Effectiveness of an O-Alkyl Hydroxamate in Dogs with Naturally Acquired Canine Leishmaniosis: An Exploratory Clinical Trial
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Drugs
2.2. Study Design
2.3. Dog Enrolment
2.4. Treatment Allocation
2.5. Drug Therapy Intervention
2.6. Outcome Assessment: Drug Efficacy
2.7. Outcome Assessment: Safety Evaluation
2.8. Sample Collection and Processing
2.9. Clinical State Evaluation
2.10. Parasite Isolation
2.11. Parasite Load Quantitation
2.12. Cytokine Expression
2.13. Immunofluorescence Antibody Test
2.14. Ethical Statement
2.15. Statistical Analysis
3. Results
3.1. Participants and Participants Flow
3.2. Efficacy of MTC305 and Its Combination
3.3. Treatment Safety
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martín-Sánchez, J.; Morales-Yuste, M.; Acedo-Sánchez, C.; Barón, S.; Díaz, V.; Morillas-Márquez, F. Canine Leishmaniasis in Southeastern Spain. Emerg. Infect. Dis. 2009, 15, 795–798. [Google Scholar] [CrossRef]
- Moreno, J.; Alvar, J. Canine Leishmaniasis: Epidemiological Risk and the Experimental Model. Trends Parasitol. 2002, 18, 399–405. [Google Scholar] [CrossRef]
- Martin Sanchez, J.; Morillas Marquez, F.; Sanchiz Marin, M.C.; Acedo Sanchez, C. Isoenzymatic Characterization of the Etiologic Agent of Canine Leishmaniasis in the Granada Region of Southern Spain. Am. J. Trop. Med. Hyg. 1994, 50, 758–762. [Google Scholar] [CrossRef] [PubMed]
- Baneth, G. Canine Leishmaniasis: Bridging Science, Public Health and Politics. Vet. J. 2013, 198, 9–10. [Google Scholar] [CrossRef] [PubMed]
- Miró, G.; Cardoso, L.; Pennisi, M.G.; Oliva, G.; Baneth, G. Canine Leishmaniosis—New Concepts and Insights on an Expanding Zoonosis: Part Two. Trends Parasitol. 2008, 24, 371–377. [Google Scholar] [CrossRef]
- Gramiccia, M.; Gradoni, L.; Orsini, S. Decreased Sensitivity to Meglumine Antimoniate (Glucantime) of Leishmania Infantum Isolated from Dogs after Several Courses of Drug Treatment. Ann. Trop. Med. Parasitol. 1992, 86, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Manna, L.; Corso, R.; Galiero, G.; Cerrone, A.; Muzj, P.; Gravino, A.E. Long-Term Follow-up of Dogs with Leishmaniosis Treated with Meglumine Antimoniate plus Allopurinol versus Miltefosine plus Allopurinol. Parasites Vectors 2015, 8, 289. [Google Scholar] [CrossRef] [Green Version]
- Engel, J.A.; Jones, A.J.; Avery, V.M.; Sumanadasa, S.D.M.; Ng, S.S.; Fairlie, D.P.; Adams, T.S.; Andrews, K.T. Profiling the Anti-Protozoal Activity of Anti-Cancer HDAC Inhibitors against Plasmodium and Trypanosoma Parasites. Int. J. Parasitol. Drugs Drug Resist. 2015, 5, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Corpas-López, V.; Díaz-Gavilán, M.; Franco-Montalbán, F.; Merino-Espinosa, G.; López-Viota, M.; López-Viota, J.; Belmonte-Reche, E.; Pérez-del Palacio, J.; de Pedro, N.; Gómez-Vidal, J.A.; et al. A Nanodelivered Vorinostat Derivative Is a Promising Oral Compound for the Treatment of Visceral Leishmaniasis. Pharmacol. Res. 2019, 139, 375–383. [Google Scholar] [CrossRef]
- Corpas-López, V.; Tabraue-Chávez, M.; Sixto-Lopez, Y.; Panadero-Fajardo, S.; Alves de Lima Franco, F.; Dominguez-Seglar, J.F.; Morillas-Márquez, F.; Franco-Montalban, F.; Díaz-Gavilán, M.; Correa-Basurto, J.; et al. O-Alkyl Hydroxamates Display Potent and Selective Antileishmanial Activity. J. Med. Chem. 2020, 63, 5734–5751. [Google Scholar] [CrossRef] [PubMed]
- Morales-Yuste, M.; Morillas-Márquez, F.; Díaz-Sáez, V.; Barón-López, S.; Acedo-Sánchez, C.; Martín-Sánchez, J. Epidemiological Implications of the Use of Various Methods for the Diagnosis of Canine Leishmaniasis in Dogs with Different Characteristics and in Differing Prevalence Scenarios. Parasitol. Res. 2012, 111, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Corpas-López, V.; Merino-Espinosa, G.; Acedo-Sánchez, C.; Díaz-Sáez, V.; Navarro-Moll, M.C.; Morillas-Márquez, F.; Martín-Sánchez, J. Effectiveness of the Sesquiterpene (-)-α-Bisabolol in Dogs with Naturally Acquired Canine Leishmaniosis: An Exploratory Clinical Trial. Vet. Res. Commun. 2018, 42, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Corpas-López, V.; Merino-Espinosa, G.; Acedo-Sánchez, C.; Díaz-Sáez, V.; Morillas-Márquez, F.; Martín-Sánchez, J. Hair Parasite Load as a New Biomarker for Monitoring Treatment Response in Canine Leishmaniasis. Vet. Parasitol. 2016, 223, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Bourdeau, P.; Saridomichelakis, M.N.; Oliveira, A.; Oliva, G.; Kotnik, T.; Gálvez, R.; Foglia Manzillo, V.; Koutinas, A.F.; Pereira da Fonseca, I.; Miró, G. Management of Canine Leishmaniosis in Endemic SW European Regions: A Questionnaire-Based Multinational Survey. Parasites Vectors 2014, 7, 110. [Google Scholar] [CrossRef] [Green Version]
- Leon, A.C.; Davis, L.L.; Kraemer, H.C. The Role and Interpretation of Pilot Studies in Clinical Research. J. Psychiatr. Res. 2011, 45, 626–629. [Google Scholar] [CrossRef] [Green Version]
- Thabane, L.; Ma, J.; Chu, R.; Cheng, J.; Ismaila, A.; Rios, L.P.; Robson, R.; Thabane, M.; Giangregorio, L.; Goldsmith, C.H. A Tutorial on Pilot Studies: The What, Why and How. BMC Med. Res. Methodol. 2010, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Manna, L.; Vitale, F.; Reale, S.; Picillo, E.; Neglia, G.; Vescio, F.; Gravino, A.E. Study of Efficacy of Miltefosine and Allopurinol in Dogs with Leishmaniosis. Vet. J. 2009, 182, 441–445. [Google Scholar] [CrossRef]
- Solano-Gallego, L.; Miró, G.; Koutinas, A.; Cardoso, L.; Pennisi, M.G.; Ferrer, L.; Bourdeau, P.; Oliva, G.; Baneth, G. LeishVet Guidelines for the Practical Management of Canine Leishmaniosis. Parasites Vectors 2011, 4, 86. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; McNeill, J.H. To Scale or Not to Scale: The Principles of Dose Extrapolation. Br. J. Pharmacol. 2009, 157, 907–921. [Google Scholar] [CrossRef] [Green Version]
- Moritz, A.; Steuber, S.; Greiner, M. Clinical Follow-up Examination after Treatment of Canine Leishmaniasis. Tokai J. Exp. Clin. Med. 1999, 23, 279–283. [Google Scholar]
- Hernández, L.; Gálvez, R.; Montoya, A.; Checa, R.; Bello, A.; Bosschaerts, T.; Jansen, H.; Rupérez, C.; Fortin, A.; Miró, G. First Study on Efficacy and Tolerability of a New Alkylphosphocholine Molecule (Oleylphosphocholine-OlPC) in the Treatment of Canine Leishmaniosis Due to Leishmania Infantum. Parasitol. Res. 2014, 113, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Athanasiou, L.V.; Saridomichelakis, M.N.; Kontos, V.I.; Spanakos, G.; Rallis, T.S. Treatment of Canine Leishmaniosis with Aminosidine at an Optimized Dosage Regimen: A Pilot Open Clinical Trial. Vet. Parasitol. 2013, 192, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Martínez, V.; Quilez, J.; Sanchez, A.; Roura, X.; Francino, O.; Altet, L. Canine Leishmaniasis: The Key Points for QPCR Result Interpretation. Parasites Vectors 2011, 4, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manna, L.; Reale, S.; Vitale, F.; Gravino, A.E. Evidence for a Relationship between Leishmania Load and Clinical Manifestations. Res. Vet. Sci. 2009, 87, 76–78. [Google Scholar] [CrossRef] [PubMed]
- Proverbio, D.; Spada, E.; Bagnagatti De Giorgi, G.; Perego, R.; Valena, E. Relationship between Leishmania IFAT Titer and Clinicopathological Manifestations (Clinical Score) in Dogs. BioMed Res. Int. 2014, 2014, 412808. [Google Scholar] [CrossRef] [Green Version]
- Foglia Manzillo, V.; Restucci, B.; Pagano, A.; Gradoni, L.; Oliva, G. Pathological Changes in the Bone Marrow of Dogs with Leishmaniosis. Vet. Rec. 2006, 158, 690–694. [Google Scholar] [CrossRef]
- Momo, C.; Jacintho, A.P.P.; Moreira, P.R.R.; Munari, D.P.; Machado, G.F.; Vasconcelos, R.D.O. Morphological Changes in the Bone Marrow of the Dogs with Visceral Leishmaniasis. Vet. Med. Int. 2014, 2014, 150582. [Google Scholar] [CrossRef] [Green Version]
- Reis, A.B.; Teixeira-Carvalho, A.; Vale, A.M.; Marques, M.J.; Giunchetti, R.C.; Mayrink, W.; Guerra, L.L.; Andrade, R.A.; Corrêa-Oliveira, R.; Martins-Filho, O.A. Isotype Patterns of Immunoglobulins: Hallmarks for Clinical Status and Tissue Parasite Density in Brazilian Dogs Naturally Infected by Leishmania (Leishmania) Chagasi. Vet. Immunol. Immunopathol. 2006, 112, 102–116. [Google Scholar] [CrossRef]
- Belinchón-Lorenzo, S.; Iniesta, V.; Parejo, J.C.; Fernández-Cotrina, J.; Muñoz-Madrid, R.; Soto, M.; Alonso, C.; Gómez Nieto, L.C. Detection of Leishmania Infantum Kinetoplast Minicircle DNA by Real Time PCR in Hair of Dogs with Leishmaniosis. Vet. Parasitol. 2013, 192, 43–50. [Google Scholar] [CrossRef] [Green Version]
- WOAH—World Organisation for Animal Health. Terrestrial Manual Online Access. Available online: https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-manual-online-access (accessed on 25 June 2022).
- Cardoso, L.; Schallig, H.D.F.H.; Cordeiro-da-Silva, A.; Cabral, M.; Alunda, J.M.; Rodrigues, M. Anti-Leishmania Humoral and Cellular Immune Responses in Naturally Infected Symptomatic and Asymptomatic Dogs. Vet. Immunol. Immunopathol. 2007, 117, 35–41. [Google Scholar] [CrossRef]
- Neto, R.G.T.; Giunchetti, R.C.; Carneiro, C.M.; Vitor, R.W.D.A.; Coura-Vital, W.; Quaresma, P.F.; Ker, H.G.; De Melo, L.A.; Gontijo, C.M.F.; Reis, A.B. Relationship of Leishmania-Specific IgG Levels and IgG Avidity with Parasite Density and Clinical Signs in Canine Leishmaniasis. Vet. Parasitol. 2010, 169, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Noli, C.; Auxilia, S.T. Treatment of Canine Old World Visceral Leishmaniasis. Vet. Dermatol. 2005, 16, 213–232. [Google Scholar] [CrossRef] [PubMed]
- Mateo, M.; Maynard, L.; Vischer, C.; Bianciardi, P.; Miró, G. Comparative Study on the Short Term Efficacy and Adverse Effects of Miltefosine and Meglumine Antimoniate in Dogs with Natural Leishmaniosis. Parasitol. Res. 2009, 105, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Croft, S.L.; Sundar, S.; Fairlamb, A.H. Drug Resistance in Leishmaniasis. Clin. Microbiol. Rev. 2006, 19, 111–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrió, J.; Portús, M. In Vitro Susceptibility to Pentavalent Antimony in Leishmania Infantum Strains Is Not Modified during in Vitro or in Vivo Passages but Is Modified after Host Treatment with Meglumine Antimoniate. BMC Pharmacol. 2002, 2, 11. [Google Scholar] [CrossRef] [PubMed]
- Ikeda-Garcia, F.A.; Lopes, R.S.; Ciarlini, P.C.; Marques, F.J.; Lima, V.M.F.; Perri, S.H.V.; Feitosa, M.M. Evaluation of Renal and Hepatic Functions in Dogs Naturally Infected by Visceral Leishmaniasis Submitted to Treatment with Meglumine Antimoniate. Res. Vet. Sci. 2007, 83, 105–108. [Google Scholar] [CrossRef]
- Borborema, S.E.T.; Osso Junior, J.A.; de Andrade Junior, H.F.; do Nascimento, N. Biodistribution of Meglumine Antimoniate in Healthy and Leishmania (Leishmania) Infantum Chagasi-Infected BALB/c Mice. Mem. Inst. Oswaldo Cruz 2013, 108, 623–630. [Google Scholar] [CrossRef] [Green Version]
- Cobrin, A.R.; Blois, S.L.; Kruth, S.A.; Abrams-Ogg, A.C.G.; Dewey, C. Biomarkers in the Assessment of Acute and Chronic Kidney Diseases in the Dog and Cat. J. Small Anim. Pract. 2013, 54, 647–655. [Google Scholar] [CrossRef]
- Boone, L.; Meyer, D.; Cusick, P.; Ennulat, D.; Bolliger, A.P.; Everds, N.; Meador, V.; Elliott, G.; Honor, D.; Bounous, D.; et al. Selection and Interpretation of Clinical Pathology Indicators of Hepatic Injury in Preclinical Studies. Vet. Clin. Pathol. 2005, 34, 182–188. [Google Scholar] [CrossRef]
- Aste, G.; Di Tommaso, M.; Steiner, J.M.; Williams, D.A.; Boari, A. Pancreatitis Associated with N-Methyl-Glucamine Therapy in a Dog with Leishmaniasis. Vet. Res. Commun. 2005, 29, 269–272. [Google Scholar] [CrossRef]
- Mansfield, C. Acute Pancreatitis in Dogs: Advances in Understanding, Diagnostics, and Treatment. Top. Companion Anim. Med. 2012, 27, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Kerr, J.S.; Galloway, S.; Lagrutta, A.; Armstrong, M.; Miller, T.; Richon, V.M.; Andrews, P. A Nonclinical Safety Assessment of the Histone Deacetylase Inhibitor Vorinostat. Int. J. Toxicol. 2015, 29, 3–19. [Google Scholar] [CrossRef] [PubMed]
Parasite Burden or CS | |||||
---|---|---|---|---|---|
Dog | Sample | Day 0 | 60 | 120 | 210 |
7 | BM | 0 | 0 | 0 | 0 |
LN | 1.04 | 0 | 0 | 1.51 | |
PB | 0.01 | 0 | 0 | 0 | |
CS | 3 | 2 | 2 | 2 | |
8 | BM | 82.4 | 3.16 | 19.2 | 4.61 |
LN | 270.2 | 33.2 | 2.61 | 43.7 | |
PB | 0.004 | 0.004 | 0.007 | 0.005 | |
CS | 10 | 10 | 13 | 20 | |
9 | BM | 0.09 | 0 | 0 | 0 |
LN | 0 | 0 | 0 | 0 | |
PB | 0.007 | 0.001 | 0 | 0 | |
CS | 7 | 5 | 1 | 2 | |
10 | BM | 0.013 | 0.004 | 0.003 | 0.011 |
LN | 0.83 | 0 | 0 | 0.26 | |
PB | 0.01 | 0 | 0.003 | 0.01 | |
CS | 2 | 1 | 1 | 1 | |
11 | BM | 17.2 | 1.07 | 0.91 | 0.11 |
LN | 302.3 | 4.91 | 0.03 | 0.1 | |
PB | 0.001 | 0.010 | 0.031 | 0.0005 | |
CS | 14 | 12 | 4 | 4 | |
12 | BM | 0.050 | 0 | 0 | 0.008 |
LN | 2.78 | 1.12 | 0.48 | 5.34 | |
PB | 0.0025 | 0.0002 | 0.0029 | 0.0158 | |
CS | 14 | 14 | 6 | 8 |
Titre or Expression Level | |||||
---|---|---|---|---|---|
Dog | Analysis | Day 0 | 60 | 120 | 210 |
7 | tIgG | 40 | 20 | 40 | 40 |
IgG1 | 0 | 0 | 0 | 0 | |
IgG2 | 0 | 20 | 80 | 40 | |
IFNG | 27.9 | 0.31 | 1.20 | 0.13 | |
IL4 | 0.40 | 0.07 | 0.03 | 1.80 | |
8 | tIgG | 640 | 1280 | 1280 | 1280 |
IgG1 | 0 | 0 | 0 | 40 | |
IgG2 | 1280 | 1280 | 1280 | 1280 | |
IFNG | 7.78 | 19.7 | 21.6 | 17.8 | |
IL4 | 0.03 | 0.25 | 0.03 | 0.33 | |
9 | tIgG | 1280 | 1280 | 1280 | 1280 |
IgG1 | 80 | 80 | 80 | 40 | |
IgG2 | 1280 | 1280 | 1280 | 1280 | |
IFNG | 0.64 | 0.65 | 13.5 | 3.89 | |
IL4 | 0.03 | 0.32 | 2.20 | 1.51 | |
10 | tIgG | 40 | 0 | 40 | 40 |
IgG1 | 0 | 80 | 20 | 0 | |
IgG2 | 40 | 80 | 80 | 40 | |
IFNG | 47.8 | 44.0 | 0.8 | 78.2 | |
IL4 | 0.16 | 0.55 | 0.03 | 0.25 | |
11 | tIgG | 80 | 40 | 1280 | 1280 |
IgG1 | 0 | 0 | 80 | 80 | |
IgG2 | 80 | 80 | 320 | 1280 | |
IFNG | 18.9 | 1.56 | 9.06 | 9.92 | |
IL4 | 0.03 | 0.03 | 0.03 | 0.07 | |
12 | tIgG | 160 | 160 | 80 | 160 |
IgG1 | 40 | 80 | 40 | 0 | |
IgG2 | 320 | 320 | 80 | 320 | |
IFNG | 30.06 | 1.41 | 1.95 | 1.83 | |
IL4 | 1.55 | 0.34 | 0.49 | 0.03 |
Parasite Burden or CS | |||||
---|---|---|---|---|---|
Dog | Sample | Day 0 | 60 | 120 | 210 |
13 | BM | 172.1 | 0 | 0 | 0.1 |
LN | 409.06 | 0.03 | 0.003 | 16.93 | |
PB | 0.004 | 0.005 | 0 | 0 | |
CS | 23 | 8 | 4 | 5 | |
14 | BM | 0 | 0 | 0 | 0 |
LN | 0 | 1.69 | 0.18 | 0.60 | |
PB | 0.001 | 0 | 0.001 | 0 | |
CS | 4 | 2 | 2 | 2 | |
15 | BM | 0 | 0 | 0 | 0 |
LN | 100.3 | 3.57 | 1.52 | 0.21 | |
PB | 0.003 | 0.003 | 0.002 | 0 | |
CS | 4 | 5 | 3 | 3 | |
16 | BM | 0.001 | 0.0004 | 0 | 0.0069 |
LN | 1.98 | 0.00 | 0.02 | 5.11 | |
PB | 0.09 | 0 | 0.01 | 0.10 | |
CS | 2 | 1 | 1 | 1 | |
17 | BM | 0.015 | 0.009 | 0.003 | 0.002 |
LN | 4.19 | 0 | 0 | 0 | |
PB | 0.002 | 0 | 0.04 | 0.01 | |
CS | 4 | 5 | 0 | 1 | |
18 | BM | 0.0191 | 0 | 0 | 0.055523 |
LN | 0 | 0 | 0 | 0 | |
PB | 0.07 | 0 | 0.024 | 0.013 | |
CS | 2 | 0 | 0 | 0 |
Titre or Expression Level | |||||
---|---|---|---|---|---|
Dog | Analysis | Day 0 | 60 | 120 | 210 |
13 | tIgG | 1280 | 1280 | 1280 | 1280 |
IgG1 | 640 | 320 | 80 | 320 | |
IgG2 | 1280 | 1280 | 1280 | 1280 | |
IFNG | 0.68 | 5.28 | 7.62 | 4.69 | |
IL4 | 0.30 | 1.42 | 0.50 | 0.68 | |
14 | tIgG | 160 | 80 | 80 | 80 |
IgG1 | 20 | 40 | 40 | 40 | |
IgG2 | 320 | 80 | 80 | 320 | |
IFNG | 0.90 | 4.76 | 1.35 | 5.31 | |
IL4 | 1.34 | 0.03 | 0.03 | 0.03 | |
15 | tIgG | 80 | 0 | 0 | 0 |
IgG1 | 0 | 0 | 0 | 0 | |
IgG2 | 20 | 20 | 0 | 0 | |
IFNG | 0.57 | 0.13 | 1.25 | 0.09 | |
IL4 | 0.03 | 0.69 | 0.03 | 0.03 | |
16 | tIgG | 160 | 40 | 40 | 80 |
IgG1 | 0 | 20 | 0 | 0 | |
IgG2 | 80 | 320 | 40 | 80 | |
IFNG | 59.71 | 6.36 | 1.69 | 19.70 | |
IL4 | 0.37 | 0.49 | 0.38 | 1.75 | |
17 | tIgG | 160 | 80 | 80 | 40 |
IgG1 | 20 | 80 | 40 | 0 | |
IgG2 | 320 | 320 | 40 | 80 | |
IFNG | 0.13 | 0.27 | 1.74 | 0.13 | |
IL4 | 1.08 | 0.03 | 0.15 | 0.07 | |
18 | tIgG | 160 | 20 | 20 | 20 |
IgG1 | 20 | 0 | 0 | 0 | |
IgG2 | 40 | 40 | 0 | 0 | |
IFNG | 2.03 | 1.56 | 1.75 | 0.27 | |
IL4 | 1.37 | 0.32 | 0.03 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corpas-López, V.; Díaz-Sáez, V.; Morillas-Márquez, F.; Franco-Montalbán, F.; Díaz-Gavilán, M.; López-Viota, J.; López-Viota, M.; Gómez-Vidal, J.A.; Martín-Sánchez, J. Effectiveness of an O-Alkyl Hydroxamate in Dogs with Naturally Acquired Canine Leishmaniosis: An Exploratory Clinical Trial. Animals 2022, 12, 2700. https://doi.org/10.3390/ani12192700
Corpas-López V, Díaz-Sáez V, Morillas-Márquez F, Franco-Montalbán F, Díaz-Gavilán M, López-Viota J, López-Viota M, Gómez-Vidal JA, Martín-Sánchez J. Effectiveness of an O-Alkyl Hydroxamate in Dogs with Naturally Acquired Canine Leishmaniosis: An Exploratory Clinical Trial. Animals. 2022; 12(19):2700. https://doi.org/10.3390/ani12192700
Chicago/Turabian StyleCorpas-López, Victoriano, Victoriano Díaz-Sáez, Francisco Morillas-Márquez, Francisco Franco-Montalbán, Mónica Díaz-Gavilán, Julián López-Viota, Margarita López-Viota, José Antonio Gómez-Vidal, and Joaquina Martín-Sánchez. 2022. "Effectiveness of an O-Alkyl Hydroxamate in Dogs with Naturally Acquired Canine Leishmaniosis: An Exploratory Clinical Trial" Animals 12, no. 19: 2700. https://doi.org/10.3390/ani12192700
APA StyleCorpas-López, V., Díaz-Sáez, V., Morillas-Márquez, F., Franco-Montalbán, F., Díaz-Gavilán, M., López-Viota, J., López-Viota, M., Gómez-Vidal, J. A., & Martín-Sánchez, J. (2022). Effectiveness of an O-Alkyl Hydroxamate in Dogs with Naturally Acquired Canine Leishmaniosis: An Exploratory Clinical Trial. Animals, 12(19), 2700. https://doi.org/10.3390/ani12192700