Expression Profiling of Circular RNAs in Early Pregnant Jianghuai Buffaloes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Blood Sample Collection
2.2. Construction and Sequencing of CircRNA Libraries
2.3. Bioinformatic Analysis of CircRNA
2.4. Real-Time Quantitative Polymerase Chain Reaction (qPCR)
2.5. Statistical Analysis
3. Results
3.1. Characteristics of CircRNAs Expressed in the Blood of Jianghuai Buffalo
3.2. Determination of DECs in Blood between C-Buffalo and P-Buffalo
3.3. Functional Profiling for Host Genes of DECs between C-Buffalo and P-Buffalo
3.4. Predicting Potential Sponging miRNA Targets for circRNAs Expressing in P-Buffalo and C-Buffalo
3.5. Validation of DECs in Blood between C-Buffalo and P-Buffalo
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forde, N.; Carter, F.; Spencer, T.E.; Bazer, F.W.; Sandra, O.; Mansouri-Attia, N.; Okumu, L.A.; McGettigan, P.A.; Mehta, J.P.; McBride, R.; et al. Conceptus-induced changes in the endometrial transcriptome: How soon does the cow know she is pregnant? Biol. Reprod. 2011, 85, 144–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spencer, T.E.; Bazer, F.W. Conceptus signals for establishment and maintenance of pregnancy. Reprod. Biol. Endocrinol. 2004, 2, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansouri-Attia, N.; Sandra, O.; Aubert, J.; Degrelle, S.; Everts, R.E.; Giraud-Delville, C.; Heyman, Y.; Galio, L.; Hue, I.; Yang, X.; et al. Endometrium as an early sensor of in vitro embryo manipulation technologies. Proc. Natl. Acad. Sci. USA 2009, 106, 5687–5692. [Google Scholar] [CrossRef] [Green Version]
- Andrade, J.P.N.; Andrade, F.S.; Guerson, Y.B.; Domingues, R.R.; Gomez-León, V.E.; Cunha, T.O.; Jacob, J.C.F.; Sales, J.N.; Martins, J.P.N.; Mello, M.R.B. Early pregnancy diagnosis at 21 days post artificial insemination using corpus luteum vascular perfusion compared to corpus luteum diameter and/or echogenicity in Nelore heifers. Anim. Reprod. Sci. 2019, 209, 106144. [Google Scholar] [CrossRef]
- Palhão, M.P.; Ribeiro, A.C.; Martins, A.B.; Guimarães, C.R.B.; Alvarez, R.D.; Seber, M.F.; Fernandes, C.A.C.; Neves, J.P.; Viana, J.H.M. Early resynchronization of non-pregnant beef cows based in corpus luteum blood flow evaluation 21 days after Timed-AI. Theriogenology 2020, 146, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Yanna DANG, K.Z. Factors affecting early embryonic development in cattle: Relevance for bovine cloning. Front. Agric. Sci. Eng. 2019, 6, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Ahmad Sheikh, A.; Kanwar Hooda, O.; Kumar Dang, A. Development of enzyme-linked immunosorbent assay for early pregnancy diagnosis in cattle. Anim. Reprod. Sci. 2018, 197, 126–133. [Google Scholar] [CrossRef]
- Romano, J.E.; Pinedo, P.; Bryan, K.; Ramos, R.S.; Solano, K.G.; Merchan, D.; Velez, J. Comparison between allantochorion membrane and amniotic sac detection by per rectal palpation for pregnancy diagnosis on pregnancy loss, calving rates, and abnormalities in newborn calves. Theriogenology 2017, 90, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Annandale, A.; Fosgate, G.T.; Bok, H.; Holm, D.E. Ability of a bovine transrectal palpation objective structured clinical examination to predict veterinary students’ pregnancy diagnosis accuracy. Vet. Rec. 2019, 185, 171. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, H.; Kou, H.; Chen, X.; Lu, Y.; Li, L.; Wang, D. Early pregnancy diagnoses based on physiological indexes of dairy cattle: A review. Trop. Anim. Health Prod. 2020, 52, 2205–2212. [Google Scholar] [CrossRef]
- Huang, J.; Zhao, J.; Zheng, Q.; Wang, S.; Wei, X.; Li, F.; Shang, J.; Lei, C.; Ma, Y. Characterization of Circular RNAs in Chinese Buffalo (Bubalus bubalis) Adipose Tissue: A Focus on Circular RNAs Involved in Fat Deposition. Animals 2019, 9, 403. [Google Scholar] [CrossRef] [Green Version]
- Cavanagh, A.C. Identification of early pregnancy factor as chaperonin 10: Implications for understanding its role. Rev. Reprod. 1996, 1, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Romano, J.E.; Thompson, J.A.; Kraemer, D.C.; Forrest, D.W. Effects of transrectal palpation with the fetal membrane slip technique for early pregnancy diagnosis on the proportion and type of associated pregnancy loss in dairy cattle. Am. J. Vet. Res. 2020, 81, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Large, M.J.; Wetendorf, M.; Lanz, R.B.; Hartig, S.M.; Creighton, C.J.; Mancini, M.A.; Kovanci, E.; Lee, K.F.; Threadgill, D.W.; Lydon, J.P.; et al. The epidermal growth factor receptor critically regulates endometrial function during early pregnancy. PLoS Genet. 2014, 10, e1004451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bond, R.L.; Midla, L.T.; Gordon, E.D.; Welker, F.H.B.; Masterson, M.A.; Mathys, D.A.; Mollenkopf, D.F. Effect of student transrectal palpation on early pregnancy loss in dairy cattle. J. Dairy Sci. 2019, 102, 9236–9240. [Google Scholar] [CrossRef] [PubMed]
- Barreiro-Vázquez, J.D.; Miranda, M.; Barreiro-Vilanova, M.I.; Diéguez, F.J.; Barreiro-Lois, A. Characterization of the Normal Portal and Hepatic Blood Flow of Adult Holstein-Friesian Cows. Animals 2019, 9, 386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolet, B.P.; Engels, S.; Aglialoro, F.; van den Akker, E.; von Lindern, M.; Wolkers, M.C. Circular RNA expression in human hematopoietic cells is widespread and cell-type specific. Nucleic Acids Res. 2018, 46, 8168–8180. [Google Scholar] [CrossRef] [PubMed]
- Fanale, D.; Taverna, S.; Russo, A.; Bazan, V. Circular RNA in Exosomes. Adv. Exp. Med. Biol. 2018, 1087, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.A.; Niu, N.; Tang, X.; Thompson, K.J.; Wang, L.; Kocher, J.P.; Subramanian, S.; Kalari, K.R. Circular RNAs and their associations with breast cancer subtypes. Oncotarget 2016, 7, 80967–80979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasda, E.; Parker, R. Circular RNAs: Diversity of form and function. Rna 2014, 20, 1829–1842. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Ispierto, I.; López-Gatius, F. Progesterone supplementation in the early luteal phase after artificial insemination improves conception rates in high-producing dairy cows. Theriogenology 2017, 90, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, Y.; Chen, B.; Zhao, J.; Yu, S.; Tang, Y.; Zheng, Q.; Li, Y.; Wang, P.; He, X.; et al. exoRBase: A database of circRNA, lncRNA and mRNA in human blood exosomes. Nucleic Acids Res. 2018, 46, D106–D112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oudejans, C.; Manders, V.; Visser, A.; Keijser, R.; Min, N.; Poutsma, A.; Mulders, J.; van den Berkmortel, T.; Wigman, D.J.; Blanken, B.; et al. Circular RNA Sequencing of Maternal Platelets: A Novel Tool for the Identification of Pregnancy-Specific Biomarkers. Clin. Chem. 2021, 67, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Gajewski, Z.; Melo de Sousa, N.; Beckers, J.F.; Pawlinski, B.; Olszewska, M.; Thun, R.; Kleczkowski, M. Concentration of bovine pregnancy associated glycoprotein in plasma and milk: Its application for pregnancy diagnosis in cows. J. Physiol. Pharmacol. 2008, 59 (Suppl. S9), 55–64. [Google Scholar]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Pertea, G.; Trapnell, C.; Pimentel, H.; Kelley, R.; Salzberg, S.L. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013, 14, R36. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Salzberg, S.L. TopHat-Fusion: An algorithm for discovery of novel fusion transcripts. Genome Biol. 2011, 12, R72. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.O.; Dong, R.; Zhang, Y.; Zhang, J.L.; Luo, Z.; Zhang, J.; Chen, L.L.; Yang, L. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 2016, 26, 1277–1287. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.O.; Wang, H.B.; Zhang, Y.; Lu, X.; Chen, L.L.; Yang, L. Complementary sequence-mediated exon circularization. Cell 2014, 159, 134–147. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Wang, J.; Zhao, F. CIRI: An efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 2015, 16, 4. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Ye, T.; Liu, H.; Lv, P.; Duan, C.; Wu, X.; Jiang, K.; Lu, H.; Xia, D.; Peng, E.; et al. Expression profiles, biological functions and clinical significance of circRNAs in bladder cancer. Mol. Cancer 2021, 20, 4. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Zhang, X.; Wu, X.; Guo, H.; Hu, Y.; Tang, F.; Huang, Y. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol. 2015, 16, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Z.; Gao, D.; Xu, T.; Zhang, L.; Tong, X.; Zhang, D.; Wang, Y.; Ning, W.; Qi, X.; Ma, Y.; et al. Circular RNA profiling in the oocyte and cumulus cells reveals that circARMC4 is essential for porcine oocyte maturation. Aging 2019, 11, 8015–8034. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, H.; Hickford, J.G.H.; Hao, Z.; Gong, H.; Hu, J.; Liu, X.; Li, S.; Shen, J.; Ke, N.; et al. Identification and characterization of circular RNAs in mammary gland tissue from sheep at peak lactation and during the nonlactating period. J. Dairy Sci. 2021, 104, 2396–2409. [Google Scholar] [CrossRef]
- Li, H.; Wei, X.; Yang, J.; Dong, D.; Hao, D.; Huang, Y.; Lan, X.; Plath, M.; Lei, C.; Ma, Y.; et al. circFGFR4 Promotes Differentiation of Myoblasts via Binding miR-107 to Relieve Its Inhibition of Wnt3a. Mol. Ther. Nucleic Acids 2018, 11, 272–283. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yang, Y.; Wang, Z.; Fu, X.; Chu, X.M.; Li, Y.; Wang, Q.; He, X.; Li, M.; Wang, K.; et al. Insights into the regulatory role of circRNA in angiogenesis and clinical implications. Atherosclerosis 2020, 298, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Wu, H.; Wang, Y.; Zhu, S.; Liu, J.; Fang, X.; Chen, H. Circular RNA of cattle casein genes are highly expressed in bovine mammary gland. J. Dairy Sci. 2016, 99, 4750–4760. [Google Scholar] [CrossRef] [Green Version]
- Jia, W.; Xu, B.; Wu, J. Circular RNA expression profiles of mouse ovaries during postnatal development and the function of circular RNA epidermal growth factor receptor in granulosa cells. Metabolism 2018, 85, 192–204. [Google Scholar] [CrossRef]
- Tulay, P.; Sengupta, S.B. MicroRNA expression and its association with DNA repair in preimplantation embryos. J. Reprod. Dev. 2016, 62, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Ampey, B.C.; Morschauser, T.J.; Lampe, P.D.; Magness, R.R. Gap junction regulation of vascular tone: Implications of modulatory intercellular communication during gestation. Adv. Exp. Med. Biol. 2014, 814, 117–132. [Google Scholar] [CrossRef] [Green Version]
- Grümmer, R.; Winterhager, E. Regulation of gap junction connexins in the endometrium during early pregnancy. Cell Tissue Res. 1998, 293, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhou, J.; Wang, M.; Liu, J.; Zhang, L.; Loor, J.J.; Liang, Y.; Wu, H.; Yang, Z. Circ09863 Regulates Unsaturated Fatty Acid Metabolism by Adsorbing miR-27a-3p in Bovine Mammary Epithelial Cells. J. Agric. Food Chem. 2020, 68, 8589–8601. [Google Scholar] [CrossRef]
- Qian, Y.; Lu, Y.; Rui, C.; Qian, Y.; Cai, M.; Jia, R. Potential Significance of Circular RNA in Human Placental Tissue for Patients with Preeclampsia. Cell Physiol. Biochem. 2016, 39, 1380–1390. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Bai, L.; Wan, Z.; Wan, S.; Xiang, Y.; Qian, Y.; Cui, L.; You, J.; Hu, X.; Qu, F.; et al. circRNA-DURSA regulates trophoblast apoptosis via miR-760-HIST1H2BE axis in unexplained recurrent spontaneous abortion. Mol. Ther. Nucleic Acids 2021, 26, 1433–1445. [Google Scholar] [CrossRef]
- Bachmayr-Heyda, A.; Reiner, A.T.; Auer, K.; Sukhbaatar, N.; Aust, S.; Bachleitner-Hofmann, T.; Mesteri, I.; Grunt, T.W.; Zeillinger, R.; Pils, D. Correlation of circular RNA abundance with proliferation--exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci. Rep. 2015, 5, 8057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Zhang, M.; Guo, T.; Wu, S.; Zong, Y.; Xu, C.; Zhu, Z.; Zhang, Y.; Cao, Z. Expression Profiling of Circular RNAs in Early Pregnant Jianghuai Buffaloes. Animals 2022, 12, 2748. https://doi.org/10.3390/ani12202748
Liu Q, Zhang M, Guo T, Wu S, Zong Y, Xu C, Zhu Z, Zhang Y, Cao Z. Expression Profiling of Circular RNAs in Early Pregnant Jianghuai Buffaloes. Animals. 2022; 12(20):2748. https://doi.org/10.3390/ani12202748
Chicago/Turabian StyleLiu, Qiuchen, Mengya Zhang, Tenglong Guo, Sucheng Wu, Yanfeng Zong, Changzhi Xu, Zhihua Zhu, Yunhai Zhang, and Zubing Cao. 2022. "Expression Profiling of Circular RNAs in Early Pregnant Jianghuai Buffaloes" Animals 12, no. 20: 2748. https://doi.org/10.3390/ani12202748
APA StyleLiu, Q., Zhang, M., Guo, T., Wu, S., Zong, Y., Xu, C., Zhu, Z., Zhang, Y., & Cao, Z. (2022). Expression Profiling of Circular RNAs in Early Pregnant Jianghuai Buffaloes. Animals, 12(20), 2748. https://doi.org/10.3390/ani12202748