Prediction of Indirect Indicators of a Grass-Based Diet by Milk Fourier Transform Mid-Infrared Spectroscopy to Assess the Feeding Typologies of Dairy Farms
(This article belongs to the Section Animal Products)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Models
2.3. Feeding Typology of Farms
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Thysebaert, D.; Bottier, S.; Bovy, C.; Cuvelier, C.; Dejemeppe, J.; Généreux, C.; Maes, E.; Renard, V.; Thiry, V.; Wénin, M. L’environnement Wallon en 10 Infographies 2021. Available online: https://ediwall.wallonie.be/l-environnement-wallon-en-10-infographies-numerique-087208 (accessed on 27 September 2022).
- Rusanov, A.M. Recovery of Natural Vegetation and Ecological Functions of Pasture Ecosystems in Arid Steppes of the Cisural Region. Russ. J. Ecol. 2014, 45, 243–248. [Google Scholar] [CrossRef]
- Franca, A.; Sanna, F.; Nieddu, S.; Re, G.A.; Pintus, G.V.; Ventura, A.; Duce, P.; Salis, M.; Arca, B. Effects of Grazing on the Traits of a Potential Fire in a Sardinian Wooded Pasture. In New Approaches for Grassland Research in a Context of Climate and Socio-Economic Changes. Options Méditerranéennes: Série A. Séminaires Méditerranéens; CIHEAM: Zaragoza, Spain, 2012; Volume 102, pp. 307–311. [Google Scholar]
- Gourlez de la Motte, L.; Jérôme, E.; Mamadou, O.; Beckers, Y.; Bodson, B.; Heinesch, B.; Aubinet, M. Carbon Balance of an Intensively Grazed Permanent Grassland in Southern Belgium. Agric. For. Meteorol. 2016, 228–229, 370–383. [Google Scholar] [CrossRef]
- Kolver, E.S. Nutritional Limitations to Increased Production on Pasture-Based Systems. Proc. Nutr. Soc. 2003, 62, 291–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waghorn, G.; Clark, D. Feeding Value of Pastures for Ruminants. N. Z. Vet. J. 2004, 52, 320–331. [Google Scholar] [CrossRef]
- Caraes, C.; Hebert, J. Agriculture et Élevage de Précision: Comptabiliser le Temps de Pâturage Grâce à un Collier Connecté: Chronopâture 2020. Available online: https://normandie.chambres-agriculture.fr/fileadmin/user_upload/Normandie/506_Fichiers-communs/PDF/INNOVATION-RECHERCHE/agri-connectee-chronopature.pdf (accessed on 27 September 2022).
- Chilliard, Y.; Ferlay, A.; Mansbridge, R.M.; Doreau, M. Ruminant Milk Fat Plasticity: Nutritional Control of Saturated, Polyunsaturated, Trans and Conjugated Fatty Acids. Ann. Zootech. 2000, 49, 181–205. [Google Scholar] [CrossRef] [Green Version]
- Kelly, M.L.; Kolver, E.S.; Bauman, D.E.; Van Amburgh, M.E.; Muller, L.D. Effect of Intake of Pasture on Concentrations of Conjugated Linoleic Acid in Milk of Lactating Cows. J. Dairy Sci. 1998, 81, 1630–1636. [Google Scholar] [CrossRef]
- Elgersma, A.; Tamminga, S.; Ellen, G. Modifying Milk Composition through Forage. Anim. Feed Sci. Technol. 2006, 131, 207–225. [Google Scholar] [CrossRef]
- Frelich, J.; Šlachta, M.; Hanuš, O.; Špička, J.; Samková, E.; Zapletal, P. Seasonal Variation in Fatty Acid Composition of Cow Milk in Relation to the Feeding System. Anim. Sci. Pap. Rep. 2012, 30, 219–229. [Google Scholar]
- Coppa, M.; Martin, B.; Hulin, S.; Guillemin, J.; Gauzentes, J.V.; Pecou, A.; Andueza, D. Prediction of Indicators of Cow Diet Composition and Authentication of Feeding Specifications of Protected Designation of Origin Cheese Using Mid-Infrared Spectroscopy on Milk. J. Dairy Sci. 2021, 104, 112–125. [Google Scholar] [CrossRef]
- Grelet, C.; Pierna, J.A.F.; Dardenne, P.; Soyeurt, H.; Vanlierde, A.; Colinet, F.; Bastin, C.; Gengler, N.; Baeten, V.; Dehareng, F. Standardization of Milk Mid-Infrared Spectrometers for the Transfer and Use of Multiple Models. J. Dairy Sci. 2017, 100, 7910–7921. [Google Scholar] [CrossRef] [Green Version]
- Grelet, C.; Fernandez Pierna, J.; Soyeurt, H.; Dehareng, F.; Gengler, N.; Dardenne, P. Creation of Universal MIR Calibration by Standardization of Milk Spectra: Example of Fatty Acids. In Proceedings of the 65th Annual Meeting of the European Federation of Animal Science, Copenhagen, Denmark, 25–29 August 2014; p. 108. [Google Scholar]
- Soyeurt, H.; Grelet, C.; McParland, S.; Calmels, M.; Coffey, M.; Tedde, A.; Delhez, P.; Dehareng, F.; Gengler, N. A Comparison of 4 Different Machine Learning Algorithms to Predict Lactoferrin Content in Bovine Milk from Mid-Infrared Spectra. J. Dairy Sci. 2020, 103, 11585–11596. [Google Scholar] [CrossRef] [PubMed]
- Christophe, O.S.; Grelet, C.; Bertozzi, C.; Veselko, D.; Lecomte, C.; Höeckels, P.; Werner, A.; Auer, F.-J.; Gengler, N.; Dehareng, F.; et al. Multiple Breeds and Countries’ Predictions of Mineral Contents in Milk from Milk Mid-Infrared Spectrometry. Foods 2021, 10, 2235. [Google Scholar] [CrossRef] [PubMed]
- Alothman, M.; Hogan, S.A.; Hennessy, D.; Dillon, P.; Kilcawley, K.N.; O’Donovan, M.; Tobin, J.; Fenelon, M.A.; O’Callaghan, T.F. The “Grass-Fed” Milk Story: Understanding the Impact of Pasture Feeding on the Composition and Quality of Bovine Milk. Foods 2019, 8, 350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frizzarin, M.; O’Callaghan, T.F.; Murphy, T.B.; Hennessy, D.; Casa, A. Application of Machine-Learning Methods to Milk Mid-Infrared Spectra for Discrimination of Cow Milk from Pasture or Total Mixed Ration Diets. J. Dairy Sci. 2021, 104, 12394–12402. [Google Scholar] [CrossRef] [PubMed]
- Capuano, E.; van der Veer, G.; Boerrigter-Eenling, R.; Elgersma, A.; Rademaker, J.; Sterian, A.; van Ruth, S.M. Verification of Fresh Grass Feeding, Pasture Grazing and Organic Farming by Cows Farm Milk Fatty Acid Profile. Food Chem. 2014, 164, 234–241. [Google Scholar] [CrossRef]
- Klaffenböck, M.; Steinwidder, A.; Fasching, C.; Terler, G.; Gruber, L.; Mészáros, G.; Sölkner, J. The Use of Mid-Infrared Spectrometry to Estimate the Ration Composition of Lactating Dairy Cows. J. Dairy Sci. 2017, 100, 5411–5421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhn, M. Building Predictive Models in R Using the Caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Sutton, J.D. Altering Milk Composition by Feeding. J. Dairy Sci. 1989, 72, 2801–2814. [Google Scholar] [CrossRef]
- Moate, P.J.; Chalupa, W.; Boston, R.C.; Lean, I.J. Milk Fatty Acids. I. Variation in the Concentration of Individual Fatty Acids in Bovine Milk. J. Dairy Sci. 2007, 90, 4730–4739. [Google Scholar] [CrossRef] [Green Version]
- Gulati, A.; Galvin, N.; Lewis, E.; Hennessy, D.; O’Donovan, M.; McManus, J.J.; Fenelon, M.A.; Guinee, T.P. Outdoor Grazing of Dairy Cows on Pasture versus Indoor Feeding on Total Mixed Ration: Effects on Gross Composition and Mineral Content of Milk during Lactation. J. Dairy Sci. 2018, 101, 2710–2723. [Google Scholar] [CrossRef] [Green Version]
- Hurtado-Uria, C.; Hennessy, D.; Shalloo, L.; O’Connor, D.; Delaby, L. Relationships between Meteorological Data and Grass Growth over Time in the South of Ireland. Ir. Geogr. 2013, 46, 175–201. [Google Scholar] [CrossRef]
- Dalcq, A.-C.; Dogot, T.; Beckers, Y.; Brostaux, Y.; Froidmont, E.; Vanwindekens, F.; Soyeurt, H. The Walloon Farmers Position Differently Their Ideal Dairy Production System between a Global-Based Intensive and a Local-Based Extensive Model of Farm. PLoS ONE 2020, 15, e0223346. [Google Scholar] [CrossRef] [PubMed]
Traits | Unit | N 1 | R2 | RMSE 2 | Ref. 3 |
---|---|---|---|---|---|
Milk yield | kg/day | 457 | 0.69 | 3.48 | NP 4 |
C4:0 | g/dL lait | 1371 | 0.93 | 0.008 | [14] |
C6:0 | g/dL lait | 1371 | 0.91 | 0.006 | [14] |
C8:0 | g/dL lait | 1371 | 0.91 | 0.004 | [14] |
C10:0 | g/dL lait | 1371 | 0.92 | 0.010 | [14] |
C12:0 | g/dL lait | 1371 | 0.93 | 0.011 | [14] |
C14:0 | g/dL lait | 1371 | 0.94 | 0.030 | [14] |
C14:1 cis | g/dL lait | 1371 | 0.71 | 0.008 | [14] |
C16:0 | g/dL lait | 1371 | 0.95 | 0.091 | [14] |
C16:1 cis | g/dL lait | 1371 | 0.73 | 0.013 | [14] |
C17:0 | g/dL lait | 1371 | 0.81 | 0.003 | [14] |
C18:0 | g/dL lait | 1371 | 0.84 | 0.056 | [14] |
Total of C18:1 | g/dL lait | 1371 | 0.96 | 0.060 | [14] |
Total of C18:1 trans | g/dL lait | 1371 | 0.80 | 0.025 | [14] |
Total of C18:1 cis | g/dL lait | 1371 | 0.95 | 0.063 | [14] |
C18:1 cis-9 | g/dL lait | 1371 | 0.95 | 0.061 | [14] |
Total of C18:2 | g/dL lait | 1371 | 0.71 | 0.014 | [14] |
C18:2 cis-9, cis-12 | g/dL lait | 1371 | 0.75 | 0.011 | [14] |
C18:2 cis-9, trans-11 | g/dL lait | 1371 | 0.74 | 0.010 | [14] |
C18:3 cis-9, cis-12, cis-15 | g/dL lait | 1371 | 0.69 | 0.004 | [14] |
SFA | g/dL lait | 1371 | 0.99 | 0.072 | [14] |
MUFA | g/dL lait | 1371 | 0.97 | 0.059 | [14] |
PUFA | g/dL lait | 1371 | 0.79 | 0.021 | [14] |
UFA | g/dL lait | 1371 | 0.97 | 0.064 | [14] |
SCFA | g/dL lait | 1371 | 0.93 | 0.025 | [14] |
MCFA | g/dL lait | 1371 | 0.97 | 0.104 | [14] |
LCFA | g/dL lait | 1371 | 0.95 | 0.110 | [14] |
Branched FA | g/dL lait | 1371 | 0.77 | 0.013 | [14] |
Total of omega-3 | g/dL lait | 1371 | 0.68 | 0.006 | [14] |
Total of omega-6 | g/dL lait | 1371 | 0.74 | 0.014 | [14] |
Total of odd FA | g/dL lait | 1371 | 0.84 | 0.016 | [14] |
Total of trans FA | g/dL lait | 1371 | 0.82 | 0.029 | [14] |
Lactoferrin | mg/L milk | 5541 | 0.55 | 139.01 | [15] |
Casein alpha-s1 | g/L milk | 135 | 0.81 | 0.58 | NP |
Casein alpha-s2 + K | g/L milk | 135 | 0.81 | 0.36 | NP |
Casein beta | g/L milk | 133 | 0.75 | 1.13 | NP |
Lactalbumin | g/L milk | 138 | 0.38 | 0.15 | NP |
Lactoglobuline | g/L milk | 134 | 0.81 | 0.25 | NP |
Total of casein | g/L milk | 133 | 0.84 | 1.56 | NP |
Sodium (Na) | mg/kg of milk | 1019 | 0.44 | 50.98 | [16] |
Calcium (Ca) | mg/kg of milk | 1094 | 0.82 | 53.38 | [16] |
Phosphorus (P) | mg/kg of milk | 1083 | 0.75 | 58.71 | [16] |
Potassium (K) | mg/kg of milk | 1090 | 0.55 | 88.14 | [16] |
Magnesium (Mg) | mg/kg of milk | 1124 | 0.72 | 6.53 | [16] |
TenFold Stratified Cross-Validation | Validation | ||||
---|---|---|---|---|---|
N | AUC 1 | Sensitivity | Specificity | Accuracy | |
GRASS1 | 533,786 | 94.71 ± 0.07 | 86.78 ± 0.17 | 88.61 ± 0.17 | 89.66 |
GRASS2 | 397,409 | 96.21 ± 0.08 | 88.41 ± 0.27 | 90.84 ± 0.19 | 90.95 |
GRASS3 | 265,876 | 97.43 ± 0.08 | 90.55 ± 0.18 | 92.99 ± 0.21 | 91.40 |
Cluster Name | N Sample | % Sample | Milk | % Fat | % Protein | g/100 g Fat | ||
---|---|---|---|---|---|---|---|---|
kg/Day | g/100 g | g/100 g | SFA | MUFA | LCFA | |||
1 | 4239 | 16.41 | 26.46 | 4.14 | 3.46 | 69.14 | 26.73 | 39.55 |
2 | 1498 | 5.80 | 25.98 | 3.96 | 3.40 | 67.24 | 28.41 | 41.94 |
3 | 3316 | 12.84 | 26.20 | 4.09 | 3.43 | 68.22 | 27.72 | 40.68 |
4 | 2483 | 9.61 | 26.90 | 4.33 | 3.55 | 70.24 | 25.35 | 37.28 |
5 | 3092 | 11.97 | 26.37 | 4.24 | 3.49 | 69.26 | 26.52 | 39.18 |
6 | 1321 | 5.11 | 25.51 | 3.89 | 3.38 | 66.85 | 29.01 | 42.34 |
7 | 989 | 3.83 | 25.22 | 3.74 | 3.36 | 65.49 | 30.35 | 44.52 |
8 | 257 | 0.99 | 28.34 | 0.25 | 3.54 | 50.05 | 45.55 | 63.37 |
9 | 3902 | 15.11 | 25.49 | 4.12 | 3.44 | 67.91 | 27.54 | 40.87 |
10 | 1954 | 7.56 | 25.45 | 3.95 | 3.40 | 66.31 | 28.82 | 42.29 |
11 | 1660 | 6.43 | 25.41 | 4.04 | 3.41 | 67.27 | 28.55 | 42.01 |
12 | 1121 | 4.34 | 27.75 | 4.21 | 3.48 | 67.53 | 27.19 | 38.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soyeurt, H.; Gerards, C.; Nickmilder, C.; Bindelle, J.; Franceschini, S.; Dehareng, F.; Veselko, D.; Bertozzi, C.; Gengler, N.; Marvuglia, A.; et al. Prediction of Indirect Indicators of a Grass-Based Diet by Milk Fourier Transform Mid-Infrared Spectroscopy to Assess the Feeding Typologies of Dairy Farms. Animals 2022, 12, 2663. https://doi.org/10.3390/ani12192663
Soyeurt H, Gerards C, Nickmilder C, Bindelle J, Franceschini S, Dehareng F, Veselko D, Bertozzi C, Gengler N, Marvuglia A, et al. Prediction of Indirect Indicators of a Grass-Based Diet by Milk Fourier Transform Mid-Infrared Spectroscopy to Assess the Feeding Typologies of Dairy Farms. Animals. 2022; 12(19):2663. https://doi.org/10.3390/ani12192663
Chicago/Turabian StyleSoyeurt, Hélène, Cyprien Gerards, Charles Nickmilder, Jérôme Bindelle, Sébastien Franceschini, Frédéric Dehareng, Didier Veselko, Carlo Bertozzi, Nicolas Gengler, Antonino Marvuglia, and et al. 2022. "Prediction of Indirect Indicators of a Grass-Based Diet by Milk Fourier Transform Mid-Infrared Spectroscopy to Assess the Feeding Typologies of Dairy Farms" Animals 12, no. 19: 2663. https://doi.org/10.3390/ani12192663
APA StyleSoyeurt, H., Gerards, C., Nickmilder, C., Bindelle, J., Franceschini, S., Dehareng, F., Veselko, D., Bertozzi, C., Gengler, N., Marvuglia, A., Bayram, A., & Tedde, A. (2022). Prediction of Indirect Indicators of a Grass-Based Diet by Milk Fourier Transform Mid-Infrared Spectroscopy to Assess the Feeding Typologies of Dairy Farms. Animals, 12(19), 2663. https://doi.org/10.3390/ani12192663