The Effects of Dietary Inclusion of Mulberry Leaf Powder on Growth Performance, Carcass Traits and Meat Quality of Tibetan Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. MLP Preparation
2.2. Animals, Experimental Design, and Diets
2.3. Sample Collection
2.4. Measurement of Carcass Traits and Meat Quality
2.5. H&E Staining and Immunofluorescence
2.6. Analysis of Antioxidant Activities in the Serum
2.7. Quantitative Real-Time PCR Analysis
2.8. Western Blot
2.9. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Oxidative Status
3.3. Meat Quality
3.4. Muscle Fiber Morphology Traits
3.5. Muscle Fiber Type and Related Gene and Protein Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Purriños, L.; Franco, D.; Carballo, J.; Lorenzo, J.M. Influence of the salting time on volatile compounds during the manufacture of dry-cured pork shoulder “lacón”. Meat Sci. 2012, 92, 627–634. [Google Scholar]
- Subramaniyan, S.A.; Kang, D.R.; Belal, S.A.; Cho, E.-S.-R.; Jung, J.-H.; Jung, Y.-C.; Choi, Y.-I.; Shim, K.-S. Meat Quality and Physicochemical Trait Assessments of Berkshire and Commercial 3-way Crossbred Pigs. Korean J. Food Sci. Anim. Resour. 2016, 36, 641–649. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; Zhang, C.-H.; Fauconnier, M.-L.; Mi, S. Characterization and differentiation of boiled pork from Tibetan, Sanmenxia and Duroc × (Landrac × Yorkshire) pigs by volatiles profiling and chemometrics analysis. Food Res. Int. 2020, 130, 108910. [Google Scholar] [PubMed]
- Qi, J.; Li, Y.; Zhang, C.; Wang, C.; Wang, J.; Guo, W.; Wang, S. Geographic origin discrimination of pork from different Chinese regions using mineral elements analysis assisted by machine learning techniques. Food Chem. 2021, 337, 127779. [Google Scholar] [CrossRef] [PubMed]
- Cucchi, T.; Hulme-Beaman, A.; Yuan, J.; Dobney, K. Early Neolithic pig domestication at Jiahu, Henan Province, China: Clues from molar shape analyses using geometric morphometric approaches. J. Archaeol. Sci. 2011, 38, 11–22. [Google Scholar] [CrossRef]
- Lander, B.; Schneider, M.; Brunson, K. A History of Pigs in China: From Curious Omnivores to Industrial Pork. J. Asian Stud. 2020, 79, 865–889. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, J.; Liu, X.; Gao, Y.; Luo, Z.; Gu, X.; Zhang, J.; Wu, D.; Geng, F. Tandem mass tag-labeled quantitative proteomic analysis of tenderloins between Tibetan and Yorkshire pigs. Meat Sci. 2021, 172, 108343. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Gao, Y.; Luo, Z.; Yang, L.; Chi, F.; Xiao, J.; Wang, W.; Geng, F. In-depth mapping of the proteome of Tibetan pig tenderloin (longissimus dorsi) using offline high-pH reversed-phase fractionation and LC-MS/MS. J. Food Biochem. 2019, 43, e13015. [Google Scholar] [PubMed]
- Gan, M.; Shen, L.; Fan, Y.; Guo, Z.; Liu, B.; Chen, L.; Tang, G.; Jiang, Y.; Li, X.; Zhang, S.; et al. High Altitude Adaptability and Meat Quality in Tibetan Pigs: A Reference for Local Pork Processing and Genetic Improvement. Animals 2019, 9, 1080. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Cao, C.; Tao, C.; Ye, R.; Dong, M.; Zheng, Q.; Wang, C.; Jiang, X.; Qin, G.; Yan, C.; et al. Cold adaptation in pigs depends on UCP3 in beige adipocytes. J. Mol. Cell Biol. 2017, 9, 364–375. [Google Scholar] [CrossRef] [Green Version]
- Wen, P.; Hu, T.G.; Linhardt, R.J.; Liao, S.T.; Wu, H.; Zou, Y.X. Mulberry: A review of bioactive compounds and advanced processing technology. Trends Food Sci. Technol. 2019, 83, 138–158. [Google Scholar] [CrossRef]
- Chen, X.L.; Sheng, Z.C.; Qiu, S.L.; Yang, H.F.; Jia, J.P.; Wang, J.; Jiang, C.M. Purification, characterization and in vitro and in vivo immune enhancement of polysaccharides from mulberry leaves. PLoS ONE 2019, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Huyen, N.T.; Wanapat, M.; Navanukraw, C. Effect of Mulberry leaf pellet (MUP) supplementation on rumen fermentation and nutrient digestibility in beef cattle fed on rice straw-based diets. Anim. Feed. Sci. Technol. 2012, 175, 8–15. [Google Scholar] [CrossRef]
- Lin, W.C.; Lee, M.T.; Chang, S.C.; Chang, Y.L.; Shih, C.H.; Yu, B.; Lee, T.T. Effects of mulberry leaves on production performance and the potential modulation of antioxidative status in laying hens. Poult. Sci. 2017, 96, 1191–1203. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Jiang, J.J.; Yu, J.; Mao, X.B.; Yu, B.; Chen, D.W. Effect of dietary supplementation with mulberry (Morus alba L.) leaves on the growth performance, meat quality and antioxidative capacity of finishing pigs. J. Integr. Agric. 2019, 18, 143–151. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Peng, Y.; He, J.; Xiao, D.; Chen, C.; Li, F.; Huang, R.; Yin, Y. Dietary mulberry leaf powder affects growth performance, carcass traits and meat quality in finishing pigs. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1934–1945. [Google Scholar] [CrossRef]
- Yang, Z.G.; Matsuzaki, K.; Takamatsu, S.; Kitanaka, S. Inhibitory Effects of Constituents from Morus alba var. multicaulis on Differentiation of 3T3-L1 Cells and Nitric Oxide Production in RAW264.7 Cells. Molecules 2011, 16, 6010–6022. [Google Scholar] [CrossRef] [Green Version]
- You, Y.; Liang, C.; Han, X.; Guo, J.; Ren, C.; Liu, G.; Huang, W.; Zhan, J. Mulberry anthocyanins, cyanidin 3-glucoside and cyanidin 3-rutinoside, increase the quantity of mitochondria during brown adipogenesis. J. Funct. Foods 2017, 36, 348–356. [Google Scholar] [CrossRef]
- Fan, L.; Peng, Y.; Wu, D.; Hu, J.; Shi, X.e.; Yang, G.; Li, X. Dietary supplementation of Morus nigra L. leaves decrease fat mass partially through elevating leptin-stimulated lipolysis in pig model. J. Ethnopharmacol. 2020, 249, 112416. [Google Scholar] [CrossRef]
- Chen, Z.; Xie, Y.; Luo, J.; Chen, T.; Xi, Q.; Zhang, Y.; Sun, J. Dietary supplementation with Moringa oleifera and mulberry leaf affects pork quality from finishing pigs. J. Anim. Physiol. Anim. Nutr. 2021, 105, 72–79. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Duan, Y.H.; Li, F.N.; Yang, B.C.; Zhang, J.X.; Hou, S.Z. Dietary supplementation with Lonicera macranthoides leaf powder enhances growth performance and muscle growth of Chinese Tibetan pigs. Livest. Sci. 2017, 206, 1–8. [Google Scholar] [CrossRef]
- Li, J.; Yang, Y.; Zhan, T.; Zhao, Q.; Zhang, J.; Ao, X.; He, J.; Zhou, J.; Tang, C. Effect of slaughter weight on carcass characteristics, meat quality, and lipidomics profiling in longissimus thoracis of finishing pigs. LWT 2021, 140, 110705. [Google Scholar] [CrossRef]
- Yu, M.; Li, Z.; Chen, W.; Rong, T.; Wang, G.; Li, J.; Ma, X. Use of Hermetia illucens larvae as a dietary protein source: Effects on growth performance, carcass traits, and meat quality in finishing pigs. Meat Sci. 2019, 158, 107837. [Google Scholar] [CrossRef] [PubMed]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Yu, M.; Li, Z.; Rong, T.; Wang, G.; Liu, Z.; Chen, W.; Li, J.; Li, J.; Ma, X. Different dietary starch sources alter the carcass traits, meat quality, and the profile of muscle amino acid and fatty acid in finishing pigs. J. Anim. Sci. Biotechnol. 2020, 11, 78. [Google Scholar] [CrossRef]
- Berg, E. David Meisinger. Pork composition and quality assessment procedures. In National Pork Board as Implemented by the National Pork Producers Council; American Meat Science Association: Des Moines, WA, USA, 2000. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Lin, S.; Yang, X.; Long, Y.; Zhong, H.; Wang, P.; Yuan, P.; Zhang, X.; Che, L.; Feng, B.; Li, J.; et al. Dietary supplementation with Lactobacillus plantarum modified gut microbiota, bile acid profile and glucose homoeostasis in weaning piglets. Br. J. Nutr. 2020, 124, 797–808. [Google Scholar] [CrossRef]
- Tu, T.; Wu, W.; Tang, X.; Ge, Q.; Zhan, J. Screening out important substances for distinguishing Chinese indigenous pork and hybrid pork and identifying different pork muscles by analyzing the fatty acid and nucleotide contents. Food Chem. 2021, 350, 129219. [Google Scholar] [CrossRef]
- Zhang, N.-Z.; Zhou, D.-H.; Huang, S.-Y.; Wang, M.; Shi, X.-C.; Ciren, D.; Zhu, X.-Q. Seroprevalence and risk factors associated with Haemophilus parasuis infection in Tibetan pigs in Tibet. Acta Trop. 2014, 132, 94–97. [Google Scholar] [CrossRef]
- Peng, C.-H.; Lin, H.-T.; Chung, D.-J.; Huang, C.-N.; Wang, C.-J. Mulberry Leaf Extracts prevent obesity-induced NAFLD with regulating adipocytokines, inflammation and oxidative stress. J. Food Drug Anal. 2018, 26, 778–787. [Google Scholar] [CrossRef]
- Zhu, L.; Li, M.; Li, X.; Shuai, S.; Liu, H.; Wang, J.; Jiang, A.; Gu, Y.; Zhang, K.; Teng, X.; et al. Distinct Expression Patterns of Genes Associated with Muscle Growth and Adipose Deposition in Tibetan Pigs: A Possible Adaptive Mechanism for High Altitude Conditions. High Alt. Med. Biol. 2009, 10, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhou, L.; Zhang, J.; Liu, X.; Zhang, Y.; Cai, L.; Zhang, W.; Cui, L.; Yang, J.; Ji, J.; et al. A large-scale comparison of meat quality and intramuscular fatty acid composition among three Chinese indigenous pig breeds. Meat Sci. 2020, 168, 108182. [Google Scholar] [CrossRef] [PubMed]
- Henchion, M.; McCarthy, M.; Resconi, V.C.; Troy, D. Meat consumption: Trends and quality matters. Meat Sci. 2014, 98, 561–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serra, V.; Salvatori, G.; Pastorelli, G. Dietary Polyphenol Supplementation in Food Producing Animals: Effects on the Quality of Derived Products. Animals 2021, 11, 401. [Google Scholar] [CrossRef]
- Kamboh, A.A.; Leghari, R.A.; Khan, M.A.; Kaka, U.; Naseer, M.; Sazili, A.Q.; Malhi, K.K. Flavonoids supplementation—An ideal approach to improve quality of poultry products. World’s Poult. Sci. J. 2019, 75, 115–126. [Google Scholar] [CrossRef]
- Wen, W.; Chen, X.; Huang, Z.; Chen, D.; Yu, B.; He, J.; Luo, Y.; Yan, H.; Chen, H.; Zheng, P.; et al. Dietary lycopene supplementation improves meat quality, antioxidant capacity and skeletal muscle fiber type transformation in finishing pigs. Anim. Nutr. 2022, 8, 256–264. [Google Scholar] [CrossRef]
- Wang, W.L.; Wen, C.Y.; Guo, Q.P.; Li, J.Z.; He, S.P.; Yin, Y.L. Dietary Supplementation With Chlorogenic Acid Derived From Lonicera macranthoides Hand-Mazz Improves Meat Quality and Muscle Fiber Characteristics of Finishing Pigs via Enhancement of Antioxidant Capacity. Front. Physiol. 2021, 12, 650084. [Google Scholar] [CrossRef]
- Shackelford, S.D.; Wheeler, T.L.; Koohmaraie, M. Evaluation of slice shear force as an objective method of assessing beef longissimus tenderness. J. Anim. Sci. 1999, 77, 2693–2699. [Google Scholar] [CrossRef] [Green Version]
- Huo, W.R.; Weng, K.Q.; Gu, T.T.; Zhang, Y.; Zhang, Y.; Chen, G.H.; Xu, Q. Effect of muscle fiber characteristics on meat quality in fast- and slow-growing ducks. Poult. Sci. 2021, 100, 101264. [Google Scholar] [CrossRef]
- Fazarinc, G.; Vrecl, M.; Poklukar, K.; Škrlep, M.; Batorek-Lukač, N.; Brankovič, J.; Tomažin, U.; Čandek-Potokar, M. Expression of Myosin Heavy Chain and Some Energy Metabolism-Related Genes in the Longissimus Dorsi Muscle of Krškopolje Pigs: Effect of the Production System. Front. Vet. Sci. 2020, 7, 533936. [Google Scholar] [CrossRef]
- Ryu, Y.C.; Kim, B.C. The relationship between muscle fiber characteristics, postmortem metabolic rate, and meat quality of pig longissimus dorsi muscle. Meat Sci. 2005, 71, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Choe, J.H.; Choi, Y.M.; Jung, K.C.; Rhee, M.S.; Hong, K.C.; Lee, S.K.; Ryu, Y.C.; Kim, B.C. The influence of pork quality traits and muscle fiber characteristics on the eating quality of pork from various breeds. Meat Sci. 2012, 90, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.; Li Ji, L. Role of PGC-1α signaling in skeletal muscle health and disease. Ann. New York Acad. Sci. 2012, 1271, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Olesen, J.; Kiilerich, K.; Pilegaard, H. PGC-1 alpha-mediated adaptations in skeletal muscle. Pflug. Arch.-Eur. J. Physiol. 2010, 460, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Wu, H.; Tarr, P.T.; Zhang, C.-Y.; Wu, Z.; Boss, O.; Michael, L.F.; Puigserver, P.; Isotani, E.; Olson, E.N.; et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 2002, 418, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Chen, X.L.; Huang, Z.Q.; Chen, D.W.; Li, M.Z.; He, J.; Chen, H.; Zheng, P.; Yu, J.; Luo, Y.H.; et al. Effects of dietary grape seed proanthocyanidin extract supplementation on meat quality, muscle fiber characteristics and antioxidant capacity of finishing pigs. Food Chem. 2022, 367, 130781. [Google Scholar] [CrossRef] [PubMed]
- Park, M.Y.; Ryu, Y.C.; Kim, C.N.; Ko, K.B.; Kim, J.M. Evaluation of Myosin Heavy Chain Isoforms in Biopsied Longissimus Thoracis Muscle for Estimation of Meat Quality Traits in Live Pigs. Animals 2020, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Luo, J.Q.; Yu, B.; Zheng, P.; Huang, Z.Q.; Mao, X.B.; He, J.; Yu, J.; Chen, J.L.; Chen, D.W. Dietary resveratrol supplementation improves meat quality of finishing pigs through changing muscle fiber characteristics and antioxidative status. Meat Sci. 2015, 102, 15–21. [Google Scholar] [CrossRef]
Ingredients | Content |
---|---|
Crude protein, % | 13.96 |
Crude fat, % | 4.30 |
Crude fiber, % | 6.00 |
Crude ash, % | 8.30 |
Total calcium, % | 1.32 |
Total phosphorus, % | 0.34 |
Items | Treatment | |
---|---|---|
CON | MLP | |
Ingredients, % | ||
Corn | 62.00 | 56.50 |
Soybean meal | 25.80 | 24.50 |
Rice bran meal | 8.20 | 7.20 |
Mulberry leaf powder | - | 8.00 |
Wheat middling | 1.00 | 1.00 |
Soybean oil | 1.00 | 0.80 |
Vitamin-mineral premix1 | 2.00 | 2.00 |
Calculated content | ||
Digestible energy, Mcal/kg | 3.32 | 3.33 |
Crude protein | 17.61 | 17.58 |
Crude fiber | 3.16 | 3.40 |
Calcium | 0.61 | 0.71 |
Total phosphorus | 0.70 | 0.69 |
Standardized ileal digestible amino acids | ||
Lysine, % | 0.76 | 0.72 |
Methionine + cysteine, % | 0.47 | 0.43 |
Threonine, % | 0.54 | 0.51 |
Tryptophan, % | 0.17 | 0.16 |
Genes | Primer Sequences (5′ to 3′) | Accession Number | Size, bp |
---|---|---|---|
β-actin | FW: CCACGAAACTACCTTCAACTC | XM_003124280.5 | 131 |
RV: TGATCTCCTTCTGCATCCTGT | |||
MyHCI | FW: AAGGGCTTGAACGAGGAGTAGA | NM_213855.2 | 114 |
RV: TTATTCTGTTCCTCCAAAGGG | |||
MyHCⅡa | FW: GCTGAGCGAGCTGAAATCC | NM_214136.1 | 137 |
RV: ACTGAGACACCAGAGCTTCT | |||
MyHCⅡx | FW: AGAAGATCAACTGAGTGAACT | NM_001104951.2 | 149 |
RV: AGAGCTGAGAAACTAACGTG | |||
MyHCⅡb | FW: ATGAAGAGGAACCACATTA | NM_001123141.1 | 166 |
RV: TTATTGCCTCAGTAGCTTG |
Items | Treatment | p-Value | |
---|---|---|---|
CON | MLP | ||
Initial BW, kg | 34.22 ± 3.03 | 33.44 ± 3.05 | 0.87 |
BW at Day30, kg | 41.50 ± 2.60 | 42.11 ± 2.35 | 0.87 |
Final BW, kg | 51.28 ± 2.92 | 50.28 ± 2.63 | 0.81 |
ADG, g | 309.70 ± 18.34 | 267.60 ± 10.92 | 0.12 |
ADFI, g | 1386.00 ± 23.97 | 1348.00 ± 30.12 | 0.38 |
F:G | 4.66 ± 0.06 | 5.05 ± 0.18 | 0.11 |
Backfat thickness, cm | 29.50 ± 1.57 | 25.06 ± 1.03 | 0.04 |
Hot carcass weight, kg | 32.82 ± 0.80 | 30.18 ± 1.12 | 0.09 |
Lean percentage | 43.80 ± 0.50 | 45.76 ± 0.64 * | 0.04 |
Items | Treatment | p-Value | |
---|---|---|---|
CON | MLP | ||
pH45min | 6.24 ± 0.09 | 6.33 ± 0.03 | 0.32 |
pH24h | 5.54 ± 0.19 | 5.67 ± 0.15 | 0.60 |
L* (lightness)45min | 43.22 ± 1.24 | 42.21 ± 1.52 | 0.62 |
a* (redness)45min | 20.57 ± 0.73 | 20.71 ± 0.19 | 0.86 |
b* (yellowness)45min | 2.56 ± 0.27 | 2.40 ± 0.16 | 0.63 |
L* (lightness)24h | 51.38 ± 1.56 | 48.08 ± 0.87 | 0.09 |
a* (redness)24h | 22.42 ± 0.86 | 21.98 ± 0.76 | 0.70 |
b* (yellowness)24h | 7.98 ± 0.75 | 6.84 ± 0.54 | 0.24 |
Drip loss at 24h, % | 4.85 ± 0.54 | 4.69 ± 0.42 | 0.82 |
Drip loss at 48h, % | 7.87 ± 0.69 | 7.44 ± 0.65 | 0.66 |
Marbling scores | 1.47 ± 0.07 | 1.72 ± 0.35 | 0.48 |
Cooking loss | 14.40 ± 1.61 | 16.04 ± 1.44 | 0.47 |
Shear force, N | 32.72 ± 1.44 | 27.51 ± 1.65 * | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Tang, C.; Li, J.; Wang, Z.; Meng, F.; Luo, G.; Xin, H.; Zhong, J.; Wang, Y.; Li, B.; et al. The Effects of Dietary Inclusion of Mulberry Leaf Powder on Growth Performance, Carcass Traits and Meat Quality of Tibetan Pigs. Animals 2022, 12, 2743. https://doi.org/10.3390/ani12202743
Wang S, Tang C, Li J, Wang Z, Meng F, Luo G, Xin H, Zhong J, Wang Y, Li B, et al. The Effects of Dietary Inclusion of Mulberry Leaf Powder on Growth Performance, Carcass Traits and Meat Quality of Tibetan Pigs. Animals. 2022; 12(20):2743. https://doi.org/10.3390/ani12202743
Chicago/Turabian StyleWang, Sutian, Cuiming Tang, Jianhao Li, Zhenjiang Wang, Fanming Meng, Guoqing Luo, Haiyun Xin, Jianwu Zhong, Yuan Wang, Baohong Li, and et al. 2022. "The Effects of Dietary Inclusion of Mulberry Leaf Powder on Growth Performance, Carcass Traits and Meat Quality of Tibetan Pigs" Animals 12, no. 20: 2743. https://doi.org/10.3390/ani12202743
APA StyleWang, S., Tang, C., Li, J., Wang, Z., Meng, F., Luo, G., Xin, H., Zhong, J., Wang, Y., Li, B., Li, Z., Chen, L., Hu, B., & Lin, S. (2022). The Effects of Dietary Inclusion of Mulberry Leaf Powder on Growth Performance, Carcass Traits and Meat Quality of Tibetan Pigs. Animals, 12(20), 2743. https://doi.org/10.3390/ani12202743