Cultivable Bacteria Associated with the Microbiota of Troglophile Bats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.1.1. Study Population
- Grotta dei Pipistrelli (Sortino, SR, 37°08′30″ N, 15°01′48″ E, cadastral number: Si SR 3526). Located in a protected area (Natural Reserve “Pantalica, Valle dell’Anapo e Torrente Cava Grande”), this cave is not far from the town of Sortino, in areas where semi-wild breeding is practiced. The area is characterized by a natural plateau, deeply engraved by the Anapo River and the Calcinara stream. Pantalica Nature Reserve (over 37 kmq) was awarded in 2005 as UNESCO World Heritage Site for its history, archaeology, speleology, and landscape (UNESCO, 1992–2019). It consists of various natural and semi-natural environments (riparian forest, woodland, shrubland, grassland, and steppe) along with cultivated land [33], which are essential habitats for many invertebrate and vertebrate communities. Grotta dei Pipistrelli opens on a rocky wall overhanging the Calcinara stream, approximately 10 m from the left bank of the river, in a Miocene formation known as “Calcari di Siracusa”. The karst cavity has a sub-horizontal development with a 7.3% west–east average slope and it has been explored for approximately 260 m: between the entrance of the cave, at 234 m above sea level (a.s.l.), and the ending point (253 m a.s.l). The cave hosts very large colonies of Chiroptera and it represents the biggest nursery roost of this region [32,34]. From 2012 to date, Grotta dei Pipistrelli is the only systematically monitored bat cave in Sicily [32,34]. The maximum number of bats recorded was around 10,000 in 2013. Minioptera and large Myotis are the predominant genera, with a lower prevalence of Rhinolophids [32]. Below the entrance flows two streams of water (Anapo and Calcinara) from which the bats drink after emerging from the cave.
- Grotta Palombara (Melilli, SR, 37°06′22″ N, 15°11′39″ E, cadastral number: Si SR 3536). The Integral Nature Reserve “Grotta Palombara” falls within the area of the Climiti Mountains in the eastern sector of the Ibleo plateau, in the territory of the Municipality of Melilli (Syracuse). The area of the Reserve covers an area of 11.25 hectares and was established in 1998 “in order to protect the most important karst cave in eastern Sicily for its underground development and the complexity of the cavity systems, with a varied cave fauna that includes an important Guanobia component”. A fossil karst cavity that develops for approximately 800 m. Palombara cave is located near the biggest Italian petrochemical plant, known as “Augusta-Priolo-Melilli”. The cave hosts a colony of bats belonging to the species Myotis myotis, Miniopterus schreibersii, Rhinolophus euryale, and Rhinolophus ferrumequinum. The maximum number of Chiroptera recorded was approximately 1000 specimens [32]. Human activity, especially the presence of numerous illegal landfills, has significantly degraded the environment around the cave [34].
- Grotta Chiusazza (Floridia, SR, 37°01′29″ N, 15°09′35″ E, cadastral number: Si SR 3533). The total length of this cave is approximately 250 m. The area, located in south-eastern Sicily, falls within the territory of Syracuse in the “Grotta Perciata-Chiusazza” district on the eastern edge of the Hyblean plateau. The altitudes vary between 200 and 50 m above sea level. The morphology of the area varies from hilly to the west, to sub-flat to the east. The area in which the cave opens is characterized by the presence of intensive monocultures, arable land, and small ponds fed by the runoff from farmland, where the bats go to feed and drink. The cave is populated by a large colony of Minioptera and dozens of Rhinolophids.
- Grotta del Burrò (Randazzo, CT, 37°49′35″ N, 14°56′04″ E, cadastral number: Si CT 1024). Volcanic cave created as a result of the eruptive activity of Etna. It is a large lava flow tunnel, over 200 m long. Grotta del Burrò develops in prehistoric lava formations of uncertain age (15,000 years–3930 ± 60 years), of which it is not possible to identify the eruptive system. This was probably located a few kilometers south of Monte Spagnolo, today covered by the lava of 1614- 24 (Monte Pomiciaro locality) and the eruptive apparatus of 1536. The surrounding area is characterized by an extensive shrub–herbaceous vegetation cover dominated by the Genista and Ferula genera, with the presence of isolated Quercus ilex trees and no arable land [35]. In the area, semi-wild cattle breeding is commonly practiced. The cave is inhabited by a large mixed colony of bats (approximately 600–700 Minioptera, along with several dozen large Myotis and Rhinolophids) [35].
- Grotta dei Pipistrelli (Cassano allo Jonio, CS, 39°47′11″ N, 16°18′28″ E, cadastral number: Cb CS 110). Large cavity consisting of a succession of caverns whose bottom is occupied by debris and guano. It hosts a breeding colony of bats with a prevalence of Myotis myotis and Miniopterus schreibersii. The territory in which the cavity opens is hilly in the western part and slopes down towards the Piana di Sibari in the East, characterized by the presence of agricultural activity.
- Grave Grubbo (Verzino, KR, 39°15′41.4″ N, 16°51′45.1″ E, cadastral number: Cb KR 258), opens at 285 m a.s.l. and extends for 1926 m; the cave belongs to the extensive Le Grave Complex, the second longest system developing in gypsum deposits in Italy. The cave is active and water flows into one of its branches from an inlet point during rainy periods. The cave hosts a large, mixed breeding colony of bats (Minioptera and Rhinolophids). The surrounding area is characterized by extensive crops and olive groves, as well as cattle and sheep breeding.
2.1.2. Handling and Sampling
2.2. Bacterial Isolation and Identification
2.3. Statistical Analysis
3. Results
3.1. Gram-Negative Strains
3.2. Gram-Positive
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agnelli, P.; Martinoli, A.; Patriarca, E.; Russo, D.; Scaravelli, D.; Genovesi, P. Linee guida per il monitoraggio dei Chirotteri: Indicazioni metodologiche per lo studio e la conservazione dei pipistrelli in Italia. In Quaderni di Conservazione della Natura; Ministero dell’Ambiente—Istituto Nazionale Fauna Selvatica: Roma, Italy, 2004; Volume 19. [Google Scholar]
- Tiunov, M.P. The taxonomic implication of different morphological systems in bats. In European Bat Research; Hanak, V., Horacek, J., Gaisler, J., Eds.; Charles University Press: Praha, Czech Republic, 1987; pp. 67–75. [Google Scholar]
- Banerjee, A.; Kulcsar, K.; Misra, V.; Frieman, M.; Mossman, K. Bats and Coronaviruses. Viruses 2019, 11, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochani, R.K.; Batra, S.; Shaikh, A.; Asad, A. Nipah virus—The rising epidemic: A review. Le Infezioni in Medicina 2019, 27, 117–127. [Google Scholar] [PubMed]
- Streicker, D.G.; Winternitz, J.C.; Satterfield, D.A.; Condori-Condori, R.E.; Broos, A.; Tello, C.; Recuenco, S.; Velasco-Villa, A.; Altizer, S.; Valderrama, W. Host-pathogen evolutionary signatures reveal dynamics and future invasions of vampire bat rabies. Proc. Natl. Acad. Sci. USA 2016, 113, 10926–10931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Liu, B.; Yang, J.; Jin, Q. DBatVir: The database of bat-associated viruses. Database, Oxford 2014, 2014, bau021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fagre, A.C.; Kading, R.C. Can bats serve as reservoirs for arboviruses? Viruses 2019, 11, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mühldorfer, K. Bats and bacterial pathogens: A review. Zoonoses Public Health 2013, 60, 93–103. [Google Scholar] [CrossRef]
- Veikkolainen, V.; Vesterinen, E.J.; Lilley, T.M.; Pulliainen, A.T. Bats as reservoir hosts of human bacterial pathogen, Bartonella mayotimonensis. Emerg. Infect. Dis. 2014, 20, 960–967. [Google Scholar] [CrossRef]
- Bai, Y.; Urushadze, L.; Osikowicz, L.; McKee, C.; Kuzmin, I.; Kandaurov, A.; Babuadze, G.; Natradze, I.; Imnadze, P.; Kosoy, M. Molecular survey of bacterial zoonotic agents in bats from the country of Georgia, Caucasus. PLoS ONE 2017, 12, e0171175. [Google Scholar] [CrossRef]
- Evans, N.J.; Bown, K.; Timofte, D.; Simpson, V.R.; Birtles, R.J. Fatal borreliosis in bat caused by relapsing fever spirochete, United Kingdom. Emerg. Infect. Dis. 2009, 15, 1331–1333. [Google Scholar] [CrossRef]
- Millán, J.; López-Roig, M.; Delicado, V.; Serra-Cobo, J.; Esperón, F. Widespread infection with hemotropic mycoplasmas in bats in Spain, including a hemoplasma closely related to "Candidatus Mycoplasma hemohominis". Comp. Immunol. Microbiol. Infect. Dis. 2015, 39, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Stuckey, M.J.; Boulouis, H.J.; Cliquet, F.; Picard-Meyer, E.; Servat, A.; Aréchiga-Ceballos, N.; Echevarría, J.E.; Chomel, B.B. Potentially zoonotic bartonella in bats from France and Spain. Emerg. Infect. Dis. 2017, 23, 539–541. [Google Scholar] [CrossRef] [PubMed]
- Corduneanu, A.; Sándor, A.D.; Ionică, A.M.; Hornok, S.; Leitner, N.; Bagó, Z.; Stefke, K.; Fuehrer, H.P.; Mihalca, A.D. Bartonella DNA in heart tissues of bats in central and eastern Europe and a review of phylogenetic relations of bat-associated bartonellae. Parasites Vectors 2018, 11, 489. [Google Scholar] [CrossRef] [PubMed]
- Hornok, S.; Szőke, K.; Estók, P.; Krawczyk, A.; Haarsma, A.J.; Kováts, D.; Boldogh, S.A.; Morandini, P.; Szekeres, S.; Takács, N.; et al. Assessing bat droppings and predatory bird pellets for vector-borne bacteria: Molecular evidence of bat-associated Neorickettsia sp. in Europe. Antonie Van Leeuwenhoek 2018, 111, 1707–1717. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, C.; Piraino, C.; Caracappa, S.; Fornasari, L.; Violani, C.; Zava, B. Enteric microflora in Italian Chiroptera. J. Mt. Ecol. 2003, 7, 221–224. [Google Scholar]
- Wolkers–Rooijackers, J.; Rebmann, K.; Bosch, T.; Hazeleger, W. Fecal bacterial communities in insectivorous bats from the netherlands and their role as a possible vector for foodborne diseases. Acta Chiropt. 2019, 20, 475–483. [Google Scholar] [CrossRef] [Green Version]
- Vandžurová, A.; Bačkor, P.; Javorský, P.; Pristaš, P. Staphylococcus nepalensis in the guano of bats, Mammalia. Vet. Microbiol. 2013, 164, 116–121. [Google Scholar] [CrossRef]
- Hazeleger, W.C.; Jacobs-Reitsma, W.F.; Lina, P.H.C.; de Boer, A.G.; Bosch, T.; van Hoek, A.H.A.M.; Beumer, R.R. Wild, insectivorous bats might be carriers of Campylobacter spp. PLoS ONE 2018, 13, e0190647. [Google Scholar] [CrossRef] [Green Version]
- Vengust, M.; Knapic, T.; Weese, J.S. The fecal bacterial microbiota of bats; Slovenia. PLoS ONE 2018, 13, e0196728. [Google Scholar] [CrossRef]
- Walther, B.; Wieler, L.H.; Friedrich, A.W.; Hanssen, A.M.; Kohn, B.; Brunnberg, L.; Lübke-Becker, A. Methicillin resistant Staphylococcus aureus, MRSA isolated from small and exotic animals at a university hospital during routine microbiological examinations. Vet. Microbiol. 2008, 127, 171–178. [Google Scholar] [CrossRef]
- NIH, National Institutes of Health. NIH Guidelines for Research Involving Recombinant or Synthetic Nucleic acid Molecules—Appendix B. 2019. Available online: https://osp.od.nih.gov/wp-content/uploads/NIH_Guidelines.html#_APPENDIX_B._CLASSIFICATION (accessed on 13 August 2022).
- Dietz, C.; Kiefer, A. Pipistrelli d’Europa, 2nd ed.; Ricca Editore: Roma, Italy, 2015. [Google Scholar]
- Simon, M.; Hüttenbügel, S.; Smit-Viergutz, J. Ecology and conservation of bats in villages and towns. Schriftenr. Landschaftspfl. Naturschutz. 2004, 77, 1–264. [Google Scholar]
- Almenar, D.; Aiharta, J.; Goiti, U.; Salsamendi, I.; Garin, I. Foraging behaviour of the long-fingered bat Myotis capaccinii: Implications for conservation and management. Endanger. Species Res. 2009, 8, 69–78. [Google Scholar] [CrossRef]
- Hutterer, R.; Ivanova, T.; Meyer-Cord, C.; Rodrigues, L. Bat Migrations in Europe. Nat. Biol. Vielfalt. 2005, 28, 162. [Google Scholar]
- Kyheröinen, E.M.; Aulagnier, S.; Dekker, J.; Dubourg-Savage, M.J.; Ferrer, B.; Gazaryan, S.; Georgiakakis, P.; Hamidovic, D.; Harbusch, C.; Haysom, K.; et al. Guidance on the Conservation and Management of Critical Feeding Areas and Commuting Routes for Bats; UNEP/EUROBATS Secretariat: Bonn, Germany, 2019; p. 201. [Google Scholar]
- Zahn, A.; Holzhaider, J.; Kriner, E.; Maier, A.; Kayikcioglu, A. Foraging activity of Rhinolophus hipposideros on the Island of Herrenchiemsee, Upper Bavaria. Mamm. Biol. 2008, 73, 222–229. [Google Scholar] [CrossRef]
- Lino, A.; Fonseca, C.; Goiti, U.; Pereira, M.J.R. Prey selection by Rhinolophus hipposideros (Chiroptera, Rhinolophidae) in a modified forest in Southwest Europe. Acta Chiropterol. 2014, 16, 75–83. [Google Scholar] [CrossRef]
- Reiter, G.; Pölzer, E.; Mixanig, H.; Bontadina, F.; Hüttmeir, U. Impact of landscape fragmentation on a specialised woodland bat, Rhinolophus hipposideros. Mamm. Biol. 2013, 78, 283–289. [Google Scholar] [CrossRef]
- Spena, M.T.; Allegra Filosico, M.; Brogna, F.; Dipasquale, C.; Puma, A.; Grasso, R.; Agnelli, P. I chirotteri della Grotta dei Pipistrelli, SR: Un unicum della Sicilia sud-orientale. In Proceedings of the LXXIV National Congress of Italian Zoological Union, Modena, Italy, 30 September–3 October 2013; pp. 20–23. [Google Scholar]
- Minissale, P.; Sciandrello, S.; Spampinato, G. Analisi della biodiversità vegetale e relativa cartografia della R.N.O. “Pantalica, Valle dell’Anapo e Torrente Cava Grande” (Sicilia sud-orientale). Quad. Bot. Amb. Appl. 2007, 18, 145–207. [Google Scholar]
- Ferrante, M.; Spena, M.T.; Hernout, B.V.; Grasso, A.; Messina, A.; Grasso, R.; Agnelli, P.; Brundo, M.V.; Copat, C. Trace elements bioaccumulation in liver and fur of Myotis myotis from two caves of the Eastern side of Sicily (Italy): A comparison between a control and a polluted area. Environ. Pollut. 2018, 240, 273–285. [Google Scholar] [CrossRef]
- Cavallaro, F.; Reitano, A. Le grotte dell’Etna—Conoscerle e Visitarle; Edizioni Danaus: Palermo, Italy, 2013; pp. 163–164. [Google Scholar]
- Agnelli, P.; Biscardi, S.; Dondini, G.; Vergari, S. Progetto per il monitoraggio dello stato di conservazione di alcune specie di chirotteri. In Progetto per il Monitoraggio Dello Stato di Conservazione di Alcuni Mammiferi Particolarmente a Rischio Della Fauna Italiana; Lovari, S., Ed.; Ministero dell’Ambiente, Servizio Conservazione della Natura: Roma, Italy, 2001; pp. 34–113. [Google Scholar]
- Carter, G.R. Diagnostic Procedures in Veterinary Bacteriology and Mycology, 4th ed.; Charles C Thomas: Springfield, IL, USA, 1984. [Google Scholar]
- Bergey’s Manual of Determinative Bacteriology, 9th ed.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2000.
- Bergey’s Manual of Systematic Bacteriology, 2nd ed.; Springer: New York, NY, USA, 2005.
- Grimont, P.A.; Weill, F.X. Antigenic Formulae of the Salmonella Serovars, 9th ed.; WHO Collaborating Center for Reference and Research on Salmonella, Institut Pasteur: Paris, France, 2007; Available online: http://www.scacm.org/free/Antigenic%20Formulae%20of%20the%20Salmonella%20Serovars%202007%209th%20edition.pdf (accessed on 13 August 2022).
- Rastall, R.A. Bacteria in the gut: Friends and foes and how to alter the balance. J. Nutr. 2004, 134, 2022S–2026S. [Google Scholar] [CrossRef] [Green Version]
- Whitaker, J.O., Jr.; Dannelly, H.K.; Prentice, D.A. Chitinase in insectivorous bats. J. Mammal. 2004, 85, 15–18. [Google Scholar] [CrossRef]
- Selvin, J.; Lanong, S.; Syiem, D.; De Mandal, S.; Kayang, H.; Kumar, N.S.; Kiran, G.S. Culture-dependent and metagenomic analysis of lesser horseshoe bats’ gut microbiome revealing unique bacterial diversity and signatures of potential human pathogens. Microb. Pathog. 2019, 137, 103675. [Google Scholar] [CrossRef] [PubMed]
- Hughes, G.M.; Leech, J.; Puechmaille, S.J.; Lopez, J.V.; Teeling, E.C. Is there a link between aging and microbiome diversity in exceptional mammalian longevity? Peer J. 2018, 6, e4174. [Google Scholar] [CrossRef] [Green Version]
- Banskar, S.; Bhute, S.S.; Suryavanshi, M.V.; Punekar, S.; Shouche, Y.S. Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano. Sci. Rep. 2016, 6, 36948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mühldorfer, K.; Speck, S.; Kurth, A.; Lesnik, R.; Freuling, C.; Müller, T.; Kramer-Schadt, S.; Wibbelt, G. Diseases and causes of death in european bats: Dynamics in disease susceptibility and infection rates. PLoS ONE 2011, 6, e29773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galicia, M.M.; Buenrostro, A.; García, J. Specific bacterial diversity in bats of different food guilds in Southern sierra Oaxaca, Mexico. Rev. Biol. Trop. 2014, 62, 1673–1681. [Google Scholar] [PubMed]
- Daniel, D.S.; Ng, Y.K.; Chua, E.L.; Arumugam, Y.; Wong, W.L.; Kumaran, J.V. Isolation and identification of gastrointestinal microbiota from the short-nosed fruit bat Cynopterus brachyotis brachyotis. Microbiol. Res. 2013, 168, 485–496. [Google Scholar] [CrossRef]
- Banskar, S.; Mourya, D.T.; Shouche, Y.S. Bacterial diversity indicates dietary overlap among bats of different feeding habits. Microbiol. Res. 2016, 182, 99–108. [Google Scholar] [CrossRef]
- Edenborough, K.M.; Mu, A.; Mühldorfer, K.; Lechner, J.; Lander, A.; Bokelmann, M.; Couacy-Hymann, E.; Radonic, A.; Kurth, A. Microbiomes in the insectivorous bat species Mops condylurus rapidly converge in captivity. PLoS ONE 2020, 15, e0223629. [Google Scholar] [CrossRef]
Superfamily | Family | Subfamily | Species | n. Individuals |
---|---|---|---|---|
Vespertilionoidea | Vespertilionoidae | Myotinae | Myotis myotis | 47 |
Myotis capaccinii | 8 | |||
Miniopteridae | Miniopterus schreibersii | 91 | ||
Rhinolophoidea | Rhinolophidae | Rhinolophus hipposideros | 43 | |
Total | 189 |
Site | Number of Sampled Individuals | ||||
---|---|---|---|---|---|
Myotis myotis | Miniopterus schreibersii | Rhinolophus hipposideros | Myotis capaccinii | Total | |
Grotta dei Pipistrelli (SR) | 13 | 12 | 17 | 8 | 50 |
Grotta Palombara (SR) | 5 | 9 | 14 | ||
Grotta Chiusazza (SR) | 12 | 13 | 7 | 32 | |
Grotta dei Pipistrelli (CS) | 16 | 15 | 31 | ||
Grotta del Burrò (CT) | 1 | 15 | 17 | 33 | |
Grave Grubbo (KR) | 27 | 2 | 29 | ||
Total | 47 | 91 | 43 | 8 | 189 |
MS/MC | MS/MM | MS/RH | MC/MM | MC/RH | MM/RH | |
---|---|---|---|---|---|---|
Escherichia coli | 4.4%/0% | 4.4%/4.3% |
4.4%/16% p = 0.0374 | 0%/4.3% | 0%/16% | 4.3%/16% |
Serratia marcescens | 7.7%/50% p = 0.0048 | 7.7%/6.4% | 7.7%/16.3% |
50%/6.4% p = 0.0059 | 50%/16.3% | 6.4%/16.3% |
Pseudomonas aeruginosa | 3.3%/0% |
3.3%/21.3% p = 0.0012 | 3.3%/0% | 0%/21.3% | 0%/0% | 21.3%/0% p = 0.0012 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foti, M.; Spena, M.T.; Fisichella, V.; Mascetti, A.; Colnaghi, M.; Grasso, M.; Piraino, C.; Sciurba, F.; Grasso, R. Cultivable Bacteria Associated with the Microbiota of Troglophile Bats. Animals 2022, 12, 2684. https://doi.org/10.3390/ani12192684
Foti M, Spena MT, Fisichella V, Mascetti A, Colnaghi M, Grasso M, Piraino C, Sciurba F, Grasso R. Cultivable Bacteria Associated with the Microbiota of Troglophile Bats. Animals. 2022; 12(19):2684. https://doi.org/10.3390/ani12192684
Chicago/Turabian StyleFoti, Maria, Maria Teresa Spena, Vittorio Fisichella, Antonietta Mascetti, Marco Colnaghi, Maria Grasso, Chiara Piraino, Franco Sciurba, and Rosario Grasso. 2022. "Cultivable Bacteria Associated with the Microbiota of Troglophile Bats" Animals 12, no. 19: 2684. https://doi.org/10.3390/ani12192684
APA StyleFoti, M., Spena, M. T., Fisichella, V., Mascetti, A., Colnaghi, M., Grasso, M., Piraino, C., Sciurba, F., & Grasso, R. (2022). Cultivable Bacteria Associated with the Microbiota of Troglophile Bats. Animals, 12(19), 2684. https://doi.org/10.3390/ani12192684