Poultry Meat Quality in Antibiotic Free Production Has Improved by Natural Extract Supplement
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Sampling
2.3. Physical Parameters
2.4. Chemical Parameters
2.5. Oxidative Stability
2.6. Statistical Analyses
3. Results
3.1. Growth Performance
3.2. Physical Parameters
3.3. Chemical Parameters
3.4. Oxidative Stability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lusk Jayson, L. Consumer preferences for and beliefs about slow growth chicken. Poult. Sci. 2018, 97, 4159–4166. [Google Scholar] [CrossRef]
- Zuidhof, M.J.; Schneider, B.L.; Carney, V.L.; Korver, D.R.; Robinson, F.E. Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 2005. Poult. Sci. 2014, 93, 2970–2982. [Google Scholar] [CrossRef]
- Rayner, A.C.; Newberry, R.C.; Vas, J.; Mullan, S. Slow-growing broilers are healthier and express more behavioural indicators of positive welfare. Sci. Rep. 2020, 10, 15151. [Google Scholar] [CrossRef]
- Tahamtani, F.M.; Pedersen, I.J.; Toinon, C.; Riber, A.B. Effects of environmental complexity on fearfulness and learning ability in fast growing broiler chickens. Appl. Anim. Behav. Sci. 2018, 207, 49–56. [Google Scholar] [CrossRef]
- Bokkers, E.A.M.; Koene, P. Behaviour of fast- and slow growing broilers to 12 weeks of age and the physical consequences. Appl. Anim. Behav. Sci. 2003, 81, 59–72. [Google Scholar] [CrossRef]
- Castellini, C.; Mugnai, C.; Moscati, L.; Mattioli, S.; Guarino Amato, M.; Cartoni Mancinelli, A.; Dal Bosco, A. Adaptation to organic rearing system of eight different chicken genotypes: Behaviour, welfare and performance. Ital. J. Anim. Sci. 2016, 15, 37–46. [Google Scholar] [CrossRef]
- Marangoni, F.; Corsello, G.; Cricelli, C.; Ferrara, N.; Ghiselli, A.; Lucchin, L.; Poli, A. Role of poultry meat in a balanced diet aimed at maintaining health and wellbeing: An Italian consensus document. Food Nutr. Res. 2015, 9, 27606. [Google Scholar] [CrossRef]
- Ponte, P.I.P.; Mendes, I.; Quaresma, M.; Aguiar, M.N.M.; Lemos, J.P.C.; Ferreira, L.M.A.; Soares, M.A.C.; Alfaia, C.M.; Prates, J.A.M.; Fontes, C.M.G.A. Cholesterol levels and sensory characteristics of meat from broilers consuming moderate to high levels of alfalfa. Poult. Sci. 2004, 83, 810. [Google Scholar] [CrossRef]
- Kokoszyński, D.; Żochowska-Kujawska, J.; Kotowicz, M.; Sobczak, M.; Piwczyński, D.; Stęczny, K.; Majrowska, M.; Saleh, M. Carcass characteristics and selected meat quality traits from commercial broiler chickens of different origin. Anim. Sci. J. 2022, 93, e13709. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation Development (OECD) and the Food and Agricultural Organization (FAO). Agricultural Outlook 2021–2030; OECD Publishing: Paris, France, 2021; Chapter 6. [Google Scholar]
- Balasubramanian, B.; Shanmugam, S.; Park, S.; Recharla, N.; Koo, J.S.; Andretta, I.; Kim, I.H. Supplemental impact of marine red seaweed (Halymenia palmata) on the growth performance, total tract nutrient digestibility, blood profiles, intestine histomorphology, meat quality, fecal gas emission, and microbial counts in broilers. Animals 2021, 11, 1244. [Google Scholar] [CrossRef]
- Delles, R.M.; Xiong, Y.L.; True, A.D.; Ao, T.; Dawson, K.A. Dietary antioxidant supplementation enhances lipid and protein oxidative stability of chicken broiler meat through promotion of antioxidant enzyme activity. Poult. Sci. 2014, 93, 1561–1570. [Google Scholar] [CrossRef] [PubMed]
- Pomin, V.H. Seaweed: Ecology, Nutrient Composition, and Medicinal Uses; Nova Science Publishers: New York, NY, USA, 2012. [Google Scholar]
- Corino, C.; Modina, S.C.; Di Giancamillo, A.; Chiapparini, S.; Rossi, R. Seaweeds in pig nutrition. Animals 2019, 9, 1126. [Google Scholar] [CrossRef] [PubMed]
- Mahfuz, S.; Shang, Q.; Piao, X. Phenolic compounds as natural feed additives in poultry and swine diets: A review. J. Anim. Sci. Biotechnol. 2021, 12, 48. [Google Scholar] [CrossRef]
- Vizzarri, F.; Chiapparini, S.; Corino, C.; Casamassima, D.; Palazzo, M.; Parkanyi, V.; Ondruska, L.; Rossi, R. Dietary supplementation with natural extracts mixture: Effects on reproductive performances, blood biochemical and antioxidant parameters in rabbit does. Ann. Anim. Sci. 2020, 20, 565–578. [Google Scholar] [CrossRef]
- Rossi, R.; Vizzarri, F.; Ratti, S.; Palazzo, M.; Casamassima, D.; Corino, C. Effects of long-term supplementation with brown seaweeds and polyphenols in rabbit on meat quality parameters. Animals 2020, 10, 2443. [Google Scholar] [CrossRef]
- Russo, R.; Pucci, L.; Giorgetti, L.; AÁrvay, J.; Vizzarri, F.; Longo, V.; Pozzo, L. Polyphenolic characterisation of plant mixture (Lisosan® reduction) and its hypocholesterolaemic effect in high fat diet-fed mice. Nat. Prod. Res. 2017, 33, 651–658. [Google Scholar] [CrossRef]
- Rakusa, Z.T.; Srecnik, E.; Roskar, R. Novel HPLC-UV method for simultaneous determination of fat-soluble vitamins and coenzyme Q10 in medicines and supplements. Acta Chim. Slov. 2017, 64, 523–529. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2002. [Google Scholar]
- Nutrient Requirements of Poultry, 9th Revised ed.; The National Academies Press: Washington, DC, USA, 1994; Chapter 2.
- Jo, C.; Ahn, D. Fluorometric analysis of 2-thiobarbituric acid reactive substances in turkey. Poult. Sci. 1998, 76, 475–480. [Google Scholar] [CrossRef]
- Abudabos, A.M.; Okab, A.B.; Aljumaah, R.S.; Samara, E.M.; Abdoun, K.A.; Al-Haidary, A.A. Nutritional value of green seaweed (Ulva lactuca) for broiler chickens. Ital. J. Anim. Sci. 2013, 12, e28. [Google Scholar] [CrossRef]
- Matshogo, T.B.; Mnisi, C.M.; Mlambo, V. Effect of pre-treating dietary green seaweed with proteolytic and fibrolytic enzymes on physiological and meat quality parameters of broiler chickens. Foods 2021, 10, 1862. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, E.C.; Na, Y.; Lee, S.R. Effects of dietary supplementation with fermented and non- fermented brown algae by-products on laying performance, egg quality, and blood profile in laying hens. Asian-Australas. J. Anim. Sci. 2018, 31, 1654–1659. [Google Scholar] [PubMed]
- Abu Hafsa, S.H.; Ibrahim, S.A. Effect of dietary polyphenol-rich grape seed on growth performance, antioxidant capacity and ileal microflora in broiler chicks. J. Anim. Physiol. Anim. Nutr. 2017, 102, 268–275. [Google Scholar]
- Lau, D.W.; King, A.J. Pre- and post-mortem use of grape seed extract in dark poultry meat to inhibit development of thiobarbituric acid reactive substances. J. Agric. Food Chem. 2003, 12, 1602–1607. [Google Scholar] [CrossRef] [PubMed]
- Martel, F.; Monteiro, R.; Calhau, C. Effect of polyphenols on the intestinal and placental transport of some bioactive compounds. Nutr. Res. Rev. 2010, 23, 47–64. [Google Scholar] [CrossRef]
- Wang, T.; Hu, Z.P.; Ahmad, H.; Zhang, J.F.; Zhanga, L.L.; Zhong, X. Effects of different formulations of α-tocopherol acetate (vitamin E) on growth performance, meat quality and antioxidant capacity in broiler chickens. Br. Poult. Sci. 2015, 56, 687–695. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, J.; Guo, X. Effects of antimicrobial and antioxidant activities of spice extracts on raw chicken meat quality. Food Sci. Hum. Wellness 2016, 5, 39–48. [Google Scholar] [CrossRef]
- Sampaio, G.R.; Saldanhac, T.; Soares, R.A.; Torres, E.A. Effect of natural antioxidant combinations on lipid oxidation in cooked chicken meat during refrigerated storage. Food Chem. 2012, 135, 1383–1390. [Google Scholar] [CrossRef]
- Suzuki, A.; Tsuchiya, T.; Ohwada, S.; Tamate, H. Distribution of myofiber types in thigh muscles of chickens. J. Morphol. 1985, 185, 145–154. [Google Scholar] [CrossRef]
- Petracci, M.; Fletcher, D.L. Broiler skin and meat color changes during storage. Poult. Sci. 2002, 81, 1589–1597. [Google Scholar] [CrossRef]
- Benamirouche, K.; Baazize-Ammi, D.; Hezil, N.; Reda, D.; Niar, A.; Guetarni, D. Effect of probiotics and Yucca schidigera extract supplementation on broiler meat quality. Acta Sci. 2020, 42, e48066. [Google Scholar] [CrossRef]
- Cortinas, L.; Villaverde, C.; Galobart, J.; Baucells, M.D.; Codony, R.; Barroeta, A.C. Fatty acid content in chicken thigh and breast as affected by dietary polyunsaturation level. Poult. Sci. 2004, 83, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.I.; Gomaa, E.A.; Buckley, D.J. Oxidative quality and shelf life of meats. Meat Sci. 1996, 43, 11–123. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, X.H.; Yang, L.; Chen, X.Y.; Jiang, R.S.; Jin, S.H.; Geng, Z.Y. Resveratrol alleviates heat stress-induced impairment of intestinal morphology, microflora, and barrier integrity in broilers. Poult. Sci. 2017, 96, 4325–4332. [Google Scholar] [CrossRef] [PubMed]
- Juskiewicz, J.; Jankowski, J.; Zielinski, H.; Zdunczyk, Z.; Mikulski, D.; Antoszkiewicz, Z.; Kosmala, M.; Zdunczyk, P. The fatty acid profile and oxidative stability of meat from turkeys fed diets enriched with n-3 polyunsaturated fatty acids and dried fruit pomaces as a source of polyphenols. PLoS ONE 2017, 12, e0170074. [Google Scholar] [CrossRef] [PubMed]
- Fellenberg, M.A.; Pena, I.; Ibanez, R.A.; Vargas-Bello-Perez, E. Effect of dietary Quillay polyphenols on the oxidative quality of broiler meat. Europ. Poult. Sci. 2019, 83, 20203279177. [Google Scholar] [CrossRef]
Item | |
---|---|
% DM | |
Dry matter | 93.6 ± 5.05 |
Crude protein | 7.2 ± 0.99 |
Ether extract | 0.32 ± 0.01 |
Crude fiber | 11.2 ± 1.02 |
Carbohydrates | 49.6 ± 3.18 |
Ash | 32.7 ± 1.38 |
Chemical compounds: a | mg/kg DM |
β-Carotene | 402 ± 30.89 |
Phenolic acid: | |
Syringic acid | 1059.8 ± 62.82 |
Hydroxycinnamic acids: | |
Neochlorogenic acid | 7979.2 ± 468.11 |
Rosmarinic acid | 126.5 ± 8.67 |
Trans-sinapic acid | 105.5 ± 8.09 |
Chlorogenic acid | 21.4 ± 3.65 |
Tannins: | |
Ellagic acid | 2440.9 ± 148.29 |
Rutin | 272.4 ± 20.82 |
Flavonoids: | |
Myricetin | 53.9 ± 5.68 |
Item 1 | CON | PPE | p Value |
---|---|---|---|
Moisture % | 72.13 ± 0.11 | 71.97 ± 0.14 | 0.372 |
Crude Protein, % 2 | 23.02 ± 0.68 a | 24.80 ± 0.15 b | 0.025 |
Crude fat, % 2 | 0.92 ± 0.06 | 0.97 ± 0.16 | 0.490 |
Ash, % 2 | 1.15 ± 0.02 | 1.27 ± 0.05 | 0.137 |
Item 1 | CON | PPE | p Value |
---|---|---|---|
Moisture % | 73.99 ± 0.26 | 73.63 ± 0.20 | 0.280 |
Crude Protein, % 2 | 21.18 ± 0.36 | 21.29 ± 0.34 | 0.821 |
Crude fat, % 2 | 3.10 ± 0.26 | 3.41 ± 0.31 | 0.474 |
Ash, % 2 | 1.01 ± 0.02 | 1.03 ± 0.01 | 0.528 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, R.; Vizzarri, F.; Ratti, S.; Corino, C. Poultry Meat Quality in Antibiotic Free Production Has Improved by Natural Extract Supplement. Animals 2022, 12, 2599. https://doi.org/10.3390/ani12192599
Rossi R, Vizzarri F, Ratti S, Corino C. Poultry Meat Quality in Antibiotic Free Production Has Improved by Natural Extract Supplement. Animals. 2022; 12(19):2599. https://doi.org/10.3390/ani12192599
Chicago/Turabian StyleRossi, Raffaella, Francesco Vizzarri, Sabrina Ratti, and Carlo Corino. 2022. "Poultry Meat Quality in Antibiotic Free Production Has Improved by Natural Extract Supplement" Animals 12, no. 19: 2599. https://doi.org/10.3390/ani12192599
APA StyleRossi, R., Vizzarri, F., Ratti, S., & Corino, C. (2022). Poultry Meat Quality in Antibiotic Free Production Has Improved by Natural Extract Supplement. Animals, 12(19), 2599. https://doi.org/10.3390/ani12192599