Effects of an Herbal Source of Choline on Diet Digestibility and Palatability, Blood Lipid Profile, Liver Morphology, and Cardiac Function in Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Facilities
2.2. Experimental Diets
2.3. Digestibility and Fecal Characteristics
2.4. Blood Analysis
2.5. Ultrasonography of the Abdominal Region
2.6. Echocardiogram and Blood Pressure
2.7. Palatability
2.8. Statistical Analysis
3. Results
3.1. Digestibility and Fecal Characteristics
3.2. Blood Analysis
3.3. Abdominal Ultrasound, Echocardiogram, and Blood Pressure
3.4. Palatability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, M.; Mondal, T.; Lokesha, E.; Parthasarathi, C.B. “Bio Choline”—An Alternative to Synthetic Choline in Broiler Production. Int. J. Livest. Res. 2019, 9, 1–9. [Google Scholar]
- Santos, J.L.; Pereira, M.M. Utilização de Colina em Dietas Para Monogástricos, 106th ed.; Pubvet: Londrina, Brazil, 2010; pp. 710–716. [Google Scholar]
- The European Pet Food Industry (FEDIAF). Nutritional Guidelines for Complete and Complementary Pet Food for Cats and Dogs; FEDIAF: Brussels, Belgium, 2021. [Google Scholar]
- Farina, G.; Kessler, A.M.; Ebling, P.D.; Marx, F.R.; César, R.; Ribeiro, A.M.L. Performance of broilers fed different dietary choline sources and levels. Cienc. Anim. Bras. 2017, 18, e37633. [Google Scholar] [CrossRef] [Green Version]
- Mendoza-Martínez, G.D.; Hernández-García, P.A.; Plata-Pérez, F.X.; Martínez-García, J.A.; Lizarazo-Chaparro, A.C.; Martínez-Cortes, I.; Campillo-Navarro, M.; Lee-Rangel, H.A.; De la Torre-Hernández, M.E.; Gloria-Trujillo, A. Influence of a Polyherbal Choline Source in Dogs: Body Weight Changes, Blood Metabolites, and Gene Expression. Animals 2022, 12, 1313. [Google Scholar] [CrossRef] [PubMed]
- Roque-Jiménez, J.A.; Mendoza-Martínez, G.D.; Vázquez-Valladolid, A.; Guerrero-González, M.D.L.L.; Flores-Ramírez, R.; Pinos-Rodriguez, J.M.; Lee-Rangel, H.A. Supplemental herbal choline increases 5-hmC DNA on whole blood from pregnant ewes and offspring. Animals 2020, 10, 1277. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.M.; Song, J.Y.; He, J.; Gu, X.R.; Zhang, X. Studies on volatile components in the flowers of Cymbidium goeringii and Cymbidium faberi from Qinling mountains. Acta Hort. Sin. 2016, 43, 2461–2472. [Google Scholar] [CrossRef]
- Calderano, A.A.; Nunes, R.V.; Rodrigueiro, R.J.B.; César, R.A. Replacement of choline chloride by a vegetal source of choline in diets for broilers. Ciênc. Anim. Bras. 2015, 16, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Wynn, S.G.; Fougère, B.J. A Systems-Based Approach. In Veterinary Herbal Medicine, 1st ed.; Wynn, S.G., Fougère, B.J., Eds.; Elsevier: St. Louis, MO, USA, 2007; pp. 29–409. [Google Scholar]
- Martínez-Aispuro, J.A.; Mendoza, G.D.; Cordero-Mora, J.L.; Ayala-Monter, M.A.; Sánchez-Torres, M.T.; Figueroa-Velasco, J.L.; Vázquez-Silva, G.; Gloria-Trujillo, A. Evaluation of an herbal choline feed plant additive in lamb feedlot rations. R. Bras. Zootec. 2019, 48, e20190020. [Google Scholar] [CrossRef]
- Mendoza Martínez, G.D.; López, M.Á.; Hernández García, P.A.; Ríos Hilario, J.J.; González, J.; Trujillo, A.G. Effect of the inclusion of herbal phosphatidylcholine on palatability, digestibility and metabolisable energy of the diet in dogs. Austral. J. Vet. Sci. 2021, 53, 161–167. [Google Scholar] [CrossRef]
- Gutiérrez, A.R.; Gutiérrez, A.; Sánchez, C.; Mendoza, G.D. Effect of including herbal choline in the diet of a dairy herd; a multiyear evaluation. Emir. J. Food Agric. 2019, 31, 477–481. [Google Scholar] [CrossRef] [Green Version]
- Laflamme, D.P. Development and validation of a body condition score system for dogs. Canine Pr. 1997, 22, 10–15. [Google Scholar]
- Association of American Feed Control Officials (AAFCO). Model Regulations for Pet Food and Specialty Pet Food under the Model Bill; AAFCO Incorporated: Atlanta, GA, USA, 2016. [Google Scholar]
- National Research Council (NRC). Nutrient Requirements of Dogs and Cats, 1st ed.; National Academies Press: Washington, DC, USA, 2006; ISBN 9780309488921. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of the Association of the Analytical Chemists, 16th ed.; AOAC: Washington, DC, USA, 1995. [Google Scholar]
- Carciofi, A.C.; Oliveira, L.; Valério, A.; Borges, L.L.; Carvalho, F.; Brunetto, M.A.; Vasconcellos, R.S. Comparison of micronized whole soybeans to common protein sources in dry dog and cat diets. Anim. Feed. Sci. Technol. 2009, 151, 251–260. [Google Scholar] [CrossRef]
- Kaelle, G.C.B.; Souza, C.M.M.; Bastos, T.S.; Vasconcellos, R.S.; Oliveira, S.G.; Félix, A.P. Diet digestibility and palatability and intestinal fermentative products in dogs fed yeast extract. Ital. J. Anim. Sci. 2022, 21, 802–810. [Google Scholar] [CrossRef]
- Thomas, S.H.L.; Drugs, Q.T. Interval abnormalities and ventricular arrhythmias. Advers. Drug React. Toxicol. Rev. 1994, 13, 77–102. [Google Scholar]
- Griffin, R. Palatability testing methods: Parameters and analyses that influence test conditions. In Petfood Technology, 1st ed.; Watt Publishing Co.: Mt. Morris, IL, USA, 2003; pp. 187–193. [Google Scholar]
- Félix, A.P.; Zanatta, C.P.; Brito, C.B.M.; Sá Fortes, C.M.L.; Oliveira, S.G.; Maiorka, A. Digestibility and metabolizable energy of raw soybeans manufactured with different processing treatments and fed to adult dogs and puppies. J. Anim. Sci. 2013, 91, 2794–2801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneko, J.J.; Harvey, J.W.; Bruss, M.L. Clinical Biochemistry of Domestic Animals, 6th ed.; Academic Press: New York, NY, USA, 2008. [Google Scholar]
- Hand, M.S.; Thatcher, C.D.; Remillard, R.L.; Rodebush, P.; Novotny, B.J. Small Animal Clinical Nutrition, 5th ed.; Mark Morris Institute: Texas, TX, USA, 2010; p. 745. [Google Scholar]
- Thrall, M. Hematologia e Bioquímica Clínica Veterinária, 1st ed.; Roca: São Paulo, SP, Brazil, 2006. [Google Scholar]
- Kanduri, A.B.; Saxena, M.J.; Ravikanth, K.; Maini, S.; Dandale, S.; Kokane, S.S. Performance Assessment of Broiler Poultry Birds Fed on Herbal and Synthetic Amino Acids. Adv. Biores. 2013, 4, 26–28. [Google Scholar]
- Chehaibi, K.; Cedó, L.; Metso, J.; Palomer, X.; Santos, D.; Quesada, H.; Slimane, N.M.; Wahli, W.; Julve, J.; Vázquez-Carrera, M.; et al. PPAR-β/δ activation promotes phospholipid transfer protein expression. Biochem. Pharmacol. 2015, 94, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Hardwick, J.P.; Osei-Hyiaman, D.; Wiland, H.; Abdelmegeed, M.A.; Song, B.J. PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid omega-Hydroxylase (CYP4) Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease. PPAR Res. 2009, 2009, 952734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiedeman, M.A.; Barr, S.I.; Green, T.J.; Xu, Z.; Innis, S.M.; Kitts, D.D. Dietary choline Intake: Current State of knowledge across the life cycle. Nutrients 2018, 10, 1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tietel, Z.; Masaphy, S. Aroma-volatile profile of black morel (Morchella importuna) grown in Israel. J. Sci. Food Agric. 2018, 98, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Ogbuewu, I.P.; Odoemenam, V.U.; Obikaonu, H.O.; Opara, M.N.; Emenalom, O.O.; Uchegbu, M.C.; Iloeje, M.U. The growing importance of neem (Azadirachta indica A. Juss) in agriculture, industry, medicine and environment: A review. Res. J. Med. Plant. 2011, 5, 230–245. [Google Scholar] [CrossRef]
Item | Unit | Control | Test |
---|---|---|---|
Dry matter | % | 94.53 | 94.60 |
Crude protein | % | 27.77 | 27.94 |
Crude fiber | % | 3.85 | 3.37 |
Acid-hydrolyzed ether extract | % | 16.89 | 16.75 |
Ash | % | 7.13 | 7.27 |
Calcium | % | 1.52 | 1.51 |
Phosphorus | % | 1.06 | 1.09 |
Gross energy | Kcal/kg | 5145.46 | 5120.51 |
Item | Control | Test | SEM | p-Value |
---|---|---|---|---|
CTTAD, % | ||||
Dry matter | 77.1 | 77.6 | 0.486 | 0.668 |
Organic matter | 80.5 | 81.0 | 0.424 | 0.565 |
Crude protein | 82.4 | 83.4 | 0.346 | 0.172 |
Ether extract | 90.1 | 90.2 | 0.236 | 0.708 |
Gross energy | 81.5 | 82.5 | 0.443 | 0.556 |
Metabolizable energy, kcal/kg | ||||
ME | 4168.1 | 4194.2 | 24.91 | 0.617 |
Fecal Characteristics | ||||
Dry matter, % | 36.37 | 36.01 | 0.121 | 0.709 |
pH | 6.56 | 6.60 | 0.068 | 0.761 |
Score | 4 | 4 | - | 0.999 |
Item (Reference Value) | Control | Test | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Initial | Final | Initial | Final | Diet (D) | Period (P) | D × P | ||
Biochemical profile | ||||||||
Cholesterol (125–270 mg/dL) | 172.55 | 215.50 | 157.95 | 170.07 | 7.69 | 0.042 | 0.062 | 0.271 |
HDL (33–140 mg/dL) | 140.08 | 108.31 | 123.62 | 103.34 | 4.30 | 0.153 | 0.001 | 0.431 |
LDL (34–115 mg/dL) | 16.71 | 93.25 | 19.06 | 68.24 | 7.74 | 0.264 | <0.001 | 0.252 |
VLDL (6.5–16.9 mg/dL) | 9.86 | 8.28 | 15.73 | 12.41 | 0.98 | 0.171 | 0.008 | 0.621 |
Triglycerides (<150 mg/dL) | 46.66 | 63.81 | 41.35 | 50.06 | 2.57 | 0.042 | 0.006 | 0.342 |
ALT (10.0–102.0 U/L) | 41.61 b | 50.17 a | 46.84 ab | 41.76 b | 1.78 | 0.373 | 0.342 | 0.019 |
ALP (20–150.0 U/L) | 65.76 | 49.31 | 60.40 | 33.43 | 3.10 | 0.027 | <0.001 | 0.263 |
Gamma–GT (0–18 U/L) | 2.25 | 2.36 | 2.51 | 0.98 | 0.23 | 0.194 | 0.094 | 0.064 |
Total Protein (5.4–7.7 g/dL) | 6.04 | 6.31 | 6.03 | 6.15 | 0.05 | 0.734 | 0.832 | 0.321 |
Globulin (2.3–5.2 g/dL) | 2.63 | 2.74 | 2.59 | 2.63 | 0.04 | 0.421 | 0.392 | 0.672 |
Albumin (2.3–3.8 g/dL) | 3.41 | 3.56 | 3.44 | 3.53 | 0.03 | 0.922 | 0.061 | 0.632 |
Erythogram | ||||||||
Erythrocytes (5.5–8.5 mi/μL) | 6.21 | 6.21 | 6.51 | 6.02 | 0.08 | 0.771 | 0.122 | 0.123 |
Hemoglobin (12–18 g/dL) | 15.60 | 14.03 | 16.33 | 13.75 | 0.26 | 0.520 | <0.001 | 0.152 |
Hematocrit (37–53%) | 44.75 | 42.13 | 45.75 | 40.86 | 0.58 | 0.883 | <0.001 | 0.211 |
MCV (60–77 u3) | 72.23 | 67.94 | 70.57 | 67.96 | 0.61 | 0.482 | 0.007 | 0.472 |
MCH (19.5–24.5 pg) | 25.22 | 22.62 | 25.82 | 22.87 | 0.35 | 0.373 | <0.001 | 0.723 |
MCHC (30–36%) | 34.87 | 33.29 | 35.68 | 33.70 | 0.31 | 0.82 | 0.004 | 0.712 |
Leukogram | ||||||||
Leukocytes (6–17 × 103/mm3) | 12.71 | 12.80 | 11.91 | 11.22 | 0.40 | 0.083 | 0.522 | 0.442 |
Neutrophils (58–80%) | 75.63 | 72.88 | 71.38 | 69.35 | 1.32 | 0.140 | 0.360 | 0.893 |
Lymphocytes (12–30%) | 19.90 | 19.27 | 25.51 | 22.38 | 1.09 | 0.060 | 0.351 | 0.532 |
Monocytes (3-10%) | 3.50 | 5.13 | 2.23 | 5.38 | 0.47 | 0.371 | 0.002 | 0.213 |
Platelets (150–800 × 103/mm3) | 328 | 395 | 397 | 373 | 14.35 | 0.393 | 0.442 | 0.114 |
Plasmatic Proteins (5.5–8.0 g/dL) | 6.58 | 6.83 | 6.72 | 6.55 | 0.09 | 0.444 | 0.054 | 0.474 |
Item | Control | p-Value | Test | p-Value | Final–Initial * | p-Value | |||
---|---|---|---|---|---|---|---|---|---|
Initial | Final | Initial | Final | Control | Herbal source | ||||
Liver size | 0 (0;0.25) | 0 (0;1.0) | 1.000 | 0 (0;0.25) | 0.5 (0;1.25) | 0.248 | 0 (0;0.25) | 0 (0;1.25) | 0.727 |
Splenic size | 0 (0;0.25) | 0 (0;0.25) | 1.000 | 0 (0;0.25) | 0.5 (0;1.0) | 0.282 | 0 (0;0) | 0 (0;1.0) | 0.174 |
Echogenicity of parenchymical organs | 0 (0;0.25) | 0.5 (0;0.25) | 1.000 | 0 (0;1.0) | 0.5 (0;1.0) | 0.927 | 0 (0;0) | 0 (0;0) | 1.000 |
Vena cava dilation | 0 (0;0) | 0 (0;0) | 1.000 | 0 (0;0) | 0 (0.75;1.0) | 0.015 | 0 (0;0) | 1 (0.75;1.0) | 0.015 |
Abdominal | 0 (0;0) | 0 (0;0) | 1.000 | 0 (0;0) | 1 (0.75;1.0) | 0.015 | 0 (0;0) | 1 (0.75;1.0) | 0.015 |
aortic dilation | |||||||||
Gallbladder | 0 (0;0) | 0 (0;0) | 1.000 | 0 (0;0.25) | 0 (0;1.0) | 0.595 | 0 (0;0) | 0 (0;0.25) | 0.405 |
Stomach | 0 (0;0) | 0 (0;0) | 1.000 | 0 (0;0.25) | 0 (0;1.0) | 0.182 | 0 (0;0) | 0 (−0.25;1.0) | 0.404 |
Pancreas | 0 (0;0) | 0 (0;1.0) | 0.901 | 0 (0;1.0) | 0 (0;1.0) | 0.922 | 0 (0;1.0) | 0 (−1.0;1.0) | 0.688 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
do Nascimento, R.C.; Souza, C.M.M.; Bastos, T.S.; Kaelle, G.C.B.; de Oliveira, S.G.; Félix, A.P. Effects of an Herbal Source of Choline on Diet Digestibility and Palatability, Blood Lipid Profile, Liver Morphology, and Cardiac Function in Dogs. Animals 2022, 12, 2658. https://doi.org/10.3390/ani12192658
do Nascimento RC, Souza CMM, Bastos TS, Kaelle GCB, de Oliveira SG, Félix AP. Effects of an Herbal Source of Choline on Diet Digestibility and Palatability, Blood Lipid Profile, Liver Morphology, and Cardiac Function in Dogs. Animals. 2022; 12(19):2658. https://doi.org/10.3390/ani12192658
Chicago/Turabian Styledo Nascimento, Rosandra Colpani, Camilla Mariane Menezes Souza, Taís Silvino Bastos, Gislaine Cristina Bill Kaelle, Simone Gisele de Oliveira, and Ananda Portella Félix. 2022. "Effects of an Herbal Source of Choline on Diet Digestibility and Palatability, Blood Lipid Profile, Liver Morphology, and Cardiac Function in Dogs" Animals 12, no. 19: 2658. https://doi.org/10.3390/ani12192658
APA Styledo Nascimento, R. C., Souza, C. M. M., Bastos, T. S., Kaelle, G. C. B., de Oliveira, S. G., & Félix, A. P. (2022). Effects of an Herbal Source of Choline on Diet Digestibility and Palatability, Blood Lipid Profile, Liver Morphology, and Cardiac Function in Dogs. Animals, 12(19), 2658. https://doi.org/10.3390/ani12192658