Barley, an Undervalued Cereal for Poultry Diets: Limitations and Opportunities
Abstract
:Simple Summary
Abstract
1. Introduction
2. Classification of Barley
3. Composition
3.1. Structural Composition
3.2. Chemical Composition
3.2.1. Starch
3.2.2. Protein and Amino Acids
3.2.3. Non-Starch Polysaccharides
Insoluble Non-Starch Polysaccharides
Soluble Non-Starch Polysaccharides
3.2.4. Fat and Minerals
4. Barley in Poultry Nutrition
4.1. Intestinal Digesta Viscosity
4.2. Growth Performance
4.3. Energy Utilisation
4.4. Nutrient Digestibility
4.4.1. Protein and Amino acids
4.4.2. Starch
4.4.3. Fat
4.5. Intestinal Morphology
4.6. Welfare and Health
4.7. Age of Birds
4.8. Recommended Inclusion of Barley in Broiler Diets
5. Measures to Overcome the Limitations of Barley in Poultry Diets
5.1. Genetic Development
5.1.1. Hull-Less Barley
5.1.2. Waxy-Starch and High Amylose-Starch Barley
5.2. Feed Enzymes
Reference | Barley | Inclusion Level (g/kg of Diet) | Feed Form (M/P) 3 | Components in Carbohydrase (BG/XY) 4 | Phytase | Bird Age (d) | Growth Performance 5 | Nutrient Utilisation 6 | Reduction in Digesta Viscosity (cP) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hull Type 1 | Starch Type 2 | WG (%) | FI (%) | F/G (Points) | N (%) | Starch (%) | Fat (%) | P (%) | AME (%) | AME n (%) | |||||||
[98] | - | - | 600 | M | BG | - | 24 | 8.8 | 3.2 | 4 | 12.6 | 6.91 | 5.35 | - | - | - | 11 |
- | - | 13.2 | 6.0 | 3 | 16.6 | 2.01 | 3.14 | - | - | - | 26 | ||||||
[35] | H | N | 696 | M | BG + XY | - | 13/18 7 | 8.0 | 4.6 | 7 | 8.2 | 7.7 | 22.1 | - | - | - | - |
HA | 18.6 | 6.3 | 24 | 6.8 | 7.9 | 14.1 | - | - | - | - | |||||||
W | 17.6 | 9.3 | 21 | 6.9 | 12.6 | 23.4 | - | - | - | - | |||||||
[110] | HL | N | 610 | M | BG | - | 21 | 54.6 | 18.3 | 50 | - | 52.4 | - | - | - | - | 245 |
N | P | 37.6 | 5.6 | 50 | - | 29.6 | - | - | - | - | 91 | ||||||
W | M | 44.0 | 7.4 | 56 | - | 87.3 | - | - | - | - | 466 | ||||||
W | P | 51.5 | 19.4 | 45 | - | 21.3 | - | - | - | - | 267 | ||||||
[34] | H | N | 963 | M | BG | - | 28 | - | - | - | 17.3 | 17.9 | - | - | - | 9.2 | - |
HL | N | - | - | - | 20.7 | 15.2 | - | - | - | 5.5 | - | ||||||
W | - | - | - | 16.5 | 41.0 | - | - | - | 22.2 | - | |||||||
W | - | - | - | 14.7 | 73.0 | - | - | - | 23.1 | - | |||||||
[194] | - | - | 820 | M | BG + XY | - | 42 | - | - | - | - | - | - | - | 0.5 | - | - |
- | + | - | - | - | - | - | - | - | 2.7 | - | - | ||||||
BG + XY | + | - | - | - | - | - | - | - | 3.8 | - | - | ||||||
[142] | - | - | 990 | M | BG + XY | - | 35 | - | - | - | 13.8 | 9.0 | 9.8 | 8.8 | 8.6 | - | |
- | + | - | - | - | 10.8 | 5.6 | 23.0 | 7.8 | 7.4 | - | |||||||
BG + XY | + | - | - | - | 13.8 | 10.1 | 26.2 | 13.2 | 12.9 | - | |||||||
[13] | H | N | 962, 917 (for N) | M | BG + XY | - | 21 | - | - | - | 1.9 | 0.51 | - | - | 3.4 | 3.6 | - |
HL | W | - | - | - | 4.1 | 7.4 | - | - | 9.4 | 9.6 | - |
5.3. Feed Processing
5.3.1. Particle Size
5.3.2. Feed Form
5.3.3. Heat Processing
5.3.4. Whole Barley Feeding
5.4. Other Strategies to Enhance Barley Nutritional Value
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jacob, J.P.; Pescatore, A.J. Using barley in poultry diets—A review. J. Appl. Poult. Res. 2012, 21, 915–940. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations. 2020. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 1 February 2022).
- Fayez, K.A.; Bazaid, S.A. Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. J. Saudi Soc. Agric. Sci. 2014, 13, 45–55. [Google Scholar] [CrossRef]
- Svihus, B.; Gullord, M. Effect of chemical content and physical characteristics on nutritional value of wheat, barley and oats for poultry. Anim. Feed Sci. Technol. 2002, 102, 71–92. [Google Scholar] [CrossRef]
- Li, J.H.; Vasanthan, T.; Rossnagel, B.; Hoover, R. Starch from hull-less barley: I. Granule morphology, composition and amylopectin structure. Food Chem. 2001, 74, 395–405. [Google Scholar] [CrossRef]
- McNab, J.M.; Smithard, R.R. Barley β-glucan: An anti-nutritional factor in poultry feeding. Nutr. Res. Rev. 1992, 5, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Jacob, J.P.; Pescatore, A.J. Barley β-glucan in poultry diets. Ann. Transl. Med. 2014, 2, 20. [Google Scholar] [PubMed]
- Black, J.L.; Tredrea, A.M.; Nielsen, S.G.; Flinn, P.C.; Kaiser, A.G.; Van Barneveld, R.J. Feed Uses for Barley. In Proceedings of the 12th Australian Barley Technical Symposium, Hobart, Tasmania, Australia, 11–14 September 2005. [Google Scholar]
- Villamide, M.J.; Fuente, J.M.; de Ayala, P.P.; Flores, A. Energy evaluation of eight barley cultivars for poultry: Effect of dietary enzyme addition. Poult. Sci. 1997, 76, 834–840. [Google Scholar] [CrossRef]
- Jeroch, H.; Dänicke, S. Barley in poultry feeding: A review. Worlds Poult. Sci. J. 1995, 51, 271–291. [Google Scholar] [CrossRef]
- Bhatty, R.S. The potential of hull-less barley. Cereal Chem. 1999, 76, 589–599. [Google Scholar] [CrossRef]
- Liu, K. Comparison of lipid content and fatty acid composition and their distribution within seeds of 5 small grain species. J. Food Sci. 2011, 76, C334–C342. [Google Scholar] [CrossRef] [PubMed]
- Perera, W.N.U.; Abdollahi, M.R.; Ravindran, V.; Zaefarian, F.; Wester, T.J.; Ravindran, G. Nutritional evaluation of two barley cultivars, without and with carbohydrase supplementation, for broilers: Metabolisable energy and standardised amino acid digestibility. Br. Poult. Sci. 2019, 60, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Lopato, S.; Kovalchuk, N.; Langridge, P. Functional genomics of seed development in cereals. In Cereal Genomics II; Gupta, P.K., Varshney, R.K., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 215–245. [Google Scholar]
- Andriotis, V.M.; Rejzek, M.; Barclay, E.; Rugen, M.D.; Field, R.A.; Smith, A.M. Cell wall degradation is required for normal starch mobilisation in barley endosperm. Sci. Rep. 2016, 6, 33215. [Google Scholar] [CrossRef]
- Izydorczyk, M.S.; Dexter, J.E. Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products—A Review. Food Res. Int. 2008, 41, 850–868. [Google Scholar] [CrossRef]
- Bhatty, R.S.; Berdahl, J.D.; Christison, G.I. Chemical composition and digestible energy of barley. Can. J. Anim. Sci. 1975, 55, 759–764. [Google Scholar] [CrossRef]
- Helm, C.V.; Francisco, A.D. Chemical characterization of Brazilian hulless barley varieties, flour fractionation, and protein concentration. Sci. Agric. 2004, 61, 593–597. [Google Scholar] [CrossRef]
- Oscarsson, M.; Andersson, R.; Salomonsson, A.C.; Åman, P. Chemical composition of barley samples focusing on dietary fibre components. J. Cereal Sci. 1996, 24, 161–170. [Google Scholar] [CrossRef]
- Izydorczyk, M.S.; Storsley, J.; Labossiere, D.; MacGregor, A.W.; Rossnagel, B.G. Variation in total and soluble β-glucan content in hulless barley: Effects of thermal, physical, and enzymic treatments. J. Agric. Food Chem. 2000, 48, 982–989. [Google Scholar] [CrossRef]
- Hughes, R.J.; Choct, M. Chemical and physical characteristics of grains related to variability in energy and amino acid availability in poultry. Aust. J. Agric. Res. 1999, 50, 689–702. [Google Scholar]
- Yangcheng, H.; Gong, L.; Zhang, Y.; Jane, J.L. Physicochemical properties of Tibetan hull-less barley starch. Carbohydr. Polym. 2016, 137, 525–531. [Google Scholar] [CrossRef]
- Oscarsson, M.; Parkkonen, T.; Autio, K.; Åman, P. Composition and microstructure of waxy, normal and high amylose barley samples. J. Cereal Sci. 1997, 26, 259–264. [Google Scholar] [CrossRef]
- Tester, R.F.; South, J.B.; Morrison, W.R.; Ellis, R.P. The effects of ambient temperature during the grain-filling period on the composition and properties of starch from four barley genotypes. J. Cereal Sci. 1991, 13, 113–127. [Google Scholar] [CrossRef]
- Beckles, D.M.; Thitisaksakul, M. How environmental stress affects starch composition and functionality in cereal endosperm. Starch-Stärke 2014, 66, 58–71. [Google Scholar] [CrossRef]
- Svihus, B.; Herstad, O.; Newman, C.W. Effect of high-moisture storage of barley, oats, and wheat on chemical content and nutritional value for broiler chickens. Acta Agric. Scand. A Anim. Sci. 1997, 47, 39–47. [Google Scholar] [CrossRef]
- Rodehutscord, M.; Rückert, C.; Maurer, H.P.; Schenkel, H.; Schipprack, W.; Bach Knudsen, K.E.; Schollenberger, M.; Laux, M.; Eklund, M.; Siegert, W.; et al. Variation in chemical composition and physical characteristics of cereal grains from different genotypes. Arch. Anim. Nutr. 2016, 70, 87–107. [Google Scholar] [CrossRef]
- Holtekjølen, A.K.; Uhlen, A.K.; Bråthen, E.; Sahlstrøm, S.; Knutsen, S.H. Contents of starch and non-starch polysaccharides in barley varieties of different origin. Food Chem. 2006, 94, 348–358. [Google Scholar] [CrossRef]
- Ullrich, S.E.; Clancy, J.A.; Eslick, R.F.; Lance, R.C.M. β-Glucan content and viscosity of extracts from waxy barley. J. Cereal Sci. 1986, 4, 279–285. [Google Scholar] [CrossRef]
- Tester, R.F.; Karkalas, J.; Qi, X. Starch-composition, fine structure and architecture. J. Cereal Sci. 2004, 39, 151–165. [Google Scholar] [CrossRef]
- Svihus, B.; Uhlen, A.K.; Harstad, O.M. Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: A review. Anim. Feed Sci. Technol. 2005, 122, 303–320. [Google Scholar] [CrossRef]
- Abdel-Aal, E.S.; Hucl, P.; Chibbar, R.N.; Han, H.L.; Demeke, T. Physicochemical and structural characteristics of flours and starches from waxy and nonwaxy wheats. Cereal Chem. 2002, 79, 458–464. [Google Scholar] [CrossRef]
- Storsley, J.M.; Izydorczyk, M.S.; You, S.; Biliaderis, C.G.; Rossnagel, B. Structure and physicochemical properties of β-glucans and arabinoxylans isolated from hull-less barley. Food Hydrocoll. 2003, 17, 831–844. [Google Scholar] [CrossRef]
- Ravindran, V.; Tilman, Z.V.; Morel, P.C.H.; Ravindran, G.; Coles, G.D. Influence of β-glucanase supplementation on the metabolisable energy and ileal nutrient digestibility of normal starch and waxy barleys for broiler chickens. Anim. Feed Sci. Technol. 2007, 134, 45–55. [Google Scholar] [CrossRef]
- Bergh, M.O.; Razdan, A.; Åman, P. Nutritional influence of broiler chicken diets based on covered normal, waxy and high amylose barleys with or without enzyme supplementation. Anim. Feed Sci. Technol. 1999, 78, 215–226. [Google Scholar] [CrossRef]
- Pirgozliev, V.R.; Rose, S.P.; Bedford, M.R. The effect of amylose: Amylopectin ratio in dietary starch on growth performance and gut morphology in broiler chickens. Arch. Geflugelkd. 2010, 74, 21–29. [Google Scholar]
- Björck, I.; Eliasson, A.C.; Drews, A.; Gudmundsson, M.; Karlsson, R. Some nutritional properties of starch and dietary fiber in barley genotypes containing different levels of amylose. Cereal Chem. 1990, 67, 327–333. [Google Scholar]
- Li, J.H.; Vasanthan, T.; Hoover, R.; Rossnagel, B.G. Starch from hull-less barley: V. In-vitro susceptibility of waxy, normal, and high-amylose starches towards hydrolysis by alpha-amylases and amyloglucosidase. Food Chem. 2004, 84, 621–632. [Google Scholar] [CrossRef]
- Al-Rabadi, G.J. Microscopic analysis of in vitro digested milled barley grains: Influence of particle size heterogeneity. Jordan J. Biol. Sci. 2014, 7, 199–203. [Google Scholar] [CrossRef]
- Bdour, M.A.; Al-Rabadi, G.J.; Al-Ameiri, N.S.; Mahadeen, A.Y.; Aaludatt, M.H. Microscopic analysis of extruded and pelleted barley and sorghum grains. Jordan J. Biol. Sci. 2014, 7, 227–231. [Google Scholar]
- Song, Y.; Jane, J.L. Characterization of barley starches of waxy, normal, and high amylose varieties. Carbohydr. Polym. 2000, 41, 365–377. [Google Scholar] [CrossRef]
- Ao, Z.; Jane, J.L. Characterization and modeling of the A-and B-granule starches of wheat, triticale, and barley. Carbohydr. Polym. 2007, 67, 46–55. [Google Scholar] [CrossRef]
- Oscarsson, M.; Andersson, R.; Åman, P.; Olofsson, S.; Jonsson, A. Effects of cultivar, nitrogen fertilization rate and environment on yield and grain quality of barley. J. Sci. Food Agric. 1998, 78, 359–366. [Google Scholar] [CrossRef]
- Steenfeldt, S. The dietary effect of different wheat cultivars for broiler chickens. Br. Poult. Sci. 2001, 42, 595–609. [Google Scholar] [CrossRef] [PubMed]
- Bryden, W.L.; Li, X.; Ravindran, G.; Hew, L.I.; Ravindran, V. Ileal Digestible Amino Acid Values in Feedstuffs for Poultry; RIRDC Publication No 09/071; Rural Industries Research and Development Corporation: Canberra, Australia, 2009. [Google Scholar]
- Bandegan, A.; Golian, A.; Kiarie, E.; Payne, R.L.; Crow, G.H.; Guenter, W.; Nyachoti, C.M. Standardized ileal amino acid digestibility in wheat, barley, pea and flaxseed for broiler chickens. Can. J. Anim. Sci. 2011, 91, 103–111. [Google Scholar] [CrossRef]
- Andersson, A.A.M.; Elfverson, C.; Andersson, R.; Regnér, S.; Åman, P. Chemical and physical characteristics of different barley samples. J. Sci. Food Agric. 1999, 79, 979–986. [Google Scholar] [CrossRef]
- Choct, M. Feed non-starch polysaccharides: Chemical structures and nutritional significance. Feed Milling Intl. 1997, 191, 13–26. [Google Scholar]
- Choct, M. Feed non-starch polysaccharides for monogastric animals: Classification and function. Anim. Prod. Sci. 2015, 55, 1360–1366. [Google Scholar] [CrossRef]
- Zijlstra, R.T.; Lange, C.D.; Patience, J.F. Nutritional value of wheat for growing pigs: Chemical composition and digestible energy content. Can. J. Anim. Sci. 1999, 79, 187–194. [Google Scholar] [CrossRef]
- Englyst, H. Classification and measurement of plant polysaccharides. Anim. Feed Sci. Technol. 1989, 23, 27–42. [Google Scholar] [CrossRef]
- Beames, R.M.; Helm, J.H.; Eggum, B.O.; Boisen, S.; Knudsen, K.B.; Swift, M.L. A comparison of methods for measuring the nutritive value for pigs of a range of hulled and hulless barley cultivars. Anim. Feed Sci. Technol. 1996, 62, 189–201. [Google Scholar] [CrossRef]
- Carré, B. Predicting the dietary energy value of poultry feeds. In Feedstuff Evaluation; Wiseman, J., Cole, D.J.A., Eds.; Butterworths: London, UK, 1990; pp. 283–300. [Google Scholar]
- Smits, C.H.; Annison, G. Non-starch plant polysaccharides in broiler nutrition—Towards a physiologically valid approach to their determination. Worlds Poult. Sci. J. 1996, 52, 203–221. [Google Scholar] [CrossRef]
- Rodrigues, I.; Choct, M. The foregut and its manipulation via feeding practices in the chicken. Poult. Sci. 2018, 97, 3188–3206. [Google Scholar] [CrossRef]
- Svihus, B.; Hetland, H. Ileal starch digestibility in growing broiler chickens fed on a wheat-based diet is improved by mash feeding, dilution with cellulose or whole wheat inclusion. Br. Poult. Sci. 2001, 42, 633–637. [Google Scholar] [CrossRef]
- Hetland, H.; Choct, M.; Svihus, B. Role of insoluble non-starch polysaccharides in poultry nutrition. Worlds Poult. Sci. J. 2004, 60, 415–422. [Google Scholar] [CrossRef]
- Mateos, G.G.; Jiménez-Moreno, E.; Serrano, M.P.; Lázaro, R.P. Poultry response to high levels of dietary fiber sources varying in physical and chemical characteristics. J. Appl. Poult. Res. 2012, 21, 156–174. [Google Scholar] [CrossRef]
- Jha, R.; Mishra, P. Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: A review. J. Anim. Sci. BioTechnol. 2021, 12, 51. [Google Scholar] [CrossRef]
- Hetland, H.; Svihus, B.; Krogdahl, Å. Effects of oat hulls and wood shavings on digestion in broilers and layers fed diets based on whole or ground wheat. Br. Poult. Sci. 2003, 44, 275–282. [Google Scholar] [CrossRef]
- Amerah, A.M.; Ravindran, V.; Lentle, R.G. Influence of insoluble fibre and whole wheat inclusion on the performance, digestive tract development and ileal microbiota profile of broiler chickens. Br. Poult. Sci. 2009, 50, 366–375. [Google Scholar] [CrossRef]
- Rogel, A.M.; Balnave, D.; Bryden, W.L.; Annison, E.F. Improvement of raw potato starch digestion in chickens by feeding oat hulls and other fibrous feedstuffs. Aust. J. Agric. Res. 1987, 38, 629–637. [Google Scholar] [CrossRef]
- Rogel, A.M.; Annison, E.F.; Bryden, W.L.; Balnave, D. The digestion of wheat starch in broiler chickens. Aust. J. Agric. Res. 1987, 38, 639–649. [Google Scholar] [CrossRef]
- Sacranie, A.; Svihus, B.; Denstadli, V.; Moen, B.; Iji, P.A.; Choct, M. The effect of insoluble fiber and intermittent feeding on gizzard development, gut motility, and performance of broiler chickens. Poult. Sci. 2012, 91, 693–700. [Google Scholar] [CrossRef]
- Abdollahi, M.R.; Zaefarian, F.; Hunt, H.; Anwar, M.N.; Thomas, D.G.; Ravindran, V. Wheat particle size, insoluble fibre sources and whole wheat feeding influence gizzard musculature and nutrient utilisation to different extents in broiler chickens. J. Anim. Physiol. Anim. Nutr. 2019, 103, 146–161. [Google Scholar] [CrossRef]
- Desbruslais, A.; Wealleans, A.; Gonzalez-Sanchez, D.; di Benedetto, M. Dietary fibre in laying hens: A review of effects on performance, gut health and feather pecking. Worlds Poult. Sci. J. 2021, 77, 797–823. [Google Scholar] [CrossRef]
- Svihus, B. Research note: A consistent low starch digestibility observed in pelleted broiler chicken diets containing high levels of different wheat varieties. Anim. Feed Sci. Technol. 2001, 92, 45–49. [Google Scholar] [CrossRef]
- Messia, M.C.; Candigliota, T.; De Arcangelis, E.; Marconi, E. Arabinoxylans and β-glucans assessment in cereals. Ital. J. Food Sci. 2017, 29, 112–122. [Google Scholar]
- Choct, M.; Hughes, R.J.; Wang, J.; Bedford, M.R.; Morgan, A.J.; Annison, G. Increased small intestinal fermentation is partly responsible for the anti-nutritive activity of non-starch polysaccharides in chickens. Br. Poult. Sci. 1996, 37, 609–621. [Google Scholar] [CrossRef]
- Classen, H.L. Cereal grain starch and exogenous enzymes in poultry diets. Anim. Feed Sci. Technol. 1996, 62, 21–27. [Google Scholar] [CrossRef]
- Viveros, A.A.; Brenes, A.; Pizarro, M.; Castano, M. Effect of enzyme supplementation of a diet based on barley, and autoclave treatment, on apparent digestibility, growth performance and gut morphology of broilers. Anim. Feed Sci. Technol. 1994, 48, 237–251. [Google Scholar] [CrossRef]
- Iji, P.A. The impact of cereal non-starch polysaccharides on intestinal development and function in broiler chickens. Worlds Poult. Sci. J. 1999, 55, 375–387. [Google Scholar] [CrossRef]
- Józefiak, D.; Rutkowski, A.; Jensen, B.B.; Engberg, R.M. The effect of β-glucanase supplementation of barley- and oat-based diets on growth performance and fermentation in broiler chicken gastrointestinal tract. Br. Poult. Sci. 2006, 47, 57–64. [Google Scholar] [CrossRef]
- Józefiak, D.; Rutkowski, A.; Kaczmarek, S.; Jensen, B.B.; Engberg, R.M.; Højberg, O. Effect of β-glucanase and xylanase supplementation of barley-and rye-based diets on caecal microbiota of broiler chickens. Br. Poult. Sci. 2010, 51, 546–557. [Google Scholar] [CrossRef]
- Åman, P.; Graham, H. Mixed-linked β-(1→3),(1→4)-D-glucans in the cell walls of barley and oats-chemistry and nutrition. Scand. J. Gastroenterol. 1987, 22, 42–51. [Google Scholar] [CrossRef]
- Burnett, G.S. Studies of viscosity as the probable factor involved in the improvement of certain barleys for chickens by enzyme supplementation. Br. Poult. Sci. 1966, 7, 55–75. [Google Scholar] [CrossRef]
- Lee, C.J.; Horsley, R.D.; Manthey, F.A.; Schwarz, P.B. Comparisons of β-glucan content of barley and oat. Cereal Chem. 1997, 74, 571–575. [Google Scholar] [CrossRef]
- Güler, M. Barley grain β-glucan content as affected by nitrogen and irrigation. Field Crops Res. 2003, 84, 335–340. [Google Scholar] [CrossRef]
- Izydorczyk, M.S.; Macri, L.J.; MacGregor, A.W. Structure and physicochemical properties of barley non-starch polysaccharides-I. Water-extractable β-glucans and arabinoxylans. Carbohydr. Polym. 1998, 35, 249–258. [Google Scholar] [CrossRef]
- Perera, W.N.U.; Abdollahi, M.R.; Zaefarian, F.; Wester, T.J.; Ravindran, G.; Ravindran, V. Influence of inclusion level of barley in wheat-based diets and supplementation of carbohydrase on growth performance, nutrient utilisation and gut morphometry in broiler starters. Br. Poult. Sci. 2019, 60, 736–748. [Google Scholar] [CrossRef]
- Perera, W.N.U.; Abdollahi, M.R.; Zaefarian, F.; Wester, T.J.; Ravindran, V. The effect of graded inclusions of waxy starch hull-less barley and a multi-component exogenous carbohydrase on the growth performance, nutrient digestibility and intestinal morphometry of broiler chickens. Br. Poult. Sci. 2020, 61, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Saulnier, L.; Peneau, N.; Thibault, J.F. Variability in grain extract viscosity and water-soluble arabinoxylan content in wheat. J. Cereal Sci. 1995, 22, 259–264. [Google Scholar] [CrossRef]
- Dusel, G.; Kluge, H.; Glaser, K.; Simon, O.; Hartmann, G.; Lengerken, J.V.; Jeroch, H. An investigation into the variability of extract viscosity of wheat-relationship with the content of non-starch-polysaccharide fractions and metabolisable energy for broiler chickens. Arch. Anim. Nutr. 1997, 50, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Bedford, M.R. Mechanism of action and potential environmental benefits from the use of feed enzymes. Anim. Feed Sci. Technol. 1995, 53, 145–155. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Hruby, M.; Faurschou Isaksen, M. The effect of conditioning temperature and exogenous xylanase addition on the viscosity of wheat-based diets and the performance of broiler chickens. Br. Poult. Sci. 2005, 46, 717–724. [Google Scholar] [CrossRef]
- Bhatty, R.S.; Christison, G.I.; Sosulski, F.W.; Harvey, B.L.; Hughes, G.R.; Berdahl, J.D. Relationships of various physical and chemical characters to digestible energy in wheat and barley cultivars. Can. J. Anim. Sci. 1974, 54, 419–427. [Google Scholar] [CrossRef]
- Fedak, G.; Roche, I.D.L. Lipid and fatty acid composition of barley kernels. Can. J. Plant Sci. 1977, 57, 257–260. [Google Scholar] [CrossRef]
- Pettersson, Å.; Lindberg, J.E. Ileal and total tract digestibility in pigs of naked and hulled barley with different starch composition. Anim. Feed Sci. Technol. 1997, 66, 97–109. [Google Scholar] [CrossRef]
- Welch, R.W. Genotypic variation in oil and protein in barley grain. J. Sci. Food Agric. 1978, 29, 953–958. [Google Scholar] [CrossRef]
- Jang, D.A.; Fadel, J.G.; Klasing, K.C.; Mireles, A.J., Jr.; Ernst, R.A.; Young, K.A.; Cook, A.; Raboy, V. Evaluation of low-phytate corn and barley on broiler chick performance. Poult. Sci. 2003, 82, 1914–1924. [Google Scholar] [CrossRef]
- Linares, L.B.; Broomhead, J.N.; Guaiume, E.A.; Ledoux, D.R.; Veum, T.L.; Raboy, V. Effects of low phytate barley (Hordeum vulgare L.) on zinc utilization in young broiler chicks. Poult. Sci. 2007, 86, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Crampton, E.W. The Comparative Feeding Values for Poultry of Barley, Oats, Wheat, Rye, and Corn: A Review and Analysis of Published Data; Prepared for the Associate Committee on Grain Research of the National Research Council and the Dominion Department of Agriculture, Report No. 96; University of Montreal: Montreal, QC, Canada, 1936. [Google Scholar]
- White, W.B.; Bird, H.R.; Sunde, M.L.; Prentice, N.; Burger, W.C.; Marlett, J.A. The viscosity interaction of barley beta-glucan with Trichoderma viride cellulase in the chick intestine. Poult. Sci. 1981, 60, 1043–1048. [Google Scholar] [CrossRef]
- Hesselman, K.; Åman, P. The effect of β-glucanase on the utilization of starch and nitrogen by broiler chickens fed on barley of low-or high-viscosity. Anim. Feed Sci. Technol. 1986, 15, 83–93. [Google Scholar] [CrossRef]
- Rotter, B.A.; Friesen, O.D.; Guenter, W.; Marquardt, R.R. Influence of enzyme supplementation on the bioavailable energy of barley. Poult. Sci. 1990, 69, 1174–1181. [Google Scholar] [CrossRef]
- Chesson, A. Feed enzymes. Anim. Feed Sci. Technol. 1993, 45, 65–79. [Google Scholar] [CrossRef]
- Tricase, C.; Amicarelli, V.; Lamonaca, E.; Rana, R.L. Economic analysis of the barley market and related uses. In Grasses as Food and Feed; Tadele, Z., Ed.; IntechOpen: London, UK, 2018; pp. 25–46. [Google Scholar]
- Almirall, M.; Francesch, M.; Perez-Vendrell, A.M.; Brufau, J.; Esteve-Garcia, E. The differences in intestinal viscosity produced by barley and β-glucanase alter digesta enzyme activities and ileal nutrient digestibilities more in broiler chicks than in cocks. J. Nutr. 1995, 125, 947–955. [Google Scholar] [PubMed]
- Bengtsson, S.; Åman, P.; Graham, H.; Newman, C.W.; Newman, R.K. Chemical studies on mixed-linked β-glucans in hull-less barley cultivars giving different hypocholesterolaemic responses in chickens. J. Sci. Food Agric. 1990, 52, 435–445. [Google Scholar] [CrossRef]
- Carré, B. Causes for variation in digestibility of starch among feedstuffs. Worlds Poult. Sci. J. 2004, 60, 76–89. [Google Scholar] [CrossRef]
- Shakouri, M.D.; Iji, P.A.; Mikkelsen, L.L.; Cowieson, A.J. Intestinal function and gut microflora of broiler chickens as influenced by cereal grains and microbial enzyme supplementation. J. Anim. Physiol. Anim. Nutr. 2009, 93, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Campbell, G.L.; Rossnagel, B.G.; Classen, H.L.; Thacker, P.A. Genotypic and environmental differences in extract viscosity of barley and their relationship to its nutritive value for broiler chickens. Anim. Feed Sci. Technol. 1989, 26, 221–230. [Google Scholar] [CrossRef]
- Fuente, J.M.; De Ayala, P.P.; Flores, A.; Villamide, M.J. Effect of storage time and dietary enzyme on the metabolizable energy and digesta viscosity of barley-based diets for poultry. Poult. Sci. 1998, 77, 90–97. [Google Scholar] [CrossRef]
- Fuente, J.M.; Pérez, P.; Villamide, M.J. Effect of dietary enzyme on the metabolizable energy of diets with increasing levels of barley fed to broilers at different ages. Anim. Feed Sci. Technol. 1995, 56, 45–53. [Google Scholar] [CrossRef]
- Yu, B.; Hsu, J.C.; Chiou, P.W.S. Effects of β-glucanase supplementation of barley diets on growth performance of broilers. Anim. Feed Sci. Technol. 1998, 70, 353–361. [Google Scholar] [CrossRef]
- Gracia, M.I.; Latorre, M.A.; Garcia, M.; Lazaro, R.; Mateos, G.G. Heat processing of barley and enzyme supplementation of diets for broilers. Poult. Sci. 2003, 82, 1281–1291. [Google Scholar] [CrossRef] [PubMed]
- Samarasinghe, K.; Messikommer, R.; Wenk, C. Activity of supplemental enzymes and their effect on nutrient utilization and growth performance of growing chickens as affected by pelleting temperature. Arch. Anim. Nutr. 2000, 53, 45–58. [Google Scholar] [CrossRef]
- Perera, W.N.U.; Abdollahi, M.R.; Zaefarian, F.; Wester, T.J.; Ravindran, V. High steam-conditioning temperature during the pelleting process impairs growth performance and nutrient utilization in broiler starters fed barley-based diets, regardless of carbohydrase supplementation. Poult. Sci. 2021, 100, 101166. [Google Scholar] [CrossRef] [PubMed]
- Petersen, S.T.; Wiseman, J.; Bedford, M.R. Effects of age and diet on the viscosity of intestinal contents in broiler chicks. Br. Poult. Sci. 1999, 40, 364–370. [Google Scholar] [CrossRef]
- Ankrah, N.O.; Campbell, G.L.; Tyler, R.T.; Rossnagel, B.G.; Sokhansanj, S.R.T. Hydrothermal and β-glucanase effects on the nutritional and physical properties of starch in normal and waxy hull-less barley. Anim. Feed Sci. Technol. 1999, 81, 205–219. [Google Scholar] [CrossRef]
- Wang, L.; Newman, R.K.; Newman, C.W.; Hofer, P.J. Barley β-glucans alter intestinal viscosity and reduce plasma cholesterol concentrations in chicks. J. Nutr. 1992, 122, 2292–2297. [Google Scholar] [CrossRef]
- Józefiak, D.; Rutkowski, A.; Jensen, B.B.; Engberg, R.M. Effects of dietary inclusion of triticale, rye and wheat and xylanase supplementation on growth performance of broiler chickens and fermentation in the gastrointestinal tract. Anim. Feed Sci. Technol. 2007, 132, 79–93. [Google Scholar] [CrossRef]
- Yu, B.; Sun, Y.M.; Chiou, P.W.S. Effects of glucanase inclusion in a de-hulled barley diet on the growth performance and nutrient digestion of broiler chickens. Anim. Feed Sci. Technol. 2002, 102, 35–52. [Google Scholar] [CrossRef]
- Salih, M.E.; Classen, H.L.; Campbell, G.L. Response of chickens fed on hull-less barley to dietary β-glucanase at different ages. Anim. Feed Sci. Technol. 1991, 33, 139–149. [Google Scholar] [CrossRef]
- Bedford, M.R. The evolution and application of enzymes in the animal feed industry: The role of data interpretation. Br. Poult. Sci. 2018, 59, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Moharrery, A. Comparison of performance and digestibility characteristics of broilers fed diets containing treated hulled barley or hulless barley. Czech J. Anim. Sci. 2006, 51, 122–131. [Google Scholar] [CrossRef]
- Onderci, M.; Sahin, N.; Cikim, G.; Aydin, A.; Ozercan, I.; Ozkose, E.; Ekinci, S.; Hayirli, A.; Sahin, K. β-Glucanase-producing bacterial culture improves performance and nutrient utilization and alters gut morphology of broilers fed a barley-based diet. Anim. Feed Sci. Technol. 2008, 146, 87–97. [Google Scholar] [CrossRef]
- Friesen, O.D.; Guenter, W.; Marquardt, R.R.; Rotter, B.A. The effect of enzyme supplementation on the apparent metabolizable energy and nutrient digestibilities of wheat, barley, oats, and rye for the young broiler chick. Poult. Sci. 1992, 71, 1710–1721. [Google Scholar] [CrossRef]
- Tang, D.F.; Liu, X.X.; Shi, X.G.; Aftab, U. Effect of cereal type and xylanase supplementation on nutrient retention and growth performance of broilers. J. Appl. Poult. Res. 2017, 26, 529–535. [Google Scholar] [CrossRef]
- Brenes, A.; Smith, M.; Guenter, W.; Marquardt, R.R. Effect of enzyme supplementation on the performance and digestive tract size of broiler chickens fed wheat-and barley-based diets. Poult. Sci. 1993, 72, 1731–1739. [Google Scholar] [CrossRef]
- Classen, H.L. Diet energy and feed intake in chickens. Anim. Feed Sci. Technol. 2017, 233, 13–21. [Google Scholar] [CrossRef]
- Almirall, M.; Esteve-Garcia, E. Rate of passage of barley diets with chromium oxide: Influence of age and poultry strain and effect of β-glucanase supplementation. Poult. Sci. 1994, 73, 1433–1440. [Google Scholar] [CrossRef]
- Ravindran, V.; Blair, R. Feed resources for poultry production in Asia and the Pacific region. I. Energy sources. Worlds Poult. Sci. J. 1991, 47, 213–231. [Google Scholar] [CrossRef]
- Hughes, B.O. The principles underlying choice feeding behaviour in fowls-with special reference to production experiments. Worlds Poult. Sci. J. 1984, 40, 141–150. [Google Scholar] [CrossRef]
- Choct, M.; Annison, G. Anti-nutritive activity of wheat pentosans in broiler diets. Br. Poult. Sci. 1990, 31, 811–821. [Google Scholar] [CrossRef]
- Choct, M.; Hughes, R.J.; Perez-Maldonado, R.; Van Barneveld, R.J. The metabolisable energy value of sorghum and barley for broilers and layers. Proc. Aust. Poult. Sci. Symp. 2001, 12, 39–42. [Google Scholar]
- Khalil, M.M.; Abdollahi, M.R.; Zaefarian, F.; Ravindran, V. Measurement of ileal endogenous energy losses and true ileal digestible energy of cereal grains for broiler chickens. Poult. Sci. 2020, 99, 6809–6817. [Google Scholar] [CrossRef]
- Moss, B.R.; El-Negoumy, A.M.; Newman, C.W. Nutritional value of waxy barleys for broiler chickens. Anim. Feed Sci. Technol. 1983, 8, 25–34. [Google Scholar] [CrossRef]
- Classen, H.L.; Campbell, G.L.; Rossnagel, B.G.; Bhatty, R.S. Evaluation of hulless barley as replacement for wheat or conventional barley in laying hen diets. Can. J. Anim. Sci. 1988, 68, 1261–1266. [Google Scholar] [CrossRef]
- Scott, T.A.; Silversides, F.G.; Classen, H.L.; Swift, M.L.; Bedford, M.R. Effect of cultivar and environment on the feeding value of Western Canadian wheat and barley samples with and without enzyme supplementation. Can. J. Anim. Sci. 1998, 78, 649–656. [Google Scholar] [CrossRef]
- Kocher, A.; Hughes, R.J.; Barr, A.R. β-Glucanase reduces but does not eliminate variation in AME of barley varieties. Proc. Aust. Poult. Sci. Symp. 1997, 9, 142–145. [Google Scholar]
- Lemme, A.; Ravindran, V.; Bryden, W.L. Ileal digestibility of amino acids in feed ingredients for broilers. Worlds Poult. Sci. J. 2004, 60, 423–438. [Google Scholar] [CrossRef]
- Perttilä, S.; Valaja, J.; Jalava, T. Apparent ileal digestibility of amino acids and metabolisable energy value in grains for broilers. Agric. Food Sci. 2005, 14, 325–334. [Google Scholar] [CrossRef]
- Ravindran, V.; Hew, L.I.; Ravindran, G.; Bryden, W.L. Apparent ileal digestibility of amino acids in dietary ingredients for broiler chickens. Anim. Sci. 2005, 81, 85–97. [Google Scholar] [CrossRef]
- Al-Marzooqi, W.; Kadim, I.T.; Mahgoub, O.; Al-Busaidi, M.; Al-Lawati, S.M.; Al-Maqbaly, R.; Al-Wheebi, S.; Al-Bakery, A.N. Apparent ileal amino acids digestibility of four varieties of barley for two strains of chickens. Int. J. Poult. Sci. 2010, 9, 527–532. [Google Scholar]
- Szczurek, W. Standardized ileal digestibility of amino acids from several cereal grains and protein-rich feedstuffs in broiler chickens at the age of 30 days. J. Anim. Feed Sci. 2009, 18, 662–676. [Google Scholar] [CrossRef] [Green Version]
- Szczurek, W.; Szymczyk, B.; Arczewska-Włosek, A.; Świątkiewicz, S. Apparent and standardised ileal digestibility of amino acids in wheat, triticale and barley for broiler chickens at two different ages. Br. Poult. Sci. 2020, 61, 63–69. [Google Scholar] [CrossRef]
- Barua, M.; Abdollahi, M.R.; Zaefarian, F.; Wester, T.J.; Girish, C.K.; Ravindran, V. Influence of feed form on the standardised ileal amino acid digestibility of common grains for broiler chickens. Anim. Feed Sci. Technol. 2021, 272, 114743. [Google Scholar] [CrossRef]
- Ravindran, V.; Bryden, W.L. Amino acid availability in poultry in vitro and in vivo measurements. Aust. J. Agric. Res. 1999, 50, 889–908. [Google Scholar] [CrossRef]
- Stein, H.H.; Pedersen, C.; Wirt, A.R.; Bohlke, R.A. Additivity of values for apparent and standardized ileal digestibility of amino acids in mixed diets fed to growing pigs. J. Anim. Sci. 2005, 83, 2387–2395. [Google Scholar] [CrossRef] [PubMed]
- Perttilä, S.; Valaja, J.; Partanen, K.; Jalava, T.; Kiiskinen, T.; Palander, S. Effects of preservation method and β-glucanase supplementation on ileal amino acid digestibility and feeding value of barley for poultry. Br. Poult. Sci. 2001, 42, 218–229. [Google Scholar] [CrossRef]
- Wu, Y.B.; Ravindran, V.; Hendriks, W.H. Influence of exogenous enzyme supplementation on energy utilisation and nutrient digestibility of cereals for broilers. J. Sci. Food Agric. 2004, 84, 1817–1822. [Google Scholar] [CrossRef]
- Zaefarian, F.; Abdollahi, M.R.; Ravindran, V. Starch digestion in broiler chickens fed cereal diets. Anim. Feed Sci. Technol. 2015, 209, 16–29. [Google Scholar] [CrossRef]
- Weurding, R.E.; Veldman, A.; Veen, W.A.; van der Aar, P.J.; Verstegen, M.W. Starch digestion rate in the small intestine of broiler chickens differs among feedstuffs. J. Nutr. 2001, 131, 2329–2335. [Google Scholar] [CrossRef]
- Carré, B.; Idi, A.; Maisonnier, S.; Melcion, J.P.; Oury, F.X.; Gomez, J.; Pluchard, P. Relationships between digestibilities of food components and characteristics of wheats (Triticum aestivum) introduced as the only cereal source in a broiler chicken diet. Br. Poult. Sci. 2002, 43, 404–415. [Google Scholar] [CrossRef]
- Choct, M.; Annison, G. The inhibition of nutrient digestion by wheat pentosans. Br. J. Nutr. 1992, 67, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Choct, M.; Annison, G. Anti-nutritive effect of wheat pentosans in broiler chickens: Roles of viscosity and gut microflora. Br. Poult. Sci. 1992, 33, 821–834. [Google Scholar] [CrossRef]
- Smits, C.H.; Veldman, A.; Verstegen, M.W.; Beynen, A.C. Dietary carboxymethylcellulose with high instead of low viscosity reduces macronutrient digestion in broiler chickens. J. Nutr. 1997, 127, 483–487. [Google Scholar] [CrossRef]
- Perera, W.N.U.; Abdollahi, M.R.; Zaefarian, F.; Wester, T.J.; Ravindran, V. The interactive influence of barley particle size and enzyme supplementation on growth performance, nutrient utilization, and intestinal morphometry of broiler starters. Poult. Sci. 2020, 99, 4466–4478. [Google Scholar] [CrossRef]
- Hetland, H.; Svihus, B.; Olaisen, V. Effect of feeding whole cereals on performance, starch digestibility and duodenal particle size distribution in broiler chickens. Br. Poult. Sci. 2002, 43, 416–423. [Google Scholar] [CrossRef]
- Tari, L.M.; Perera, W.N.U.; Zaefarian, F.; Abdollahi, M.R.; Cowieson, A.J.; Ravindran, V. Influence of barley inclusion method and protease supplementation on growth performance, nutrient utilisation, and gastrointestinal tract development in broiler starters. Anim. Nutr. 2021, 8, 61–70. [Google Scholar] [CrossRef]
- Perera, W.N.U.; Abdollahi, M.R.; Zaefarian, F.; Wester, T.J.; Ravindran, V. Influence of Whole Barley Feeding and Supplemental Carbohydrases on Growth Performance, Nutrient Utilisation, and Gastrointestinal Tract Development in Broiler Starters; Private Bag 11 222; Monogastric Research Centre, School of Agriculture and Environment, Massey University: Palmerston North, New Zealand, Unpublished work.
- Edney, M.J.; Campbell, G.L.; Classen, H.L. The effect of β-glucanase supplementation on nutrient digestibility and growth in broilers given diets containing barley, oat groats or wheat. Anim. Feed Sci. Technol. 1989, 25, 193–200. [Google Scholar] [CrossRef]
- Smulikowska, S. Relationship between the stage of digestive tract development in chicks and the effect of viscosity reducing enzymes on fat digestion. J. Anim. Feed Sci. 1998, 7, 125–134. [Google Scholar]
- Smulikowska, S.; Mieczkowska, A.; Nguyen, C.V.; Babelewska, M. The influence of digesta viscosity on the development of the stomach, on in vitro small intestinal motility, and on digestion of nutrients in broiler chickens. J. Anim. Feed Sci. 2002, 11, 683–694. [Google Scholar] [CrossRef]
- Martinez, V.M.; Newman, R.K.; Newman, C.W. Barley diets with different fat sources have hypocholesterolemic effects in chicks. J. Nutr. 1992, 122, 1070–1076. [Google Scholar]
- Al-Marzooqi, W.; Leeson, S. Effect of dietary lipase enzyme on gut morphology, gastric motility, and long-term performance of broiler chicks. Poult. Sci. 2000, 79, 956–960. [Google Scholar] [CrossRef]
- Kalantar, M.; Khajali, F.; Yaghobfar, A. Effect of cereal type and enzyme addition on performance, pancreatic enzyme activity, intestinal microflora and gut morphology of broilers. Poult. Sci. J. 2016, 4, 63–71. [Google Scholar]
- Yasar, S.; Forbes, J.M. Performance and gastro-intestinal response of broiler chickens fed on cereal grain-based foods soaked in water. Br. Poult. Sci. 1999, 40, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Mathlouthi, N.; Mallet, S.; Saulnier, L.; Quemener, B.; Larbier, M. Effects of xylanase and β-glucanase addition on performance, nutrient digestibility, and physico-chemical conditions in the small intestine contents and caecal microflora of broiler chickens fed a wheat and barley-based diet. Anim. Res. 2002, 51, 395–406. [Google Scholar] [CrossRef]
- Karunaratne, N.D.; Newkirk, R.W.; Ames, N.P.; Van Kessel, A.G.; Bedford, M.R.; Classen, H.L. Hulless barley and β-glucanase affect ileal digesta soluble β-glucan molecular weight and digestive tract characteristics of coccidiosis-vaccinated broilers. Anim. Nutr. 2021, 7, 595–608. [Google Scholar] [CrossRef]
- Gamlath, J.; Aldred, G.P.; Panozzo, J.F. Barley (1→3; 1→4)-β-glucan and arabinoxylan content are related to kernel hardness and water uptake. J. Cereal Sci. 2008, 47, 365–371. [Google Scholar] [CrossRef]
- Roberts, J.R.; Ball, W.; Leary, A. Effects of different cereal grains on egg and egg shell quality in laying hens. Proc. Aust. Poult. Sci. Symp. 1998, 10, 199. [Google Scholar]
- Gohl, B.; Alden, S.; Elwinger, K.; Thomke, S. Influence of β-glucanase on feeding value of barley for poultry and moisture content of excreta. Br. Poult. Sci. 1978, 19, 41–47. [Google Scholar] [CrossRef]
- Francesch, M.; Brufau, J. Nutritional factors affecting excreta/litter moisture and quality. Worlds Poult. Sci. J. 2004, 60, 64–75. [Google Scholar] [CrossRef]
- Mayne, R.K.; Else, R.W.; Hocking, P.M. High litter moisture alone is sufficient to cause footpad dermatitis in growing turkeys. Br. Poult. Sci. 2007, 48, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Cengiz, Ö.; Köksal, B.H.; Önol, A.G.; Tatlı, O.; Sevim, Ö.; Avcı, H.; Bilgili, S.F. Influence of dietary enzyme supplementation of barley-based diets on growth performance and footpad dermatitis in broiler chickens exposed to early high-moisture litter. J. Appl. Poult. Res. 2012, 21, 117–125. [Google Scholar] [CrossRef]
- Shepherd, E.M.; Fairchild, B.D. Footpad dermatitis in poultry. Poult. Sci. 2010, 89, 2043–2051. [Google Scholar] [CrossRef]
- Cengiz, Ö.; Köksal, B.H.; Tatlı, O.; Sevim, Ö.; Ahsan, U.; Bilgili, S.F.; Önol, A.G. Effect of dietary tannic acid supplementation in corn-or barley-based diets on growth performance, intestinal viscosity, litter quality, and incidence and severity of footpad dermatitis in broiler chickens. Livest. Sci. 2017, 202, 52–57. [Google Scholar] [CrossRef]
- Kaldhusdal, M.; Hofshagen, M. Barley inclusion and avoparcin supplementation in broiler diets. 2. Clinical, pathological, and bacteriological findings in a mild form of necrotic enteritis. Poult. Sci. 1992, 71, 1145–1153. [Google Scholar] [CrossRef] [PubMed]
- Riddell, C.; Kong, X.M. The influence of diet on necrotic enteritis in broiler chickens. Avian Dis. 1992, 36, 499–503. [Google Scholar] [CrossRef]
- Yegani, M.; Korver, D.R. Factors affecting intestinal health in poultry. Poult. Sci. 2008, 87, 2052–2063. [Google Scholar] [CrossRef]
- Arscott, G.H.; Johnson, L.E.; Parker, J.E. The use of barley in high-efficiency broiler rations: 1. The influence of methionine, grit and stabilized animal fat on efficiency of utilization. Poult. Sci. 1955, 34, 655–662. [Google Scholar] [CrossRef]
- Petersen, V.E. A comparison of the feeding value for broilers of corn, grain sorghum, barley, wheat, and oats, and the influence of the various grains on the composition and taste of broiler meat. Poult. Sci. 1969, 48, 2006–2013. [Google Scholar] [CrossRef]
- de Blas, C.; Mateos, G.G.; Rebollar, P.G. FEDNA Tables of Composition and Nutritive Value of Foods for the Manufacture of Compound Feed, 3rd ed.; Spanish Foundation for the Development of Animal Nutrition: Madrid, Spain, 2010. [Google Scholar]
- Lázaro, R.; Garcia, M.; Aranibar, M.J.; Mateos, G.G. Effect of enzyme addition to wheat-, barley- and rye-based diets on nutrient digestibility and performance of laying hens. Br. Poult. Sci. 2003, 44, 256–265. [Google Scholar] [CrossRef]
- Brake, J.D.; Brann, D.E.; Griffey, C.A. Barley without enzyme supplementation in broiler grower and finisher diets. J. Appl. Poult. Res. 1997, 6, 422–431. [Google Scholar] [CrossRef]
- Campbell, G.L.; Rossnagel, B.G.; Bhatty, R. Evaluation of hull-less barley genotypes varying in extract viscosity in broiler chick diets. Anim. Feed Sci. Technol. 1993, 41, 191–197. [Google Scholar] [CrossRef]
- Li, S.; Sauer, W.C.; Huang, S.X.; Gabert, V.M. Effect of β-glucanase supplementation to hulless barley-or wheat-soybean meal diets on the digestibilities of energy, protein, β-glucans, and amino acids in young pigs. J. Anim. Sci. 1996, 74, 1649–1656. [Google Scholar] [CrossRef]
- Adibmoradi, M.; Navidshad, B.; Jahromi, M.F. The effect of moderate levels of finely ground insoluble fibre on small intestine morphology, nutrient digestibility and performance of broiler chickens. Ital. J. Anim. Sci. 2016, 15, 310–317. [Google Scholar] [CrossRef]
- Fry, R.E.; Allred, J.B.; Jensen, L.S.; McGinnis, J. Effect of pearling barley and of different supplements to diets containing barley on chick growth and feed efficiency. Poult. Sci. 1958, 37, 281–288. [Google Scholar] [CrossRef]
- Arscott, G.H.; Rose, R.J. Use of barley in high-efficiency broiler rations: 4. influence of amylolytic enzymes on efficiency of utilization, water consumption and litter condition. Poult. Sci. 1960, 39, 93–95. [Google Scholar] [CrossRef]
- Rose, R.J.; Arscott, G.H. Use of barley in high-efficiency broiler rations: 5. further studies on the use of enzymes, soaking and pelleting barley for chicks. Poult. Sci. 1962, 41, 124–130. [Google Scholar] [CrossRef]
- O’Neill, H.M.; Smith, J.A.; Bedford, M.R. Multicarbohydrase enzymes for non-ruminants. Asian-Australas. J. Anim. Sci. 2014, 27, 290. [Google Scholar] [CrossRef]
- Hesselman, K.; Elwinger, K.; Thomke, S. Influence of increasing levels of β-glucanase on the productive value of barley diets for broiler chickens. Anim. Feed Sci. Technol. 1982, 7, 351–358. [Google Scholar] [CrossRef]
- Danisco Animal Nutrition. Feed Enzyme Innovation-Past Present and Potential. International Poultry Production—September. 2014. Available online: http://animalnutrition.dupont.com/fileadmin/user_upload/live/animal_nutrition/documents/open/Feed-enzyme-innovation-International-Poultry-Production-September_2014.pdf (accessed on 20 February 2018).
- Sheppy, C. The current feed enzyme market and likely trends. In Enzymes in Farm Animal Nutrition, 1st ed.; Bedford, M.R., Partridge, G.G., Eds.; CABI Publishing: Oxon, UK, 2001; pp. 1–10. [Google Scholar]
- Ravindran, V. Feed enzymes: The science, practice, and metabolic realities. J. Appl. Poult. Res. 2013, 22, 628–636. [Google Scholar] [CrossRef]
- Bedford, M.R. The effect of enzymes on digestion. J. Appl. Poult. Res. 1996, 5, 370–378. [Google Scholar] [CrossRef]
- González-Ortiz, G.; Kozłowski, K.; Drażbo, A.; Bedford, M.R. Response of turkeys fed wheat-barley-rye based diets to xylanase supplementation. Anim. Feed Sci. Technol. 2017, 229, 117–123. [Google Scholar] [CrossRef]
- Ravn, J.L.; Martens, H.J.; Pettersson, D.; Pedersen, N.R. A commercial GH 11 xylanase mediates xylan solubilisation and degradation in wheat, rye and barley as demonstrated by microscopy Techniques and wet chemistry methods. Anim. Feed Sci. Technol. 2016, 219, 216–225. [Google Scholar] [CrossRef]
- Rodriguez, M.L.; Rebole, A.; Velasco, S.; Ortiz, L.T.; Trevino, J.; Alzueta, C. Wheat- and barley-based diets with or without additives influence broiler chicken performance, nutrient digestibility and intestinal microflora. J. Sci. Food Agric. 2012, 92, 184–190. [Google Scholar] [CrossRef]
- Gabriel, I.; Lessire, M.; Mallet, S.; Guillot, J.F. Microflora of the digestive tract: Critical factors and consequences for poultry. Worlds Poult. Sci. J. 2006, 62, 499–511. [Google Scholar]
- Ravindran, V.; Selle, P.H.; Bryden, W.L. Effects of phytase supplementation, individually and in combination, with glycanase, on the nutritive value of wheat and barley. Poult. Sci. 1999, 78, 1588–1595. [Google Scholar] [CrossRef]
- Ravindran, V. Phytases in poultry nutrition. An overview. Proc. Aust. Poult. Sci. Symp. 1995, 7, 135–139. [Google Scholar]
- Eeckhout, W.; De Paepe, M. Total phosphorus, phytate-phosphorus and phytase activity in plant feedstuffs. Anim. Feed Sci. Technol. 1994, 47, 19–29. [Google Scholar] [CrossRef]
- Perera, W.N.U. Influence of Feed Processing and Enzyme Supplementation on Performance, Nutrient Utilisation and Gut Morphology of Poultry Fed Barley-Based Diets. Ph.D. Thesis, Massey University, Palmerston North, Manawatu, New Zealand, 25 November 2020. [Google Scholar]
- Lamp, A.E.; Evans, A.M.; Moritz, J.S. The effects of pelleting and glucanase supplementation in hulled barley based diets on feed manufacture, broiler performance, and digesta viscosity. J. Appl. Poult. Res. 2015, 24, 295–303. [Google Scholar] [CrossRef]
- Amerah, A.M.; Ravindran, V.; Lentle, R.G.; Thomas, D.G. Feed particle size: Implications on the digestion and performance of poultry. Worlds Poult. Sci. J. 2007, 63, 439–455. [Google Scholar] [CrossRef]
- Morel, P.C.; Cottam, Y.H. Effects of particle size of barley on intestinal morphology, growth performance and nutrient digestibility in pigs. Asian-Australas. J. Anim. Sci. 2007, 20, 1738–1745. [Google Scholar] [CrossRef]
- Nair, S.; Knoblauch, M.; Ullrich, S.; Baik, B.K. Microstructure of hard and soft kernels of barley. J. Cereal Sci. 2011, 54, 354–362. [Google Scholar] [CrossRef]
- McIntosh, J.I.; Slinger, S.J.; Sibbald, I.R.; Ashton, G.C. Factors affecting the metabolizable energy content of poultry feeds: 7. the effects of grinding, pelleting and grit feeding on the availability of the energy of wheat, corn, oats and barley; 8. a study on the effects of dietary balance. Poult. Sci. 1962, 41, 445–456. [Google Scholar] [CrossRef]
- Svihus, B.; Herstad, O.; Newman, C.W.; Newman, R.K. Comparison of performance and intestinal characteristics of broiler chickens fed on diets containing whole, rolled or ground barley. Br. Poult. Sci. 1997, 38, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, M.R.; Ravindran, V.; Svihus, B. Pelleting of broiler diets: An overview with emphasis on pellet quality and nutritional value. Anim. Feed Sci. Technol. 2013, 179, 1–23. [Google Scholar] [CrossRef]
- Arscott, G.H.; Hulit, V.L.; Pautz, R.K. The use of barley in high-efficiency broiler rations: 3. effect of pellets and reground pellets on growth and efficiency of feed utilization. Poult. Sci. 1957, 36, 1388–1389. [Google Scholar] [CrossRef]
- Al Bustany, Z. The effect of pelleting an enzyme-supplemented barley-based broiler diet. Anim. Feed Sci. Technol. 1996, 58, 283–288. [Google Scholar] [CrossRef]
- Khalil, M.M.; Abdollahi, M.R.; Zaefarian, F.; Ravindran, V. Influence of feed form on the apparent metabolisable energy of feed ingredients for broiler chickens. Anim. Feed Sci. Technol. 2021, 271, 114754. [Google Scholar] [CrossRef]
- Classen, H.L.; Campbell, G.L.; Rossnagel, B.G.; Bhatty, R.; Reichert, R.D. Studies on the use of hulless barley in chick diets: Deleterious effects and methods of alleviation. Can. J. Anim. Sci. 1985, 65, 725–733. [Google Scholar] [CrossRef]
- Campbell, G.L.; Classen, H.L.; Balance, G.M. Gamma irradiation treatment of cereal grains for chick diets. J. Nutr. 1986, 116, 560–569. [Google Scholar] [CrossRef] [PubMed]
- García, M.; Lázaro, R.; Latorre, M.A.; Gracia, M.I.; Mateos, G.G. Influence of enzyme supplementation and heat processing of barley on digestive traits and productive performance of broilers. Poult. Sci. 2008, 87, 940–948. [Google Scholar] [CrossRef] [PubMed]
- Vranjes, M.V.; Wenk, C. The influence of extruded vs. untreated barley in the feed, with and without dietary enzyme supplement on broiler performance. Anim. Feed Sci. Technol. 1995, 54, 21–32. [Google Scholar] [CrossRef]
- Silversides, F.G.; Bedford, M.R. Effect of pelleting temperature on the recovery and efficacy of a xylanase enzyme in wheat-based diets. Poult. Sci. 1999, 78, 1184–1190. [Google Scholar] [CrossRef]
- Svihus, B.; Edvardsen, D.H.; Bedford, M.R.; Gullord, M. Effect of methods of analysis and heat treatment on viscosity of wheat, barley and oats. Anim. Feed Sci. Technol. 2000, 88, 1–12. [Google Scholar] [CrossRef]
- Abdollahi, M.R.; Ravindran, V.; Wester, T.J.; Ravindran, G.; Thomas, D.V. Influence of conditioning temperature on the performance, nutrient utilisation and digestive tract development of broilers fed on maize-and wheat-based diets. Br. Poult. Sci. 2010, 51, 648–657. [Google Scholar] [CrossRef]
- Abdollahi, M.R.; Ravindran, V.; Wester, T.J.; Ravindran, G.; Thomas, D.V. Influence of feed form and conditioning temperature on performance, apparent metabolisable energy and ileal digestibility of starch and nitrogen in broiler starters fed wheat-based diet. Anim. Feed Sci. Technol. 2011, 168, 88–99. [Google Scholar] [CrossRef]
- Papadopoulos, M.C. Effect of processing on high-protein feedstuffs: A review. Biol. Wastes 1989, 29, 123–138. [Google Scholar] [CrossRef]
- Jensen, L.S. Influence of pelleting on the nutritional needs of poultry. Asian-Australas. J. Anim. Sci. 2000, 13, 35–46. [Google Scholar]
- Inborr, J.; Bedford, M.R. Stability of feed enzymes to steam pelleting during feed processing. Anim. Feed Sci. Technol. 1994, 46, 179–196. [Google Scholar] [CrossRef]
- Singh, Y.; Amerah, A.M.; Ravindran, V. Whole grain feeding: Methodologies and effects on performance, digestive tract development and nutrient utilisation of poultry. Anim. Feed Sci. Technol. 2014, 190, 1–18. [Google Scholar] [CrossRef]
- Adret-Hausberger, M.; Cumming, R.B. Behavioural Aspects of Food Selection in Young Chickens. In Recent Advances in Animal Nutrition in Australia; Farrell, D.J., Ed.; University of New England: Armidale, Australia, 1985. [Google Scholar]
- Biggs, P.; Parsons, C.M. The effects of whole grains on nutrient digestibilities, growth performance, and cecal short-chain fatty acid concentrations in young chicks fed ground corn-soybean meal diets. Poult. Sci. 2009, 88, 1893–1905. [Google Scholar] [CrossRef]
- Nahas, J.; Lefrancois, M.R. Effects of feeding locally grown whole barley with or without enzyme addition and whole wheat on broiler performance and carcass traits. Poult. Sci. 2001, 80, 195–202. [Google Scholar] [CrossRef]
- Moss, A.F.; Sydenham, C.J.; Truong, H.H.; Liu, S.Y.; Selle, P.H. The interactions of exogenous phytase with whole grain feeding and effects of barley as the whole grain component in broiler diets based on wheat, sorghum and wheat-sorghum blends. Anim. Feed Sci. Technol. 2017, 227, 1–12. [Google Scholar] [CrossRef]
- Taylor, R.D.; Jones, G.P.D. The incorporation of whole grain into pelleted broiler chicken diets. II. Gastrointestinal and digesta characteristics. Br. Poult. Sci. 2004, 45, 237–246. [Google Scholar] [CrossRef]
- Svihus, B.; Newman, R.K.; Newman, C.W. Effect of soaking, germination, and enzyme treatment of whole barley on nutritional value and digestive tract parameters of broiler chickens. Br. Poult. Sci. 1997, 38, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.D.; Classen, H.L.; Riddell, C. Feeding broiler chickens wheat and barley diets containing whole, ground and pelleted grain. Poult. Sci. 2002, 81, 995–1003. [Google Scholar] [CrossRef]
- Fengler, A.I.; Aherne, F.X.; Robblee, A.R. Influence of germination of cereals on viscosity of their aqueous extracts and nutritive value. Anim. Feed Sci. Technol. 1990, 28, 243–253. [Google Scholar] [CrossRef]
- Al-Kaisey, M.T.; Mohammed, M.A.; Alwan, A.K.H.; Mohammed, M.H. The effect of gamma irradiation on the viscosity of two barley cultivars for broiler chicks. Radiat. Phys. Chem. 2002, 63, 295–297. [Google Scholar] [CrossRef]
- Kim, C.H.; Kang, H.K. Effects of fermented barley or wheat as feed supplement on growth performance, gut health and meat quality of broilers. Eur. Poult. Sci. 2016, 80, 162. [Google Scholar]
- Newman, R.K.; Newman, C.W.; Eslick, R.F. Effect of fungal fermentation and other treatments on nutritional value of waxy barley fed to chicks. Poult. Sci. 1985, 64, 1514–1518. [Google Scholar] [CrossRef]
- Yaşar, S.; Gök, M.S.; Gürbüz, Y. Performance of broilers fed raw or fermented and redried wheat, barley, and oat grains. Turk. J. Vet. Anim. Sci. 2016, 40, 313–322. [Google Scholar] [CrossRef]
- Von Wettstein, D.; Warner, J.; Kannangara, C.G. Supplements of transgenic malt or grain containing (1, 3–1, 4)-β-glucanase increase the nutritive value of barley-based broiler diets to that of maize. Br. Poult. Sci. 2003, 44, 438–449. [Google Scholar] [CrossRef]
Reference | Grain Type | Hull/ Hull-Less | Starch Type | n 1 | Starch | Amylose 2 | Amylopectin 2 |
---|---|---|---|---|---|---|---|
[5] | Barley | Hull-less | Normal | 2 | 642 | 158 (25) | 483 (75) |
Normal (CG 3) | 2 | 605 | 171 (28) | 433 (72) | |||
High amylose | 2 | 563 | 243 (43) | 320 (57) | |||
Waxy | 2 | 622 | 33 (5.0) | 589 (95) | |||
Waxy (CG) | 1 | 582 | 27 (5.0) | 555 (95) | |||
Zero amylose waxy | 1 | 585 | 0 (0) | 585 (100) | |||
Maize 4 | Normal | 1 | - | - (25) | - (75) | ||
Waxy | 1 | - | - (1.0) | - (99) | |||
[32] | Wheat | Normal | 1 | 605 | 163 (27) | 442 (73) | |
Waxy | 1 | 563 | 18 (3.0) | 545 (97) | |||
Maize 4 | Normal | 1 | - | - (21) | - (79) | ||
Waxy | 1 | - | - (3.0) | - (97) | |||
[33] | Barley | Hull-less | Normal | 2 | 616 | 248 (40) | 368 (60) |
High amylose | 2 | 537 | 416 (77) | 121 (23) | |||
Waxy | 2 | 561 | 51 (9.0) | 510 (91) | |||
Zero amylose waxy | 2 | 533 | 0 (0.0) | 533 (100) | |||
[28] | Barley | Hulled | Normal | 28 | 588 | 147 (25) | 441 (75) |
Hull-less | Normal | 6 | 609 | 152 (25) | 457 (75) | ||
Hulled | Waxy | 1 | 552 | 44 (8.0) | 508 (92) | ||
Hull-less | Waxy | 3 | 582 | 29 (5.0) | 553 (95) | ||
Hull-less | High amylose | 1 | 535 | 193 (36) | 342 (64) | ||
[34] | Barley | Hulled | Normal | 1 | 598 | 168 (28) | 430 (72) |
Hull-less | Normal | 1 | 655 | 164 (25) | 491 (75) | ||
Hull-less | Waxy | 2 | 614 | 37 (6.0) | 577 (94) | ||
[13] | Wheat | Hulled | Normal | 1 | 537 | 229 (43) | 308 (57) |
Barley | Hulled | Normal | 1 | 610 | 267 (44) | 343 (56) | |
Hull-less | Waxy | 1 | 554 | 77.2 (14) | 477 (86) |
Reference | [44] | [34] | [45] | [46] | [27] | [13] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Grain Type | Wheat | Barley | Barley | Maize | Wheat | Wheat | Barley | Barley | Maize | Wheat | Wheat | Barley | ||||
Starch Type | Normal | Waxy | Normal | Waxy | ||||||||||||
H/HL 1 | H | HL | HL | H | HL | |||||||||||
n 2 | 16 | 1 | 1 | 1 | 1 | 1 | 7 | 7 | 6 | 7 | 21 | 27 | 29 | 1 | 1 | 1 |
DM | 879−889 | 890 | 899 | 894 | 903 | 896 | 895 | 898 | 940 | 921 | 882 | 903 | 877 | 892 | 893 | 907 |
CP | 120 | 116 | 104 | 105 | 137 | 94.9 | 89.4 | 103 | 162 | 143 | 123 | 93.5 | 137 | 141 | 101 | 133 |
Indispensable AA | ||||||||||||||||
Arginine | 5.8 | 5.55 | 4.91 | 4.08 | 6.39 | 5.47 | 4.44 | 5.19 | 7.6 | 6.8 | 5.99 | 4.33 | 6.56 | 6.79 | 5.28 | 6.44 |
Histidine | 2.9 | 3.11 | 2.58 | 2.3 | 3.45 | 2.57 | 2.71 | 2.85 | 3.8 | 3 | 2.9 | 2.87 | 3.47 | 3.46 | 2.35 | 2.82 |
Isoleucine | 4.2 | 4.18 | 3.89 | 3.54 | 5.24 | 3.79 | 3.59 | 4.15 | 5.3 | 4.8 | 3.85 | 3.07 | 4.25 | 4.94 | 3.69 | 4.87 |
Leucine | 7.6 | 8.15 | 7.24 | 6.47 | 10.1 | 7.7 | 12.1 | 7.77 | 10.5 | 9.9 | 8.3 | 11.78 | 9.14 | 9.82 | 7.02 | 8.99 |
Lysine | 3.4 | 4.06 | 3.43 | 3.07 | 5.23 | 4.02 | 2.83 | 3.44 | 4.4 | 4.9 | 4.29 | 2.79 | 3.73 | 3.95 | 3.84 | 4.55 |
Methionine | 1.8 | 1.85 | 1.69 | 1.66 | 1.89 | 1.45 | 1.63 | 1.45 | 2.5 | 2.4 | 1.93 | 1.93 | 2.01 | 2.52 | 2.16 | 2.23 |
Phenylalanine | 5.1 | 6.56 | 5.13 | 4.51 | 8.16 | 5.36 | 4.77 | 5.08 | 7.4 | 7.6 | 6.3 | 4.63 | 6.37 | 6.99 | 5.13 | 7.31 |
Threonine | 3.3 | 3.77 | 3.55 | 3.1 | 4.68 | 3.46 | 3.83 | 3.47 | 4.5 | 4.7 | 4.17 | 3.41 | 3.92 | 4.14 | 3.67 | 4.18 |
Valine | 5.2 | 5.95 | 5.46 | 4.88 | 7.08 | 5.36 | 4.83 | 5.02 | 6.6 | 7 | 5.44 | 4.2 | 5.26 | 6.49 | 5.54 | 6.82 |
Tryptophan | - | - | - | - | - | 1.23 | 0.46 | 0.54 | - | - | 1.51 | 0.7 | 1.58 | |||
Dispensable AA | ||||||||||||||||
Alanine | 4.2 | 4.54 | 4.12 | 3.69 | 5.79 | 4.58 | 7.39 | 4.23 | 5.5 | 5.5 | 4.82 | 7.38 | 4.71 | 4.99 | 4.28 | 4.98 |
Aspartic acid | 6 | 7.73 | 6.72 | 6.37 | 10.9 | 6.36 | 6.37 | 5.93 | 8 | 8.1 | 7.11 | 6.26 | 6.84 | 7.46 | 6.82 | 8.09 |
Cysteine 3 | 2.6 | 2.33 | 2.26 | 2.21 | 2.41 | - | - | - | 3.5 | 2.8 | 2.57 | 2.09 | 3.03 | 3.50 | 2.65 | 3.00 |
Glutamic acid | 31.4 | 31.8 | 27.5 | 24.2 | 37.9 | 25.2 | 18.2 | 31 | 46.5 | 35.8 | 29.9 | 17.4 | 40.4 | 45.1 | 23.6 | 34.4 |
Glycine 3 | 4.8 | 4.62 | 4.02 | 3.56 | 5.54 | 4.35 | 3.83 | 4.8 | 6.5 | 5.4 | 4.74 | 3.47 | 5.53 | 5.95 | 4.38 | 4.99 |
Proline | 11 | 14.2 | 11.4 | 10.37 | 18.3 | - | - | - | 16.4 | 15.9 | 15.62 | 9.82 | 15.76 | 15.2 | 10.6 | 16.1 |
Serine | 5.5 | 4.53 | 4.26 | 3.63 | 5.25 | 4.91 | 4.64 | 5.86 | 7.2 | 6.1 | 5.4 | 4.74 | 6.67 | 7.10 | 4.50 | 5.23 |
Tyrosine | - | - | - | - | - | 3.01 | 3 | 2.54 | - | - | 3.47 | 3.46 | 3.66 | 4.68 | 3.41 | 4.36 |
Reference | Grain Type | n 1 | Starch Type 2 | H/ HL 3 | NSP 5 | Proportion of Total NSP (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AX | A | X | BG | CE | M | GA | U | GL | Total | |||||||
[49] | Wheat | - | - - - | - - - | S 4 | 18 | - | - | 4.0 | - | t 8 | 2.0 | t | - | 24 | 21 |
I 4 | 63 | - | - | 4.0 | 20 | t | 1.0 | 2.0 | - | 90 | 79 | |||||
Barley 6 | - | S | 8.0 | - | - | 36 | - | t | 1.0 | t | - | 45 | 27 | |||
I | 71 | - | - | 7.0 | 39 | 2.0 | 1.0 | 2.0 | - | 122 | 73 | |||||
Maize | - | S | 1.0 | - | - | t | - | t | t | t | - | 1.0 | 1.0 | |||
I | 51 | - | - | - | 20 | 2.0 | 6.0 | t | - | 80 | 99 | |||||
[50] | Wheat | 16 | - | - | S | - | 10 | 7.0 | - | - | 0.4 | 1.8 | - | 3.0 | 23 | 18 |
I | - | 41 | 25 | - | - | 1.3 | 1.4 | - | 34 | 103 | 82 | |||||
[47] 7 | Barley | 1 | N | H | S | 77 | 2.4 | 3.2 | 22 | 40 | 0.7 | 0.7 | 1.5 | 32 | 40 | 17 |
I | 21 | 50 | 25 | 3.6 | 2.0 | 2.9 | 55 | 200 | 83 | |||||||
1 | HA | HL | S | 90 | 4 | 5.6 | 26 | 47 | 1.4 | 0.8 | 1.7 | 49 | 63 | 20 | ||
I | 23 | 57 | 43 | 6.7 | 2.3 | 3.4 | 67 | 249 | 80 | |||||||
1 | W | H | S | 75 | 3.3 | 4.6 | 31 | 35 | 0.9 | 0.8 | 2.1 | 46 | 58 | 23 | ||
I | 22 | 45 | 30 | 3.7 | 2.0 | 3.1 | 50 | 191 | 77 | |||||||
1 | N | H | S | 83 | 2.6 | 3.2 | 15 | 42 | 0.8 | 0.7 | 1.1 | 21 | 29 | 13 | ||
I | 23 | 55 | 13 | 6.7 | 2.1 | 3.5 | 49 | 194 | 87 | |||||||
1 | N | HL | S | 52 | 3.5 | 4.9 | 24 | 19 | 1 | 1.1 | 1.5 | 32 | 44 | 26 | ||
I | 17 | 27 | 22 | 3.9 | 1.6 | 1.9 | 33 | 125 | 74 | |||||||
1 | HA | HL | S | 57 | 4.5 | 6.6 | 26 | 16 | 1.4 | 0.8 | 1.7 | 48 | 63 | 28 | ||
I | 18 | 28 | 48 | 4.7 | 1.5 | 1.9 | 42 | 160 | 72 | |||||||
1 | W | HL | S | 48 | 2.8 | 3.6 | 30 | 14 | 0.9 | 0.7 | 1.9 | 37 | 46 | 27 | ||
I | 18 | 24 | 26 | 4.2 | 1.8 | 1.7 | 33 | 123 | 73 | |||||||
1 | W | HL | S | 120 | 7.8 | 13 | 12 | 41 | 3.7 | 1.8 | 2.4 | 123 | 152 | 30 | ||
I | 38 | 61 | 137 | 10 | 2.9 | 3.3 | 67 | 360 | 70 | |||||||
[28] | Barley | 28 | N | H | S | 13.7 | - | - | - | 127 | - | - | - | - | 106 | 31 |
I | 116 | - | - | - | - | - | - | - | 232 | 69 | ||||||
1 | W | H | S | 15.5 | - | - | - | 177 | - | - | - | - | 184 | 45 | ||
I | 109 | - | - | - | - | - | - | - | 223 | 55 | ||||||
6 | N | HL | S | 22.6 | - | - | - | 92 | - | - | - | - | 125 | 49 | ||
I | 66.1 | - | - | - | - | - | - | - | 128 | 51 | ||||||
3 | W | HL | S | 24.1 | - | - | - | 127 | - | - | - | - | 200 | 64 | ||
I | 62.9 | - | - | - | - | - | - | - | 114 | 36 | ||||||
1 | HA | HL | S | 20.5 | - | - | - | 140 | - | - | - | - | 222 | 64 | ||
I | 60.8 | - | - | - | - | - | - | - | 125 | 36 |
Reference | [90] | [91] | [27] | [13] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Grain Type | Barley | Maize | Barley | Barley | Maize | Wheat | Wheat | Hulled Barley | Hull-Less Barley | |||
Wild 1 | LP 2 | Wild | LP | Wild | LP | |||||||
n 3 | 1 | 1 | 1 | 1 | 1 | 1 | 21 | 27 | 29 | 1 | 1 | 1 |
Calcium | 0.6 | 0.6 | 0.02 | 0.03 | 0.47 | 0.49 | 0.59 | 0.04 | 0.4 | 0.35 | 0.39 | 0.36 |
Phosphorus (P) | 4.1 | 3.3 | 3.2 | 3.2 | 3.63 | 3.52 | 4.3 | 3.17 | 3.67 | 4.26 | 3.25 | 3.86 |
Phytate P | 2.3 | 1.1 | 2.2 | 0.9 | 2.38 | 0.05 | 2.81 | 2.26 | 1.92 | 2.22 | 1.32 | 1.79 |
Non-phytate P | 1.8 | 2.2 | 1 | 2.3 | 1.25 | 3.47 | 1.49 | 0.91 | 1.75 | 2.04 | 1.93 | 2.07 |
Magnesium | 1.3 | 1.3 | 1.3 | 1.2 | 1.2 | 1.2 | 1.63 | 1.45 | 1.56 | 1.45 | 1.28 | 1.39 |
Potassium | - | - | - | - | - | - | 5.53 | 3.96 | 4.33 | 4.93 | 4.25 | 5.62 |
Sodium | - | - | - | - | - | - | 0.05 | 0.003 | 0.005 | <0.06 | 0.20 | 0.10 |
Iron | - | - | - | - | 0.062 | 0.071 | 0.04 | 0.02 | 0.04 | 0.06 | 0.06 | 0.06 |
Chloride | - | - | - | - | - | - | - | - | - | 0.71 | 1.31 | 1.27 |
Manganese | 0.017 | 0.02 | 0.007 | 0.007 | 0.016 | 0.015 | 0.015 | 0.005 | 0.032 | - | - | - |
Zinc | 0.030 | 0.04 | 0.010 | 0.010 | 0.023 | 0.024 | 0.024 | 0.021 | 0.022 | - | - | - |
Copper | 0.009 | 0.01 | 0.006 | 0.006 | 0.003 | 0.004 | 0.005 | 0.002 | 0.004 | - | - | - |
Reference | Grain | Inclusion Level (g/kg of Diet) (g/kg Diet) | Sampling Point | Major NSP 1 (g/kg) | Bird Age (d) | Viscosity (cP) |
---|---|---|---|---|---|---|
[111] | Maize | 452 | Small intestine | Soluble BG: 0.2 | 14 | 1.7 |
Barley | 698 | Soluble BG: 17.2 | 2.4 | |||
[98] | Maize | 600 | PSI 2 | - | 22 | 1.0 |
Low viscosity barley | Total BG: 32.3 | 13 | ||||
High viscosity barley | Total BG: 38.7 | 29 | ||||
[110] | Hull-less normal starch barley | 610 | PSI 2 | Total BG: 60 | 21 | 178 |
DSI 2 | 353 | |||||
Hull-less waxy starch barley | PSI | Total BG: 73 | 376 | |||
DSI | 440 | |||||
[112] | Triticale | 686/719 3 | Ileum | Soluble AX:12.3 | 35 | 6.0 |
Rye | 621/652 3 | Soluble AX: 27.3 | 140 | |||
Wheat | 745/740 3 | Soluble AX: 10.6 | 3.0 | |||
[101] | Barley | 600 | Ileum | - | 28 | 3.2 |
Sorghum | 623 | - | 2.2 | |||
Wheat | - | 7.3 | ||||
Maize | - | 2.4 | ||||
[109] | Wheat | 657 | Foregut 4 | - | Average value of 20, 25, 30, 35 | 2.7 |
Hindgut 4 | - | 8.0 | ||||
Barley | 660 | Foregut | - | 21 | ||
Hindgut | - | 28 | ||||
[80,81] | Wheat | 629 | Jejunum | Total BG: 7.74 | 21 | 4.99 |
Hulled normal starch barley | 565 | Total BG: 38.5 | 2.81 | |||
Hull-less waxy starch barley | 314/260 5 | Total BG: 68.6 | 3.51 |
Reference | Grain Type | AME | AMEn |
---|---|---|---|
[125] | Pearled rice | 17.36 | |
Maize | 15.83 | ||
Sorghum | 15.77 | ||
Wheat | 14.32 | ||
Triticale | 13.83 | ||
Barley | 11.92 | ||
Rye | 11.34 | ||
[116] | Maize | 14.01 | |
Hull-less barley | 11.12 | ||
Hulled barley | 10.05 | ||
[34] | Hull-less normal starch barley | 12.97 | |
Hulled normal starch barley | 12.72 | ||
Hull-less waxy starch barley | 11.23 | ||
[126] | Sorghum | 15.0 | |
Barley | 12.5 | ||
[119] | Maize Barley | 10.75 | |
Wheat | 10.74 | ||
Sorghum | 10.64 | ||
Barley | 9.91 | ||
[13] | Hull-less waxy starch barley | 11.38 | 11.11 |
Hulled normal starch barley | 13.90 | 13.63 | |
Wheat | 14.71 | 14.40 | |
[127] | Maize | 14.64 | 14.39 |
Sorghum | 14.00 | 13.74 | |
Wheat | 11.10 | 10.78 | |
Barley | 10.24 | 9.92 |
Reference | [46] | [13] | [137] | [138] | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age of the Birds (d) | 21 | 21 | 14 | 28 | 24 | ||||||||||
Grain Type 1 | W | B | W | B 2 | W | T | B | W | T | B | M | S | W | B | |
NSH | WSHL | ||||||||||||||
Crude protein | 0.872 | 0.797 | 0.849 | 0.788 | 0.747 | - | - | - | - | - | - | 0.829 | 0.808 | 0.797 | 0.711 |
Indispensable AA | |||||||||||||||
Arginine | 0.852 | 0.804 | 0.838 | 0.786 | 0.748 | 0.89 | 0.79 | 0.77 | 0.87 | 0.88 | 0.82 | 0.873 | 0.841 | 0.746 | 0.715 |
Histidine | 0.870 | 0.807 | 0.896 | 0.797 | 0.750 | 0.90 | 0.86 | 0.76 | 0.89 | 0.93 | 0.91 | 0.841 | 0.737 | 0.775 | 0.714 |
Isoleucine | 0.904 | 0.839 | 0.868 | 0.791 | 0.745 | 0.91 | 0.85 | 0.81 | 0.89 | 0.93 | 0.92 | 0.825 | 0.809 | 0.769 | 0.684 |
Leucine | 0.905 | 0.848 | 0.885 | 0.811 | 0.760 | 0.92 | 0.88 | 0.83 | 0.88 | 0.96 | 0.88 | 0.898 | 0.843 | 0.805 | 0.736 |
Lysine | 0.837 | 0.805 | 0.832 | 0.749 | 0.707 | 0.85 | 0.79 | 0.78 | 0.82 | 0.82 | 0.82 | 0.767 | 0.758 | 0.635 | 0.639 |
Methionine | 0.914 | 0.883 | 0.914 | 0.846 | 0.757 | 0.92 | 0.85 | 0.76 | 0.90 | 0.90 | 0.82 | 0.890 | 0.846 | 0.813 | 0.760 |
Phenylalanine | 0.938 | 0.909 | 0.897 | 0.814 | 0.780 | 0.9 | 0.84 | 0.8 | 0.89 | 0.91 | 0.85 | - | - | - | - |
Threonine | 0.854 | 0.806 | 0.784 | 0.708 | 0.671 | 0.79 | 0.81 | 0.75 | 0.79 | 0.88 | 0.87 | 0.809 | 0.794 | 0.727 | 0.701 |
Valine | 0.877 | 0.825 | 0.832 | 0.786 | 0.740 | 0.86 | 0.86 | 0.79 | 0.88 | 0.93 | 0.86 | 0.833 | 0.808 | 0.755 | 0.722 |
Tryptophan | - | - | - | - | - | 0.90 | 0.90 | 0.86 | 0.89 | 0.95 | 0.92 | 0.719 | 0.799 | 0.747 | 0.667 |
Dispensable AA | |||||||||||||||
Alanine | 0.838 | 0.781 | 0.826 | 0.740 | 0.699 | 0.83 | 0.82 | 0.76 | 0.79 | 0.91 | 0.79 | 0.878 | 0.843 | 0.692 | 0.671 |
Aspartic acid | 0.838 | 0.781 | 0.820 | 0.753 | 0.726 | 0.87 | 0.84 | 0.75 | 0.76 | 0.96 | 0.81 | 0.818 | 0.814 | 0.682 | 0.674 |
Cysteine | 0.908 | 0.839 | 0.816 | 0.819 | 0.763 | 0.88 | 0.82 | 0.75 | 0.84 | 0.82 | 0.79 | 0.857 | 0.781 | 0.862 | 0.815 |
Glutamic acid | 0.966 | 0.876 | 0.957 | 0.873 | 0.819 | 0.96 | 0.92 | 0.85 | 0.95 | 0.93 | 0.91 | 0.895 | 0.847 | 0.914 | 0.804 |
Glycine | 0.841 | 0.767 | 0.818 | 0.722 | 0.682 | 0.83 | 0.82 | 0.72 | 0.79 | 0.84 | 0.85 | 0.745 | 0.713 | 0.731 | 0.652 |
Proline | 0.954 | 0.866 | 0.925 | 0.856 | 0.811 | 0.95 | 0.89 | 0.86 | 0.96 | 0.94 | 0.91 | 0.864 | 0.797 | 0.912 | 0.808 |
Serine | 0.891 | 0.822 | 0.828 | 0.738 | 0.693 | 0.87 | 0.83 | 0.76 | 0.86 | 0.91 | 0.83 | 0.858 | 0.831 | 0.824 | 0.736 |
Tyrosine | - | - | 0.889 | 0.795 | 0.737 | 0.89 | 0.85 | 0.76 | 0.91 | 0.95 | 0.87 | - | - | - | - |
Reference | Grain Type | H/HL 1 | Starch Type | Total β-Glucans (g/kg) | Starch Digestibility Coefficient |
---|---|---|---|---|---|
[35] | Barley | H | Normal | 31 2 | 0.91 |
Barley | H | Waxy | 40 2 | 0.87 | |
Barley | H | High Amylose | 39 2 | 0.89 | |
[67] | Wheat | - | - | - | 0.79 |
Barley | - | - | - | 0.96 | |
Oat | - | - | - | 0.99 | |
[144] | Wheat | - | - | - | 0.944 |
Maize | - | - | - | 0.970 | |
Barley | - | - | - | 0.981 | |
Sorghum | - | - | - | 0.953 | |
[34] | Barley | H | Normal | 50 | 0.804 |
Barley | HL | Normal | 40 | 0.837 | |
Barley | HL | Waxy | 64 | 0.587 | |
[101] | Maize | - | - | - | 0.95 |
Wheat | - | - | - | 0.97 | |
Sorghum | - | - | - | 0.93 | |
Barley | - | - | - | 0.93 | |
[13] | Wheat | - | - | 7.74 | 0.987 |
Barley | H | Normal | 38.5 | 0870 | |
HL | Waxy | 68.6 | 0.987 | ||
[127] | Maize | - | - | - | 0.991 |
Sorghum | - | - | - | 0.967 | |
Wheat | - | - | - | 0.973 | |
Barley | - | - | - | 0.943 |
Reference | Barley Type | Replaced or Compared with | Inclusion Levels of Barley (g/kg Diet) | Method of Determination | Diets are Balanced for | |||||
---|---|---|---|---|---|---|---|---|---|---|
Starch Type | H/HL/ DH 1 | Weight-to-Weight Basis | Grain Chemical Composition | Table Values | Digestible AA 2 | Energy | Protein | |||
[128] | Waxy | H | Wheat | Starter, 0, 272, 408 and 544; Grower, 0, 323, 485, 646 | Yes | No | No | No | No | No |
Normal | H | Yes | No | No | No | No | No | |||
[118] | - | H | Wheat | 0, 350, 700 | Yes | No | No | No | No | No |
- | HL | Wheat | 0, 350, 700 | Yes | No | No | No | No | Yes | |
[104] | - | - | Maize | 300, 400, 500, 600 | Yes | Yes | No | No | No | No |
[105] | - | - | Maize | 0, 70, 140, 278, 557 | No | No | Yes | No | Yes | Yes |
0, 79, 157, 314, 627 | No | Yes | Yes | |||||||
[113] | - | DH | Maize | 0, 400, 800 | Yes | Yes | No | No | Yes | Yes |
[101] | - | - | Wheat, Maize, Sorghum | 600.2 | No | No | Yes | No | Yes | Yes |
[119] | - | - | Wheat, Maize, Sorghum | Starter diet, 652; Finisher diet, 669 | No | No | Yes | No | Yes | Yes |
[80] | Normal | H | Wheat | 0, 141, 283, 424, 565 | No | Yes | No | Yes | Yes | Yes |
[81] | Waxy | HL | Wheat | 0, 65, 130, 195, 260 | No | Yes | No | Yes | Yes | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perera, W.N.U.; Abdollahi, M.R.; Zaefarian, F.; Wester, T.J.; Ravindran, V. Barley, an Undervalued Cereal for Poultry Diets: Limitations and Opportunities. Animals 2022, 12, 2525. https://doi.org/10.3390/ani12192525
Perera WNU, Abdollahi MR, Zaefarian F, Wester TJ, Ravindran V. Barley, an Undervalued Cereal for Poultry Diets: Limitations and Opportunities. Animals. 2022; 12(19):2525. https://doi.org/10.3390/ani12192525
Chicago/Turabian StylePerera, W. Nipuna U., M. Reza Abdollahi, Faegheh Zaefarian, Timothy J. Wester, and Velmurugu Ravindran. 2022. "Barley, an Undervalued Cereal for Poultry Diets: Limitations and Opportunities" Animals 12, no. 19: 2525. https://doi.org/10.3390/ani12192525
APA StylePerera, W. N. U., Abdollahi, M. R., Zaefarian, F., Wester, T. J., & Ravindran, V. (2022). Barley, an Undervalued Cereal for Poultry Diets: Limitations and Opportunities. Animals, 12(19), 2525. https://doi.org/10.3390/ani12192525