Effect of Oat Hull as a Source of Insoluble Dietary Fibre on Changes in the Microbial Status of Gastrointestinal Tract in Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds, Diets, and Nutrition
2.2. Chemical Analysis of Feed Nutrients and Structural Components
2.3. Microbial Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Components and Chemical Analysis
4.2. Development of the Upper Part of the Gastrointestinal Tract
4.3. Microorganisms in the Crop and the Initial Part of the Ileum
4.4. Total Number of Aerobic Bacteria (TAMC)
4.5. E. coli
4.6. Lactobacillus spp.
4.7. Total Yeast and Moulds Content (TYMC)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nassar, M.K.; Lyu, S.; Zentek, J.; Brockmann, G.A. Dietary fiber content affects growth, body composition, and feed intake and their associations with a major growth locus in growing male chickens of an advanced intercross population. Livest. Sci. 2019, 227, 135–142. [Google Scholar] [CrossRef]
- Rezaei, M.; Hajati, H. Effect of dilution at early age on performance, carcass characteristics and blood parameters of broilers chickens. Italy J. Anim. Sci. 2010, 9, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Mateos, G.G.; Jimenez-Moreno, E.; Serrano, M.P.; Lázaro, R.P. Poultry response to high levels of dietary fiber sources varying in physical and chemical characteristics. J. Appl. Poult. Res. 2012, 21, 156–174. [Google Scholar] [CrossRef]
- Adibmoradi, M.; Navidshad, B.; Jahrome, M.F. The effect of moderate levels of finely ground insoluble fibre on small intestine morphology, nutrient digestibility and performance of broiler chickens. Italy J. Anim. Sci. 2016, 15, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Hetland, H.; Svihus, B.; Choct, M. Role of insoluble fiber in gizzard activity in layers. J. Appl. Poult. Res. 2005, 14, 38–46. [Google Scholar] [CrossRef]
- Jiménez-Moreno, E.; González-Alvarado, J.M.; González-Sánchez, D.; Lázaro, R.; Mateos, G.G. Effects of type and particle size of dietary fiber on growth performance and digestive traits of broilers from 1 to 21 days of age. Poult. Sci. 2010, 89, 2197–2212. [Google Scholar] [CrossRef]
- Yokhana, J.S.; Parkinson, G.; Frankel, T.L. Effect of insoluble fiber supplementation applied at different ages on digestive organ weight and digestive enzymes of layer-strain poultry. Poult. Sci. 2016, 95, 550–559. [Google Scholar] [CrossRef]
- Kimiaeitalab, M.V.; Goudarzi, S.M.; Jiménez-Moreno, E.; Cámara, L.; Mateos, G.G. A comparative study on the effects of dietary sunflower hulls on growth performance and digestive tract traits of broilers and pullet diet from 0 to 21 days of age. Anim. Feed Sci. Technol. 2018, 236, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Kheravii, S.K.; Morgan, N.K.; Swick, R.A.; Choct, M.; Wu, S.B. Roles of dietary fibre and ingredient particle size in broiler nutrition. World’s Poult. Sci. J. 2018, 74, 301–316. [Google Scholar] [CrossRef]
- Bach Knudsen, K.E. The nutritional significance of “dietary fibre” analysis. Anim. Feed Sci. Tech. 2001, 90, 3–20. [Google Scholar] [CrossRef]
- Wang, J.; Singh, A.K.; Kong, F.; Kim, W.K. Effect of almond hulls as an alternative ingredient on broiler performance, nutrient digestibility, and cecal microbiota diversity. Poult. Sci. 2021, 100, 100853. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Bedford, M.R.; Wu, S.-B.; Morgan, N.K. Dietary soluble non-starch polysaccharide level influences performance, nutrient utilisation and disappearance of non-starch polysaccharides in broiler chickens. Animals 2022, 12, 547. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Wine, R.H. Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell wall constituents. J. Assoc. Off. Anal. Chem. 1967, 50, 50. [Google Scholar] [CrossRef]
- Asp, N.G. Dietary fibre-definition, chemistry and analytical determination. Mol. Asp. Med. 1987, 9, 17–29. [Google Scholar] [CrossRef]
- Krás, R.V.; Kessler, A.M.; Ribeiro, A.M.L.; Henn, J.D.; Bockor, L.; Sbrissia, A.F. Effect of dietary fiber, genetic strain and age on the digestive metabolism of broiler chickens. Braz. J. Poult. Sci. 2013, 15, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Kurul, A.; Cengiz, Ö.; Pekel, A.Y. Live performance, digestive tract features, and illeal nutrient digestibility in broilers fed diets containing soy hulls. Italy J. Anim. Sci. 2020, 19, 1577–1582. [Google Scholar] [CrossRef]
- Shang, Q.; Wu, D.; Liu, H.; Mahfuz, S.; Piao, X. The impact of what bran on the morphology and physiology of the gastrointestinal tract in broiler chickens. Animals 2020, 10, 1831. [Google Scholar] [CrossRef]
- Choi, H.; Sung, J.Y.; Kim, B.G. Neutral detergent fiber rather than other dietary fiber types as an independent variable increases the accuracy of prediction equation for digestible energy in feeds for growing pigs. Asian-Australas. J. Anim. Sci. 2020, 33, 615–622. [Google Scholar] [CrossRef]
- Zhao, J.; Bai, Y.; Zhang, G.; Liu, L.; Lai, C. Relationship between dietary fiber fermentation and volatile fatty acids’ concentration in growing pigs. Animals 2020, 10, 263. [Google Scholar] [CrossRef] [Green Version]
- Liebl, M.; Gierus, M.; Potthast, C.; Schedle, K. Influence of insoluble dietary fibre on expression of pro-inflammatory marker genes in caecum, illeal morphology, performance, and foot pad dermatitis in broiler. Animals 2022, 12, 2069. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Bedford, M.R.; Wu, S.-B.; Morgan, N.K. Soluble non-starch polysaccharide modulates broiler gastrointestinal tract environment. Poult. Sci. 2021, 100, 101183. [Google Scholar] [CrossRef]
- Jamroz, D.; Jakobsen, K.; Bach Knudsen, K.E.; Wiliczkiewicz, A.; Orda, J. Digestibility and energy value of non-starch polysaccharides in young chickens, ducks and geese, fed diets containing high amounts of barley. Comp. Biochem. Physiol. Part A 2002, 131, 657–668. [Google Scholar] [CrossRef]
- Smeets, N.; Nuyens, F.; Van Campenhout, L.; Delezie, E.; Niewold, T.A. Interactions between the concentration of non-starch polysaccharides in wheat and the addition of an enzyme mixture in a broiler digestibility and performance trial. Poult. Sci. 2018, 97, 2064–2070. [Google Scholar] [CrossRef]
- Kim, E.; Morgan, N.K.; Moss, A.F.; Li, L.; Ader, P.; Choct, M. The flow of non-starch polysaccharides along the gastrointestinal tract of broiler chickens fed either a wheat- or maize-based diet. Anim. Nutr. 2022, 9, 138–142. [Google Scholar] [CrossRef]
- Mtei, A.W.; Abdollahi, M.R.; Schreurs, N.; Girish, C.K.; Ravindran, V. Dietary inclusion of fibrous ingredients and bird type influence apparent illeal digestibility of nutrients and energy utilization. Poult. Sci. 2019, 98, 6702–6712. [Google Scholar] [CrossRef]
- Sadeghi, A.; Toghyani, M.; Tabeidian, S.A.; Foroozandeh, A.D.; Ghalamkari, G. Efficacy of dietary supplemental insoluble fibrous materials in ameliorating adverse effects of coccidial challenge in broiler chickens. Arch. Anim. Nutr. 2020, 74, 362–379. [Google Scholar] [CrossRef]
- Chen, H.; Mao, X.; He, J.; Yu, B.; Huang, Z.; Yu, J.; Zheng, P.; Chen, D. Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. Br. J. Nutr. 2013, 110, 1837–1848. [Google Scholar] [CrossRef] [Green Version]
- Walugembe, M.; Hsieh, J.C.F.; Koszewski, N.J.; Lamont, S.J.; Persia, M.E.; Rothschild, M.F. Effects of dietary fiber on cecal short-chain fatty acid and cecal microbiota of broiler and laying-hen chicks. Poult. Sci. 2015, 94, 2351–2359. [Google Scholar] [CrossRef]
- Tejeda, O.J.; Kim, W.K. Role of dietary fiber in poultry nutrition. Animals 2021, 11, 461. [Google Scholar] [CrossRef]
- Mahmood, T.; Guo, Y. Dietary fiber and chicken microbiome interaction: Where will it lead to? Anim. Nutr. 2020, 6, 1–8. [Google Scholar] [CrossRef]
- European Tables of Energy Values of Feeds for Poultry, 3rd ed.; WPSA: Wageningen, The Netherlands, 1989; pp. 11–28.
- Polish Recommendation of Poultry Nutrition, 4th ed.; Instytut Fizjologii i Żywienia Zwierząt, PAN: Jabłonna, Poland, 2005. (In Polish)
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2005. [Google Scholar]
- Data Analysis Software System, Version 13; Tibco Software Inc. Statistica: Palo Alto, CA, USA, 2017.
- Berrocoso, J.D.; García-Ruiz, A.; Page, G.; Jaworski, N.W. The effect of added oat hulls or sugar beet pulp to diets containing rapidly or slowly digestible protein sources on broiler growth performance from 0 to 36 days at age. Poult. Sci. 2020, 99, 6859–6866. [Google Scholar] [CrossRef] [PubMed]
- Ben-Mabrouk, J.; Mateos, G.G.; de Juan, A.F.; Aguirre, L.; Cámara, L. Effect of beak trimming at hatch and the inclusion of oat hulls in the diet on growth performance, feed preference, exploratory pecking behaviour, and gastrointestinal tract traits of brown-egg pullets from hatch to 15 weeks of age. Poult. Sci. 2022, 101, 102044. [Google Scholar] [CrossRef] [PubMed]
- Kheravii, S.K.; Swick, R.A.; Choct, M.; Wu, S.B. Coarse particle inclusion and lignocellulose-rich fiber addition in feed benefit performance and health of broiler chickens. Poult. Sci. 2017, 96, 3272–3281. [Google Scholar] [CrossRef] [PubMed]
- Svihus, B. The gizzard: Function, influence of diet structure and effects of nutrient availability. World’s Poult. Sci. J. 2011, 67, 207–222. [Google Scholar] [CrossRef]
- Gjevre, A.G.; Kaldhusdal, M.; Eriksen, G.S. Gizzard erosion and ulceration syndrome in chickens and turkeys: A revive of casual or predisposing factors. Avian Pathol. 2013, 42, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Sacranie, A.; Adiya, X.; Mydland, L.T.; Svihus, B. Effect of intermittent feeding and oat hulls to improve phytase efficacy and digestive function in broiler chickens. Br. Poult. Sci. 2017, 58, 442–451. [Google Scholar] [CrossRef]
- Singh, A.K.; Kim, W.K. Effects of dietary fiber on nutrients utilization and gut health of poultry: A review of challenges and opportunities. Animals 2021, 11, 181. [Google Scholar] [CrossRef]
- Branton, S.L.; Lott, B.D.; Deaton, J.W.; Maslin, W.R.; Austin, F.W.; Ponte, L.M.; Keirs, R.W.; Latour, M.A.; Day, E.J. The effect of added complex carbohydrates or added fiber on necrotic enteritis lesions in broiler chickens. Poult. Sci. 1997, 76, 24–28. [Google Scholar] [CrossRef]
- Rintillä, T.; Apajalahti, J. Intestinal microbiota and metabolites—Implications for broiler chicken health and performance. J. Appl. Poult. Res. 2013, 22, 647–658. [Google Scholar] [CrossRef]
- Saadatmand, N.; Toghyani, M.; Gheisari, A. Effects of dietary fiber and threonine on performance, intestinal morphology and immune responses in broiler chickens. Anim. Nutr. 2019, 5, 248–255. [Google Scholar] [CrossRef]
- Engberg, R.M.; Hedemann, M.S.; Jensen, B.B. The influence of grinding and pelleting of feed on the microbial composition and activity in the digestive tract of broiler chickens. Br. Poult. Sci. 2002, 43, 569–579. [Google Scholar] [CrossRef]
- Sabour, S.; Tabeidian, A.S.; Sadeghi, G. Dietary organic acid and fiber sources affect performance, intestinal morphology, immune responses and gut microflora in broilers. Anim. Nutr. 2019, 5, 156–162. [Google Scholar] [CrossRef]
- Stamilla, A.; Ruiz-Ruiz, S.; Artacho, A.; Pons, J.; Messina, A.; Randazzo, C.L.; Caggia, C.; Lanza, M.; Moya, A. Analysis of the microbial intestinal tract in broiler chickens during the rearing period. Biology 2021, 10, 942. [Google Scholar] [CrossRef]
- Bogusławska-Tryk, M.; Szymeczko, R.; Piotrowska, A.; Burlikowska, K.; Śliżewska, K. Illeal and cecal microbial population and short-chain fatty acid profile in broiler chickens fed diets supplemented with lignocellulose. Pak. Vet. J. 2015, 35, 212–216. [Google Scholar]
- Nurmi, E.; Nuotio, L.; Schneitz, C. The competitive exclusion concept: Development and future. Int. J. Food Microbiol. 1992, 15, 237–240. [Google Scholar] [CrossRef]
- Jha, R.; Fouhse, J.M.; Tiwari, U.P.; Li, L.; Willing, B.P. Dietary fiber and intestinal health of monogastric animals. Front. Vet. Sci. 2019, 6, 48. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Moreno, E.; González-Alvarado, J.M.; de Coca-Sinova, A.; Lázaro, R.P.; Cámara, L.; Mateos, G.G. Insoluble fiber sources in mash or pellets diets for young broilers. 2. Effects on gastrointestinal tract development and nutrient digestibility. Poult. Sci. 2019, 98, 2531–2547. [Google Scholar] [CrossRef]
First Factor: Cereal Grain (n = 27) | ||||||||
---|---|---|---|---|---|---|---|---|
Control | Wheat | Barley | ||||||
9 replications | 9 replications | 9 replications | ||||||
Second factor: Oat hull (n = 27) | ||||||||
C0 * | C1 | C3 | W0 * | W1 | W3 | B0 * | B1 | B3 |
3 repli. | 3 repli. | 3 repli. | 3 repli. | 3 repli. | 3 repli. | 3 repli. | 3 repli. | 3 repli. |
Specification | Maize | Wheat | Barley | Soybean Meal | Oat Hull |
---|---|---|---|---|---|
Crude fibre | 28.1 | 37.3 | 67.8 | 34.9 | 278.1 |
TDF | 150.9 | 141.1 | 253.7 | 328.4 | 661.9 |
SDF | 1.53 | 30.9 | 11.7 | 30 | 9.61 |
IDF | 149.5 | 110.1 | 240.7 | 298.4 | 652.3 |
NDF | 135.3 | 231.8 | 224.6 | 97.1 | 639.1 |
ADF | 37.3 | 45.2 | 66.5 | 47.9 | 342.4 |
Hemicellulose | 97.8 | 186.6 | 158.1 | 49.1 | 296.7 |
Ingredients | Maize OH * 0% | Maize OH 1% | Maize OH 3% | Wheat OH 0% | Wheat OH 1% | Wheat OH 3% | Barley OH 0% | Barley OH 1% | Barley OH 3% |
---|---|---|---|---|---|---|---|---|---|
Maize | 559 | 547 | 520 | 81 | 68 | 41 | 7 | - | - |
Wheat | - | - | - | 500 | 500 | 500 | - | - | - |
Barley | - | - | - | - | - | - | 500 | 500 | 500 |
Oat hull | - | 10 | 30 | - | 10 | 30 | - | 10 | 30 |
Soybean oil | 28 | 30 | 33 | 41 | 43 | 47 | 69 | 70 | 70 |
Soybean meal | 369 | 370 | 374 | 334 | 336 | 339 | 382 | 378 | 358 |
Dicalcium phosphate | 21.11 | 20.03 | 20.37 | 19.26 | 18.50 | 18.49 | 17.26 | 17.15 | 17.18 |
Limestone | 2.36 | 2.38 | 2.11 | 3.11 | 3.08 | 3.02 | 3.95 | 3.99 | 4.04 |
NaCl | 3.42 | 3.47 | 3.37 | 3.67 | 3.52 | 3.54 | 3.62 | 3.69 | 3.61 |
DL-Methionine 98% | 2.11 | 2.12 | 2.15 | 2.29 | 2.19 | 2.21 | 2.17 | 2.17 | 2.17 |
L-Lysine HCL 78% | - | - | - | 0.67 | 0.71 | 0.74 | - | - | - |
Cr2O3 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Premix DKA-s ** | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Specification | Maize OH 0% | Maize OH 1% | Maize OH 3% | Wheat OH 0% | Wheat OH 1% | Wheat OH 3% | Barley OH 0% | Barley OH 1% | Barley OH 3% |
---|---|---|---|---|---|---|---|---|---|
Metabolizable energy (MJ·kg−1) | 12.24 | 12.25 | 12.21 | 12.18 | 12.18 | 12.16 | 12.24 | 12.23 | 12.22 |
Nutrients (g · kg−1) | |||||||||
Dry matter | 926.9 | 922.4 | 918.8 | 915.6 | 899.9 | 900.8 | 909.9 | 919.8 | 901.0 |
Crude protein | 225.3 | 224.6 | 218.0 | 211.7 | 211.2 | 212.8 | 225.6 | 230.7 | 217.8 |
Ether extract | 49.3 | 52.8 | 54.9 | 53.2 | 57.1 | 58.4 | 83.8 | 84.2 | 78.0 |
Crude ash | 41 | 41 | 41 | 39 | 39 | 40 | 51 | 51 | 51 |
Structural components (g · kg−1) | |||||||||
Crude fibre | 29.4 | 31.2 | 36.7 | 32.0 | 35.1 | 40.7 | 48.1 | 50.4 | 54.5 |
TDF * | 203.2 | 212.2 | 220.0 | 191.6 | 199.1 | 209.3 | 248.4 | 253.0 | 263.5 |
SDF * | 12.1 | 12.1 | 12.2 | 25.8 | 26.1 | 26.3 | 17.0 | 17.4 | 16.9 |
IDF * | 191.1 | 200.1 | 207.8 | 165.8 | 173.0 | 183.0 | 231.4 | 235.6 | 246.6 |
NDF * | 109.9 | 114.5 | 125.7 | 158.9 | 161.0 | 175.8 | 151.1 | 156.4 | 160.8 |
ADF * | 38.4 | 42.4 | 47.1 | 41.2 | 44.3 | 50.1 | 51.5 | 55.5 | 61.5 |
Hemicelluloses | 71.5 | 72.1 | 78.6 | 117.7 | 116.7 | 125.7 | 99.6 | 100.9 | 106.5 |
Count of microorganisms in feed (log CFU · g−1) | |||||||||
TAMC * | 1.45 | 1.44 | 1.40 | 0.34 | 0.33 | 0.29 | 1.29 | 1.28 | 1.30 |
Lactobacillus spp. | 2.13 | 2.12 | 2.11 | 0.89 | 0.89 | 0.87 | 1.26 | 1.26 | 1.28 |
TYMC * | 1.91 | 1.90 | 1.86 | 1.82 | 1.80 | 1.76 | 1.46 | 1.44 | 1.43 |
E.coli | - | - | - | - | - | - | - | - | - |
Salmonella sp. | - | - | - | - | - | - | - | - | - |
Specification | Final Body Weight * | Weight of | ||
---|---|---|---|---|
Crop without Digesta | Proventriculus | Gizzard | ||
Cereal | ||||
Maize | 1343 C | 5.5 b | 5.9 C | 24.8 B |
Wheat | 1426 B | 6.1 a | 6.3 B | 23.8 B |
Barley | 1501 A | 6.2 a | 6.7 A | 28.7 A |
Hull | ||||
0% | 1422 | 6.7 Aa | 6.0 B | 23.7 B |
1% | 1437 | 5.4 Bb | 6.5 Aa | 26.3 A |
3% | 1404 | 5.8 b | 6.3 Ab | 27.3 A |
SEM | 0.018 | 0.209 | 0.090 | 0.555 |
p-value | ||||
Cereal | 0.000 | 0.043 | 0.045 | 0.000 |
Hull | 0.114 | 0.019 | 0.001 | 0.000 |
Covariate * | - | 0.086 | 0.011 | 0.269 |
Specification | Crop | Ileum | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH * | TAMC | E. coli | TYMC | Lactobacillus spp. | Salmonella sp. | pH * | TAMC | E. coli | TYMC | Lactobacillus spp. | Salmonella sp. | |
Cereal | ||||||||||||
Maize | 5.82 A | 4.62 C | 3.81 | 2.19 | 3.55 Bb | - | 6.83 | 4.49 | 3.41 A | 1.75 | 2.30 | - |
Wheat | 5.84 A | 6.29 A | 3.85 | 2.09 | 4.05 A | - | 6.79 | 4.15 | 3.45 A | 1.03 | 1.84 | - |
Barley | 5.46 B | 5.08 B | 4.21 | 2.06 | 3.89 Aa | - | 6.84 | 4.29 | 2.69 B | 1.34 | 1.44 | - |
Oat hull | ||||||||||||
0% | 5.63 B | 5.28 a | 3.82 | 2.30 A | 3.80 | - | 6.80 AB | 4.38 ab | 3.04 b | 0.93 a | 1.61 | - |
1% | 5.75 A | 5.53 a | 4.03 | 2.12 ABa | 3.86 | - | 6.64 B | 4.01 a | 3.32 a | 1.73 b | 2.12 | - |
3% | 5.74 A | 5.18 b | 4.02 | 1.92 Bb | 3.84 | - | 7.02 A | 4.54 b | 3.18 ab | 1.46 ab | 1.84 | - |
SEM | 0.042 | 0.151 | 0.082 | 0.049 | 0.088 | - | 0.049 | 0.149 | 0.129 | 0.138 | 0.161 | - |
p-value | ||||||||||||
Cereal | 0.000 | 0.000 | 0.477 | 0.115 | 0.001 | - | 0.424 | 0.423 | 0.002 | 0.070 | 0.097 | - |
Hull | 0.002 | 0.012 | 0.063 | 0.020 | 0.106 | - | 0.000 | 0.020 | 0.048 | 0.034 | 0.339 | - |
Covariate * | - | 0.021 | 0.015 | 0.120 | 0.000 | - | - | 0.006 | 0.000 | 0.619 | 0.479 | - |
Feed | Crop | |||
---|---|---|---|---|
TAMC | E. coli | Lactobacillus spp. | TYMC | |
TAMC | −0.907 * | 0.103 | −0.375 | 0.089 |
Lactobacillus spp. | −0.821 * | −0.144 | −0.461 * | 0.188 |
TYMC | 0.038 | −0.457 * | −0.188 | 0.229 |
Feed | Ileum | |||
TAMC | E. coli | Lactobacillusspp. | TYMC | |
TAMC | 0.154 | −0.241 | 0.073 | 0.354 |
Lactobacillus spp. | 0.181 | 0.084 | 0.306 | 0.409 * |
TYMC | 0.030 | 0.499 * | 0.404 * | 0.086 |
Crop | Ileum | |||
TAMC | E. coli | Lactobacillusspp. | TYMC | |
TAMC | −0.186 | 0.184 | −0.188 | −0.222 |
Lactobacillus spp. | −0.767 * | −0.483 * | −0.177 | −0.026 |
E.coli | 0.129 | −0.127 | −0.578 * | 0.551 * |
TYMC | 0.466 * | 0.448 * | −0.298 | 0.126 |
Specification | Crop | |||
---|---|---|---|---|
TAMC | E. coli | TYMC | Lactobacillus spp. | |
Crude Fibre | −0.083 | 0.485 * | −0.363 | 0.163 |
TDF | −0.406 * | 0.443 * | −0.278 | 0.018 |
SDF | 0.918 * | −0.008 | −0.129 | 0.416 * |
IDF | −0.563 * | 0.403 * | −0.225 | −0.073 |
NDF | 0.663 * | 0.234 | −0.376 | 0.425 * |
ADF | −0.102 | 0.420 * | −0.496 * | 0.156 |
Hemicelluloses | 0.816 * | 0.122 | −0.261 | 0.442 * |
Specification | Ileum | |||
TAMC | E. coli | TYMC | Lactobacillusspp. | |
Crude Fibre | 0.028 | −0.452 * | 0.000 | −0.369 |
TDF | 0.056 | −0.480 * | 0.142 | −0.293 |
SDF | −0.170 | 0.125 | −0.397 * | −0.164 |
IDF | 0.087 | −0.462 * | 0.213 | −0.231 |
NDF | −0.101 | −0.136 | −0.330 | −0.314 |
ADF | 0.028 | −0.382 | 0.030 | −0.271 |
Hemicelluloses | −0.129 | −0.021 | −0.398 * | −0.271 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wróblewska, P.; Hikawczuk, T.; Sierżant, K.; Wiliczkiewicz, A.; Szuba-Trznadel, A. Effect of Oat Hull as a Source of Insoluble Dietary Fibre on Changes in the Microbial Status of Gastrointestinal Tract in Broiler Chickens. Animals 2022, 12, 2721. https://doi.org/10.3390/ani12192721
Wróblewska P, Hikawczuk T, Sierżant K, Wiliczkiewicz A, Szuba-Trznadel A. Effect of Oat Hull as a Source of Insoluble Dietary Fibre on Changes in the Microbial Status of Gastrointestinal Tract in Broiler Chickens. Animals. 2022; 12(19):2721. https://doi.org/10.3390/ani12192721
Chicago/Turabian StyleWróblewska, Patrycja, Tomasz Hikawczuk, Kamil Sierżant, Andrzej Wiliczkiewicz, and Anna Szuba-Trznadel. 2022. "Effect of Oat Hull as a Source of Insoluble Dietary Fibre on Changes in the Microbial Status of Gastrointestinal Tract in Broiler Chickens" Animals 12, no. 19: 2721. https://doi.org/10.3390/ani12192721
APA StyleWróblewska, P., Hikawczuk, T., Sierżant, K., Wiliczkiewicz, A., & Szuba-Trznadel, A. (2022). Effect of Oat Hull as a Source of Insoluble Dietary Fibre on Changes in the Microbial Status of Gastrointestinal Tract in Broiler Chickens. Animals, 12(19), 2721. https://doi.org/10.3390/ani12192721