol. 2012, 385, 899–908. [Google Scholar] [CrossRef]
- Silva, F.V.; Guimarães, A.G.; Silva, E.R.S.; Sousa-Neto, B.P.; MacHado, F.D.F.; Quintans-Júnior, L.J.; Arcanjo, D.D.; Oliveira, F.A.; Oliveira, R.C. Anti-inflammatory and anti-ulcer activities of carvacrol, a monoterpene present in the essential oil of oregano. J. Med. Food 2012, 15, 984–991. [Google Scholar] [CrossRef]
- Dundar, E.; Olgun, E.G.; Isiksoy, S.; Kurkcuoglu, M.; Baser, K.H.C.; Bal, C. The effects of intra-rectal and intra-peritoneal application of Origanum onites L. essential oil on 2,4,6-trinitrobenzenesulfonic acid-induced colitis in the rat. Exp. Toxicol. Pathol. 2008, 59, 399–408. [Google Scholar] [CrossRef]
- Souza, M.T.D.S.; Teixeira, D.F.; de Oliveira, J.P.; Oliveira, A.S.; Quintans-Júnior, L.J.; Correa, C.B.; Camargo, E.A. Protective effect of carvacrol on acetic acid-induced colitis. Biomed. Pharmacother. 2017, 96, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Landa, P.; Kokoska, L.; Pribylova, M.; Vanek, T.; Marsik, P. In vitro anti-inflammatory activity of carvacrol: Inhibitory effect on COX-2 catalyzed prostaglandin E2 biosynthesisb. Arch. Pharmacal Res. 2009, 32, 75–78. [Google Scholar] [CrossRef]
- Hotta, M.; Nakata, R.; Katsukawa, M.; Hori, K.; Takahashi, S.; Inoue, H. Carvacrol, a component of thyme oil, activates PPARα and γ and suppresses COX-2 expression. J. Lipid Res. 2010, 51, 132–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gholijani, N.; Gharagozloo, M.; Kalantar, K.; Ramezani, A.; Amirghofran, Z. Modulation of Cytokine Production and Transcription Factors Activities in Human Jurkat T Cells by Thymol and Carvacrol. Adv. Pharm. Bull. 2015, 5, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Cunha, F.; Poole, S.; Lorenzetti, B.; Ferreira, S. The pivotal role of tumour necrosis factor α in the development of inflammatory hyperalgesia. J. Cereb. Blood Flow Metab. 1992, 107, 660–664. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-J.; Lee, I.-S.; Mar, W. Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 activity by 1,2,3,4,6-Penta-O-galloyl-β-D-glucose in murine macrophage cells. Arch. Pharmacal Res. 2003, 26, 832–839. [Google Scholar] [CrossRef] [PubMed]
Compound | Composition | Inclusion |
---|---|---|
D | Blend of thymol and carvacrol | 1 kg/1000 kg of feed 0.0028 mg/g of explant |
F | Fungal fermented rye | 3 kg/1000 kg of feed 0.0042 mg/g of explant |
P | Blend of short chain fatty acids including coated butyrates and slow-release medium chain fatty acids | 3 kg/1000 kg of feed 0.0042 mg/g of explant |
S | Blend of short chain fatty acids and medium chain fatty acids | 3 kg/1000 kg of feed 0.0042 mg/g of explant |
Pathogen | Compound | Early Time-Point | Late Time-Point |
---|---|---|---|
B. hyodysenteriae | D | Increased epithelial coverage. | IL-1α, INF-γ and TNF-α down-regulated. |
F | Decreased epithelial coverage. TNF-α down-regulated. | Decreased epithelial coverage | |
P | Decreased mucus layer thickness. | Decreased mucus layer thickness. TNF-α down-regulated. | |
S | Decreased mucus layer thickness. iNOS up-regulated. | INF-γ up-regulated. | |
L. intracellularis | F | - | Increased epithelium coverage. |
S. Typhimurium | P | Increased epithelialc overage. | |
S | IL-1α up-regulated. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Groot, N.; Meneguzzi, M.; de Souza, B.; de O. Costa, M. In Vitro Screening of Non-Antibiotic Components to Mitigate Intestinal Lesions Caused by Brachyspira hyodysenteriae, Lawsonia intracellularis and Salmonella enterica Serovar Typhimurium. Animals 2022, 12, 2356. https://doi.org/10.3390/ani12182356
de Groot N, Meneguzzi M, de Souza B, de O. Costa M. In Vitro Screening of Non-Antibiotic Components to Mitigate Intestinal Lesions Caused by Brachyspira hyodysenteriae, Lawsonia intracellularis and Salmonella enterica Serovar Typhimurium. Animals. 2022; 12(18):2356. https://doi.org/10.3390/ani12182356
Chicago/Turabian Stylede Groot, Nienke, Mariana Meneguzzi, Barbara de Souza, and Matheus de O. Costa. 2022. "In Vitro Screening of Non-Antibiotic Components to Mitigate Intestinal Lesions Caused by Brachyspira hyodysenteriae, Lawsonia intracellularis and Salmonella enterica Serovar Typhimurium" Animals 12, no. 18: 2356. https://doi.org/10.3390/ani12182356
APA Stylede Groot, N., Meneguzzi, M., de Souza, B., & de O. Costa, M. (2022). In Vitro Screening of Non-Antibiotic Components to Mitigate Intestinal Lesions Caused by Brachyspira hyodysenteriae, Lawsonia intracellularis and Salmonella enterica Serovar Typhimurium. Animals, 12(18), 2356. https://doi.org/10.3390/ani12182356