Identification of Signatures of Selection for Litter Size and Pubertal Initiation in Two Sheep Populations
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Cohort and DNA Extraction
2.2. Library Construction and Sequencing
2.3. Quality Control, Comparison and Identification of SNP Loci
2.4. Genetic Diversity Analysis
2.5. Population Structure Analysis
2.6. Selective Signatures Analysis and Protein Interaction Analysis
2.7. SNP Loci Validation
3. Results
3.1. Reduced-Representation Genome Sequencing and Data Filtering
3.2. Population Genetic Diversity
3.3. Population Structure Analysis
3.4. Selective Signatures Analysis
3.5. SNP Loci Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greives, T.J.; Mason, A.O.; Scotti, M.A.L.; Levine, J.; Ketterson, E.D.; Kriegsfeld, L.J.; Demas, G.E. Environmental control of kisspeptin: Implications for seasonal reproduction. Endocrinology 2007, 148, 1158–1166. [Google Scholar] [CrossRef] [PubMed]
- Xing, F.; Zhang, C.Y.; Kong, Z.Q. Cloning and expression of lin-28 homolog B gene in the onset of puberty in Duolang sheep. Asian Australas. J. Anim. Sci. 2019, 32, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Spaziani, M.; Tarantino, C.; Tahani, N.; Gianfrilli, D.; Sbardella, E.; Lenzi, A.; Radicioni, A.F. Hypothalamo-Pituitary axis and puberty. Mol. Cell. Endocrinol. 2021, 520, 111094. [Google Scholar] [CrossRef] [PubMed]
- Nieto, C.A.R.; Thompson, A.N.; Martin, G.B. A new perspective on managing the onset of puberty and early reproductive performance in ewe lambs: A review. Anim. Prod. Sci. 2018, 58, 1967–1975. [Google Scholar] [CrossRef]
- Bedenbaugh, M.N.; Bowdridge, E.C.; Hileman, S.M. Role of neurokinin B in ovine puberty. Domest. Anim. Endocrinol. 2020, 73, 106442. [Google Scholar] [CrossRef]
- Li, Q.Q.; Yuan, X.L.; Chen, Z.T.; Zhang, A.L.; Zhang, Z.; Zhang, H.; Li, J.Q. Heritability estimates and effect on lifetime reproductive performance of age at puberty in sows. Anim. Reprod. Sci. 2018, 195, 207–215. [Google Scholar] [CrossRef]
- Guo, X.F.; Wang, X.Y.; Liang, B.M.; Di, R.; Liu, Q.Y.; Hu, W.P.; He, X.Y.; Zhang, J.L.; Zhang, X.S.; Chu, M.X. Molecular Cloning of the B4GALNT2 Gene and Its Single Nucleotide Polymorphisms Association with Litter Size in Small Tail Han Sheep. Animals 2018, 8, 160. [Google Scholar] [CrossRef]
- Qi, Y.X.; He, X.L.; Liu, X.F.; Wu, J.H.; Rong, W.H.; Liu, Y.B. The analysis of the concentration change patterns of serum follicle-stimulating hormone and luteinizing hormone and their relationships with litter size during the estrous period of Bamei mutton sheep. Heilongjiang Anim. Sci. Vet. Med. 2014, 7, 17–20. (In Chinese) [Google Scholar] [CrossRef]
- Li, C.Z.; Zhang, L.; Pu, B.C.R.; Hu, Y.D.; Zha, X.; De, Q.Z.G.; Ma, J.Y.; Dan, B. Research progress on influencing factors of polysomy traits in sheep. Yunnan J. Anim. Sci. Vet. Med. 2020, 1, 36–43. (In Chinese) [Google Scholar]
- Stephan, W. Selective Sweeps. Genetics 2019, 211, 5–13. [Google Scholar] [CrossRef]
- Xiong, Y.; Lei, F.M. SLC2A12 of SLC2 Gene Family in Bird Provides Functional Compensation for the Loss of SLC2A4 Gene in Other Vertebrates. Mol. Biol. Evol. 2021, 38, 1276–1291. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Hao, Y.; Cheng, Y.L.; Fan, L.Q.; Song, G.; Li, D.M.; Qu, Y.H.; Lei, F.M. Comparative transcriptomic and metabolomic analysis reveals pectoralis highland adaptation across altitudinal songbirds. Integr. Zool. 2022, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.H.; Wang, H.H.; Liu, G.; Zhao, F.P.; Kijas, J.W.; Ma, Y.J.; Lu, J.; Zhang, L.; Cao, J.X.; Wu, M.M.; et al. Genome-wide analysis reveals adaptation to high altitudes in Tibetan sheep. Sci. Rep. 2016, 6, 26770. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, Z.G.; Zeng, Z.C.; Jiang, Y.; Jiang, Y.F.; Ding, Y.G.; Tang, S.; Shi, H.C.; Ding, X.D. Using High-Density SNP Array to Reveal Selection Signatures Related to Prolificacy in Chinese and Kazakhstan Sheep Breeds. Animals 2020, 10, 1633. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.X.; Pan, Z.Y.; Di, R.; Liu, Q.Y.; Hu, W.P.; Guo, X.F.; He, X.Y.; Gan, S.Q.; Wang, X.Y.; Chu, M.X. Whole Genome Sequencing Reveals the Effects of Recent Artificial Selection on Litter Size of Bamei Mutton Sheep. Animals 2021, 11, 157. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, J.; Shen, M.; Xie, X.L.; Liu, G.J.; Xu, Y.X.; Lv, F.H.; Yang, H.; Yang, Y.L.; Liu, C.B.; et al. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nat. Commun. 2020, 11, 2815. [Google Scholar] [CrossRef]
- Xin, D.Y.; Bai, Y.Y.; Bi, Y.; He, L.B.; Kang, Y.X.; Pan, C.Y.; Zhu, H.J.; Chen, H.; Qu, L.; Lan, X.Y. Insertion/deletion variants within the IGF2BP2 gene identified in reported genome-wide selective sweep analysis reveal a correlation with goat litter size. J. Zhejiang Univ.-Sci. B 2021, 22, 757–766. [Google Scholar] [CrossRef]
- Wang, J.J.; Zhang, T.; Chen, Q.M.; Zhang, R.Q.; Li, L.; Cheng, S.F.; Shen, W.; Lei, C.Z. Genomic Signatures of Selection Associated With Litter Size Trait in Jining Gray Goat. Front. Genet. 2020, 11, 286. [Google Scholar] [CrossRef]
- Chen, H.Y.; Shen, H.; Jia, B.; Zhang, Y.S.; Wang, X.H.; Zeng, X.C. Differential Gene Expression in Ovaries of Qira Black Sheep and Hetian Sheep Using RNA-Seq Technique. PLoS ONE 2015, 10, e0120170. [Google Scholar] [CrossRef]
- Shi, R.; Li, S.; Liu, P.; Zhang, S.; Wu, Z.; Wu, T.; Gong, S.; Wan, Y. Identification of key genes and signaling pathways related to Hetian sheep wool density by RNA-seq technology. PLoS ONE 2022, 17, e0265989. [Google Scholar] [CrossRef]
- Niu, Z.G.; Qin, J.; Jiang, Y.; Ding, X.D.; Ding, Y.G.; Tang, S.; Shi, H.C. The Identification of Mutation in BMP15 Gene Associated with Litter Size in Xinjiang Cele Black Sheep. Animals 2021, 11, 668. [Google Scholar] [CrossRef] [PubMed]
- Hasimu, A.; Maitusong, A. Survey and analysis of the development trend of Hotan sheep in Yutian County. XINJIANG XUMUYE 2013, S2, 20–21. (In Chinese) [Google Scholar] [CrossRef]
- Qi, C.N.; Xie, A.X.; Hu, W.B.; Mi, R.N.S.H.; Ai, H.M.J.; Mai, R.M.N.S.H. Qira Black Sheep’s Variety Characteristic and Protection Use. J. Tarim Univ. 2006, 2, 32–33. (In Chinese) [Google Scholar]
- Chen, S.F.; Zhou, Y.Q.; Chen, Y.R.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 884–890. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Salavati, M.; Caulton, A.; Clark, R.; Gazova, I.; Smith, T.P.L.; Worley, K.C.; Cockett, N.E.; Archibald, A.L.; Clarke, S.M.; Murdoch, B.M.; et al. Global Analysis of Transcription Start Sites in the New Ovine Reference Genome (Oar rambouillet v1.0). Front. Genet. 2020, 11, 580580. [Google Scholar] [CrossRef]
- Van der Auwera, G.A.; O’Connor, B.D. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra; O’Reilly Media: Sebastopol, CA, USA, 2020. [Google Scholar]
- Wang, K.; Li, M.Y.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Martin, C.A.; Armstrong, C.; Illera, J.C.; Emerson, B.C.; Richardson, D.S.; Spurgin, L.G. Genomic variation, population history and within-archipelago adaptation between island bird populations. R. Soc. Open Sci. 2021, 8, 16. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, S.S.; Xu, J.Y.; He, W.M.; Yang, T.L. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 2019, 35, 1786–1788. [Google Scholar] [CrossRef] [PubMed]
- Revell, L.J.; Chamberlain, S.A. Rphylip: An R interface for PHYLIP. Methods Ecol. Evol. 2014, 5, 976–981. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.C.; Smith, D.K.; Zhu, H.C.; Guan, Y.; Lam, T.T.Y. GGTREE: An R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 2017, 8, 28–36. [Google Scholar] [CrossRef]
- Yang, J.A.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A Tool for Genome-wide Complex Trait Analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef]
- Ligges, U.; Mächler, M. Scatterplot3d-An R Package for Visualizing Multivariate Data; Technical Report; Universität Dortmund: Dortmund, Germany, 2002. [Google Scholar]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef] [PubMed]
- Li, M.Z.; Tian, S.L.; Jin, L.; Zhou, G.Y.; Li, Y.; Zhang, Y.; Wang, T.; Yeung, C.K.L.; Chen, L.; Ma, J.D.; et al. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nat. Genet. 2013, 45, 1431–1438. [Google Scholar] [CrossRef] [PubMed]
- Jensen, L.J.; Kuhn, M.; Stark, M.; Chaffron, S.; Creevey, C.; Muller, J.; Doerks, T.; Julien, P.; Roth, A.; Simonovic, M.; et al. STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 2009, 37, D412–D416. [Google Scholar] [CrossRef]
- Xiong, Y.; Fan, L.Q.; Hao, Y.; Cheng, Y.L.; Chang, Y.B.; Wang, J.; Lin, H.Y.; Song, G.; Qu, Y.H.; Lei, F.M. Physiological and genetic convergence supports hypoxia resistance in high-altitude songbirds. PLoS Genet. 2020, 16, e1009270. [Google Scholar] [CrossRef]
- Wei, C.H.; Wang, H.H.; Liu, G.; Wu, M.M.; Cao, J.X.V.; Liu, Z.; Liu, R.Z.; Zhao, F.P.; Zhang, L.; Lu, J.; et al. Genome-wide analysis reveals population structure and selection in Chinese indigenous sheep breeds. Bmc Genomics 2015, 16, 194. [Google Scholar] [CrossRef]
- Getachew, T.; Haile, A.; Meszaros, G.; Rischkowsky, B.; Huson, H.J.; Gizaw, S.; Wurzinger, M.; Mwai, A.O.; Solkner, J. Genetic diversity, population structure and runs of homozygosity in Ethiopian short fat-tailed and Awassi sheep breeds using genome-wide 50k SNP markers. Livest. Sci. 2020, 232, 103899. [Google Scholar] [CrossRef]
- Hoban, S.; Bruford, M.W.; Funk, W.C.; Galbusera, P.; Griffith, M.P.; Grueber, C.E.; Heuertz, M.; Hunter, M.E.; Hvilsom, C.; Stroil, B.K.; et al. Global Commitments to Conserving and Monitoring Genetic Diversity Are Now Necessary and Feasible. Bioscience 2021, 71, 964–976. [Google Scholar] [CrossRef] [PubMed]
- Hohenlohe, P.A.; Phillips, P.C.; Cresko, W.A. Using Population Genomics to Detect Selection in Natural Populations: Key Concepts and Methodological Considerations. Int. J. Plant Sci. 2010, 171, 1059–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oleksyk, T.K.; Smith, M.W.; O’Brien, S.J. Genome-wide scans for footprints of natural selection. Philos. Trans. R. Soc. B-Biol. Sci. 2010, 365, 185–205. [Google Scholar] [CrossRef] [PubMed]
- Mazumdar, A.; Kumar, R. Estrogen regulation of Pak1 and FKHR pathways in breast cancer cells. FEBS Lett. 2003, 535, 6–10. [Google Scholar] [CrossRef]
- Oladimeji, P.; Skerl, R.; Rusch, C.; Diakonova, M. Synergistic Activation of ER alpha by Estrogen and Prolactin in Breast Cancer Cells Requires Tyrosyl Phosphorylation of PAK1. Cancer Res. 2016, 76, 2600–2611. [Google Scholar] [CrossRef]
- Talukder, A.H.; Li, D.Q.; Manavathi, B.; Kumar, R. Serine 28 phosphorylation of NRIF3 confers its co-activator function for estrogen receptor-alpha transactivation. Oncogene 2008, 27, 5233–5242. [Google Scholar] [CrossRef]
- Sun, M.H.; Zheng, J.; Xie, F.Y.; Shen, W.; Yin, S.; Ma, J.Y. Cumulus Cells Block Oocyte Meiotic Resumption via Gap Junctions in Cumulus Oocyte Complexes Subjected to DNA Double-Strand Breaks. PLoS ONE 2015, 10, e0143223. [Google Scholar] [CrossRef]
- Zhu, M.T.; Zhang, H.M.; Yang, H.; Zhao, Z.S.; Blair, H.T.; Zhai, M.J.; Yu, Q.; Wu, P.; Fang, C.H.; Xie, M.T. Polymorphisms and association of GRM1, GNAQ and HCRTR1 genes with seasonal reproduction and litter size in three sheep breeds. Reprod. Domest. Anim. 2022, 57, 532–540. [Google Scholar] [CrossRef]
SPECIES | PIC | Ho | GD | π | K |
---|---|---|---|---|---|
Hetian sheep | 0.206261 | 0.20590242 | 0.247823937 | 0.292004 | 45545.19 |
Cele Black sheep | 0.198109 | 0.20245098 | 0.237993324 | 0.284769 | 29202.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Sui, Z.; Zhang, J.; Li, Q.; Zhang, Y.; Wang, C.; Li, X.; Xing, F. Identification of Signatures of Selection for Litter Size and Pubertal Initiation in Two Sheep Populations. Animals 2022, 12, 2520. https://doi.org/10.3390/ani12192520
Zhang Z, Sui Z, Zhang J, Li Q, Zhang Y, Wang C, Li X, Xing F. Identification of Signatures of Selection for Litter Size and Pubertal Initiation in Two Sheep Populations. Animals. 2022; 12(19):2520. https://doi.org/10.3390/ani12192520
Chicago/Turabian StyleZhang, Zhishuai, Zhiyuan Sui, Jihu Zhang, Qingjin Li, Yongjie Zhang, Chenguang Wang, Xiaojun Li, and Feng Xing. 2022. "Identification of Signatures of Selection for Litter Size and Pubertal Initiation in Two Sheep Populations" Animals 12, no. 19: 2520. https://doi.org/10.3390/ani12192520
APA StyleZhang, Z., Sui, Z., Zhang, J., Li, Q., Zhang, Y., Wang, C., Li, X., & Xing, F. (2022). Identification of Signatures of Selection for Litter Size and Pubertal Initiation in Two Sheep Populations. Animals, 12(19), 2520. https://doi.org/10.3390/ani12192520