Trace Minerals Supplementation with Great Impact on Beef Cattle Immunity and Health
Abstract
:Simple Summary
Abstract
1. Introduction
2. Beef Cattle Health Program: Basic Principles
3. Cattle Immunity
4. Role of Trace Minerals in Bovine Immunity
4.1. Zinc
4.2. Copper
4.3. Selenium
4.4. Manganese
4.5. Chromium
5. Trace Mineral Status in Beef Cattle
6. Oral Trace Minerals Supplementation, Effects on Beef Cattle Health
6.1. Oral Zinc Supplementation
6.2. Oral Copper Supplementation
6.3. Oral Selenium Supplementation
6.4. Oral Manganese Supplementation
6.5. Oral Chromium Supplementation
7. Single-Use, Pulse-Dose Administration of Trace Minerals
8. Injectable Trace Minerals on Beef Cattle Immunity and Health
9. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Snowder, G.D.; Van Vleck, L.D.; Cundiff, L.V.; Bennett, G.L. Bovine respiratory disease in feedlot cattle: Environmental, genetic, and economic factors. J. Anim. Sci. 2006, 84, 1999–2008. [Google Scholar] [PubMed] [Green Version]
- Galyean, M.L.; Perino, L.J.; Duff, G.C. Interaction of cattle health/immunity and nutrition. J. Anim. Sci. 1999, 77, 1120–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smart, M.E.; Gudmundson, J.; Christensen, D.A. Trace Mineral Deficiency in Cattle: A Review. Can. Vet. J. 1981, 22, 372–376. [Google Scholar] [PubMed]
- Swecker, W.S., Jr.; Eversole, D.E.; Thatcher, C.D.; Blodgett, D.J.; Schurig, G.G.; Meldrum, J.B. Influence of supplemental selenium on humoral immune responses in weaned beef calves. Am. J. Vet. Res. 1989, 50, 1760–1763. [Google Scholar]
- Swecker, W.S., Jr.; Thatcher, C.D.; Eversole, D.E.; Blodgett, D.J.; Schurig, G.G. Effect of selenium supplementation on colostral IgG concentration in cows grazing selenium-deficient pastures and on postsuckle serum IgG concentration in their calves. Am. J. Vet. Res. 1995, 56, 450–453. [Google Scholar] [PubMed]
- Spears, J.W.; Harvey, R.W.; Brown, T.T. Effects of zinc methionine and zinc oxide on performance, blood characteristics, and antibody titer response to viral vaccination in stressed feeder calves. J. Am. Vet. Med. Assoc. 1991, 199, 1731–1733. [Google Scholar]
- Chang, X.; Mowat, D.N. Supplemental chromium for stressed and growing feeder calves. J. Anim. Sci. 1992, 70, 559–565. [Google Scholar] [CrossRef]
- Brazle, F.K. The effect of zinc methionine in a mineral mixture on gain and incidences of footrot on steers grazing native grass pastures. J. Anim. Sci. 1992, 71, 40. [Google Scholar]
- Burton, J.L.; Mallard, B.A.; Mowat, D.N. Effects of supplemental chromium on antibody responses of newly weaned feedlot calves to immunization with infectious bovine rhinotracheitis and parainfluenza 3 virus. Can. J. Vet. Res. 1994, 58, 148–151. [Google Scholar]
- Prasad, T.; Kundu, M.S. Serum IgG and IgM responses to sheep red blood cells (SRBC) in weaned calves fed milk supplemented with Zn and Cu. Nutrition 1995, 11, 712–715. [Google Scholar]
- Wellmann, K.B.; Baggerman, J.O.; Burson, W.C.; Smith, Z.K.; Kim, J.; Hergenreder, J.E.; Rounds, W.; Bernhard, B.C.; Johnson, B.J. Effects of zinc propionate supplementation on growth performance, skeletal muscle fiber, and receptor characteristics in beef steers. J. Anim. Sci. 2020, 98, skaa210. [Google Scholar] [CrossRef] [PubMed]
- Kegley, E.B.; Kreider, D.L.; Coffey, K.P.; Silzell, S.A.; Galloway, D.L. Immune response and performance of heifers supplemented with zinc from an organic and an inorganic source. J. Anim. Sci. 1997, 75, 250. [Google Scholar]
- Chirase, N.K.; Greene, L.W. Dietary zinc and manganese sources administered from the fetal stage onwards affect immune response of transit stressed and virus infected offspring steer calves. Anim. Feed. Sci. Technol. 2001, 93, 217–228. [Google Scholar] [CrossRef]
- Beck, P.A.; Wistuba, T.J.; Davis, M.E.; Gunter, S.A. Case study: Effects of feeding supplemental organic or inorganic selenium to cow-calf pairs on selenium status and immune responses of weaned beef calves. Prof. Anim. Sci. 2005, 21, 114–120. [Google Scholar] [CrossRef]
- Liao, S.F.; Brown, K.R.; Stromberg, A.J.; Burris, W.R.; Boling, J.A.; Matthews, J.C. Dietary supplementation of selenium in inorganic and organic forms differentially and commonly alters blood and liver selenium concentrations and liver gene expression profiles of growing beef heifers. Biol. Trace Elem. Res. 2011, 140, 151–169. [Google Scholar] [CrossRef]
- Bernhard, B.C.; Burdick, N.C.; Rounds, W.; Rathmann, R.J.; Carroll, J.A.; Finck, D.N.; Jennings, M.A.; Young, T.R.; Johnson, B.J. Chromium supplementation alters the performance and health of feedlot cattle during the receiving period and enhances their metabolic response to a lipopolysaccharide challenge. J. Anim. Sci. 2012, 90, 3879–3888. [Google Scholar] [CrossRef] [PubMed]
- Gunter, S.A.; Beck, P.A.; Hallford, D.M. Effects of supplementary selenium source on the blood parameters in beef cows and their nursing calves. Biol. Trace. Elem. Res. 2013, 152, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.A.; Bobe, G.; Hunter, J.K.; Vorachek, W.R.; Stewart, W.C.; Vanegas, J.A.; Estill, C.T.; Mosher, W.D.; Pirelli, G.J. Effect of feeding selenium-fertilized alfalfa hay on performance of weaned beef calves. PLoS ONE 2013, 8, e58188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, J.A.; Bobe, G.; Vorachek, W.R.; Hugejiletu Gorman, M.E.; Mosher, W.D.; Pirelli, G.J. Effects of feeding selenium-enriched alfalfa hay on immunity and health of weaned beef calves. Biol Trace Elem Res. 2013, 156, 96–110. [Google Scholar] [CrossRef]
- Hall, J.A.; Isaiah, A.; Estill, C.T.; Pirelli, G.J.; Suchodolski, J.S. Weaned beef calves fed selenium-biofortified alfalfa hay have an enriched nasal microbiota compared with healthy controls. PLoS ONE 2017, 12, e0179215. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.A.; Isaiah, A.; Bobe, G.; Estill, C.T.; Bishop-Stewart, J.K.; Davis, T.Z.; Suchodolski, J.S.; Pirelli, G.J. Feeding selenium-biofortified alfalfa hay during the preconditioning period improves growth, carcass weight, and nasal microbial diversity of beef calves. PLoS ONE 2020, 15, e0242771. [Google Scholar] [CrossRef] [PubMed]
- Correa, L.B.; Zanetti, M.A.; Del Claro, G.R.; de Paiva, F.A.; da Luz e Silva, S.; Netto, A.S. Effects of supplementation with two sources and two levels of copper on meat lipid oxidation, meat colour and superoxide dismutase and glutathione peroxidase enzyme activities in Nellore beef cattle. Br. J. Nutr. 2014, 112, 1266–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latorre, A.O.; Greghi, G.F.; Netto, A.S.; Fukumasu, H.; Balieiro, J.C.; Côrrea, L.B.; Zanetti, M.A. Selenium and vitamin E enriched diet increases NK cell cytotoxicity in cattle. Pesq. Vet. Bras. 2014, 34, 1142–1145. [Google Scholar] [CrossRef]
- Marques, R.S.; Cooke, R.F.; Rodrigues, M.C.; Cappellozza, B.I.; Mills, R.R.; Larson, C.K.; Moriel, P.; Bohnert, D.W.J. Effects of organic or inorganic cobalt, copper, manganese, and zinc supplementation to late-gestating beef cows on productive and physiological responses of the offspring. Anim. Sci. 2016, 94, 1215–1226. [Google Scholar] [CrossRef] [Green Version]
- da Silva, J.S.; Rosa, A.F.; Moncau, C.T.; Silva-Vignato, B.; Pugine, S.M.P.; de Melo, M.P.; Sanchez, J.M.D.; Zanetti, M.A. Effect of different selenium sources and concentrations on glutathione peroxidase activity and cholesterol metabolism of beef cattle. J. Anim. Sci. 2021, 99, skab321. [Google Scholar] [CrossRef]
- Chenoweth, P.J. Herd health management. In Beef Practice Cow Calf Production Medicine, 1st ed.; Chenoweth, P.J., Sanderson, M.W., Eds.; Blackwell Publishing: Ames, IA, USA, 2005; pp. 67–79. [Google Scholar]
- Chase, C.C.; Hurley, D.J.; Reber, A.J. Neonatal immune development in the calf and its impact on vaccine response. Vet. Clin. N. Am. Food Anim. Pract. 2008, 24, 87–104. [Google Scholar] [CrossRef]
- Perino, L.J. A guide to colostrum management in beef cows and calves. Vet. Med. Food Anim. Pract. 1997, 1, 75–82. [Google Scholar]
- Banks, K.L.; McGuire, T.C. Neonatal Immunology. In Veterinary Clinical Immunology; Hallwell, R.E.W., Gorman, N.T., Eds.; W.B. Saunders: Philadelphia, PA, USA, 1989; pp. 193–204. [Google Scholar]
- Palomares, R.A.; Granberry, F.; Elrod, R.; Rinke, N.; Guest, K.; Rodríguez, A.; Hoyos-Jaramillo, A.; Kirks, S.; Saliki, S.; Ferrer, M.S.; et al. Injection of Zn, Se, Cu and Mn enhances antibody response to Bovine Coronavirus vaccination in cattle. In Proceedings of the Conference of Research Workers in Animal Diseases (CRWAD), Chicago, IL, USA, 3–7 December 2021; p. 433. [Google Scholar]
- Woolums, A.R. Keys to Effective Vaccination of Calves. In Proceedings of the Annual TVMDL Amarillo, Bovine Respiratory Disease Conference, Amarillo, TX, USA, 7 July 2018; pp. 1–3. [Google Scholar]
- Woolums, A.R.; Berghaus, R.D.; Smith, D.R.; White, B.J.; Engelken, T.J.; Irsik, M.B.; Matlik, D.K.; Jones, L.; Smith, I.J. A survey of veterinarians in 6 US states regarding their experience with nursing beef calf respiratory disease. The Bov. Pract. 2014, 48, 26–35. [Google Scholar]
- Hulbert, L.E.; Moisá, S.J. Stress, immunity, and the management of calves. J. Dairy Sci. 2016, 99, 3199–3216. [Google Scholar] [CrossRef] [Green Version]
- Spears, J.W.; Weiss, W.P. Role of antioxidants and trace elements in health and immunity of transition dairy cows. Vet. J. 2008, 176, 70–76. [Google Scholar] [CrossRef]
- Duff, G.C.; Galyean, M.L. Board-invited review: Recent advances in management of highly stressed, newly received feedlot cattle. J. Anim. Sci. 2007, 85, 823–840. [Google Scholar] [CrossRef] [PubMed]
- Vlasova, A.N.; Saif, L.J. Bovine Immunology: Implications for Dairy Cattle. Front. Immunol. 2021, 12, 643206. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.R.; Derscheid, R.; Roth, J.A. Innate Immunology of Bovine Respiratory Disease. Vet. Clin. N. Am. Food Anim. Pract. 2010, 26, 215–228. [Google Scholar] [CrossRef] [Green Version]
- Novak, K. Functional Polymorphisms in Toll-Like Receptor Genes for Innate Immunity in Farm Animals. Vet. Immunol. Immunopathol. 2014, 157, 1–11. [Google Scholar] [CrossRef]
- Stanfield, R.L.; Haakenson, J.; Deiss, T.C.; Criscitiello, M.F.; Wilson, I.A.; Smider, V.V. The Unusual Genetics and Biochemistry of Bovine Immunoglobulins. Adv. Immunol. 2018, 137, 135–164. [Google Scholar]
- Connelley, T.; MacHugh, N.D.; Burrells, A.; Morrison, W.I. Dissection of the Clonal Composition of Bovine Alphabeta T Cell Responses Using T Cell Receptor Vbeta Subfamily-Specific PCR and Heteroduplex Analysis. J. Immunol. Methods. 2008, 335, 28–40. [Google Scholar] [CrossRef]
- Neefjes, J.; Jongsma, M.L.; Paul, P.; Bakke, O. Towards a Systems Understanding of MHC Class I and MHC Class II Antigen Presentation. Nat. Rev. Immunol. 2011, 11, 823–836. [Google Scholar] [CrossRef]
- Boehm, U.; Klamp, T.; Groot, M.; Howard, J.C. Cellular responses to interferon-gamma. Annu. Rev. Immunol. 1997, 15, 749–795. [Google Scholar] [CrossRef] [PubMed]
- Howard, C.J.; Hope, J.C.; Villarreal-Ramos, B. Contribution of in vivo and ex vivo studies to understanding the role of antigen-presenting cells and T cell subsets in immunity to cattle diseases. Anim. Health Res. Rev. 2004, 5, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Guzman, E.; Hope, J.; Taylor, G.; Smith, A.L.; Cubillos-Zapata, C.; Charleston, B. Bovine γδ T cells are a major regulatory T cell subset. J. Immunol. 2014, 193, 208–222. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.W. Diverse immunological roles of γδ T cells. Cell. Mol. Immunol. 2013, 10, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maywald, M.; Wessels, I.; Rink, L. Zinc Signals and Immunity. Int. J. Mol. Sci. 2017, 18, 2222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spears, J.W. Micronutrients and immune function in cattle. Proc. Nutr. Soc. 2000, 59, 587–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Failla, M.L. Trace elements and host defense: Recent advances and continuing challenges. J. Nutr. 2003, 133, 1443S–1447S. [Google Scholar] [CrossRef] [Green Version]
- Puertollano, M.A.; Puertollano, E.; de Cienfuegos, G.Á.; de Pablo, M.A. Dietary antioxidants: Immunity and host defense. Curr. Top. Med. Chem. 2011, 11, 1752–1766. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.; Liu, Y.; Zhang, Q.; Yao, Z.; Huang, B.; Zhang, P.; Li, N.; Cao, X. Zinc finger protein 64 promotes Toll-like receptor-triggered proinflammatory and type I interferon production in macrophages by enhancing p65 subunit activation. J. Biol. Chem. 2013, 288, 24600–24608. [Google Scholar] [CrossRef] [Green Version]
- Bonaventura, P.; Benedetti, G.; Albarède, F.; Miossec, P. Zinc and its role in immunity and inflammation. Autoimmun. Rev. 2015, 14, 277–285. [Google Scholar] [CrossRef]
- Abbas, A.K.; Lichtman, A.H. Cellular and Molecular Immunology, 9th ed.; Chapter 12: Innate Immunity; Saunders Elsevier: Philadelphia, PA, USA, 2018. [Google Scholar]
- Rink, L.; Gabriel, P. Zinc and the immune system. Proc. Nutr. Soc. 2000, 59, 541–552. [Google Scholar] [CrossRef] [Green Version]
- Enjalbert, F.; Lebreton, P.; Salat, O.J. Effects of copper, zinc and selenium status on performance and health in commercial dairy and beef herds: Retrospective study. Anim. Physiol. Anim. Nutr. 2006, 90, 459–466. [Google Scholar] [CrossRef]
- Graham, T.W.; Thurmond, M.C.; Gershwin, M.E.; Picanso, J.P.; Garvey, J.S.; Keen, C.L. Serum zinc and copper concentrations in relation to spontaneous abortion in cows: Implications for human fetal loss. J. Reprod. Fert. 1994, 102, 253–262. [Google Scholar] [CrossRef] [Green Version]
- Maggini, S.; Wintergerst, E.S.; Beveridge, S.; Hornig, D.H. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br. J. Nutr. 2007, 98, S29–S35. [Google Scholar] [CrossRef] [PubMed]
- Percival, S.S. Copper and immunity. Am. J. Clin. Nutr. 1998, 67, 1064S–1068S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arthington, J.D.; Corah, L.R.; Blecha, F.J. The effect of molybdenum-induced copper deficiency on acute-phase protein concentrations, superoxide dismutase activity, leukocyte numbers, and lymphocyte proliferation in beef heifers inoculated with bovine herpesvirus-1. J. Anim. Sci. 1996, 74, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Suttle, N. The Interactions between Copper, Molybdenum, and Sulphur in ruminant nutrition. Annu. Rev. Nutr. 1991, 11, 121–140. [Google Scholar] [CrossRef] [PubMed]
- Arthington, J.D.; Corah, L.R.; Blecha, F.; Hill, D.A. Effect of copper depletion and repletion on lymphocyte blastogenesis and neutrophil bactericidal function in beef heifers. J. Anim. Sci. 1995, 73, 2079–2085. [Google Scholar] [CrossRef]
- Bonham, M.; O’Connor, J.M.; Hannigan, B.M.; Strain, J.J. The immune system as a physiological indicator of marginal copper status? Br. J. Nutr. 2002, 87, 393–403. [Google Scholar] [CrossRef]
- Mills, C.F. Biochemical and physiological indicators of mineral status in animals: Copper, cobalt and zinc. J. Anim. Sci. 1987, 65, 1702–1711. [Google Scholar] [CrossRef]
- Maddox, J.F.; Aherne, K.M.; Reddy, C.C.; Sordillo, L.M. Increased neutrophil adherence and adhesion molecule mRNA expression in endothelial cells during selenium deficiency. J. Leukoc. Biol. 1999, 65, 658–664. [Google Scholar] [CrossRef]
- Suttle, N.F.; Jones, D.G. Recent developments in trace element metabolism and function: Trace elements, disease resistance and immune responsiveness in ruminants. J. Nutr. 1989, 119, 1055–1061. [Google Scholar] [CrossRef]
- Boyne, R.; Arthur, J.R. Effects of selenium and copper deficiency on neutrophil function in cattle. J. Comp. Pathol. 1981, 91, 271–276. [Google Scholar] [CrossRef]
- Reffett, J.K.; Spears, J.W.; Brown, T.T. Effect of dietary selenium on the primary and secondary immune response in calves challenged with infectious bovine rhinotracheitis virus. J. Nutr. 1988, 118, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Arthur, J.R.; Morrice, P.C.; Beckett, G.J. Thyroid hormone concentrations in selenium deficient and selenium sufficient cattle. Res. Vet. Sci. 1988, 45, 122–123. [Google Scholar] [CrossRef]
- Hurley, L.S.; Keen, C.L. Manganese. In Trace Elements in Human and Animal Nutrition, 5th ed.; Mertz, W., Ed.; Academic Press: San Diego, CA, USA, 1987; pp. 185–223. [Google Scholar]
- Tomlinson, D.J.; Socha, M.T.; DeFrain, J.M. Role of Trace Minerals in the Immune System. In Proceedings of the Penn State Dairy Catt le Nutrition Workshop, Grantville, PA, USA, 15–16 November 2008; pp. 39–52. [Google Scholar]
- Bazhora, I.I.; Shtefan, E.E.; Timoshevskiĭ, V.N. The effect of microelements—Copper, manganese and cobalt—On the antibody forming function of lymphoid tissue. Mikrobiolohichnyi Zhurnal 1974, 36, 771–776. [Google Scholar] [PubMed]
- Dyer, I.A.; Cassatt, W.A., Jr.; Rao, R.R. Manganese deficiency in the etiology of deformed calves. BioScience 1964, 14, 31. [Google Scholar] [CrossRef]
- Hidiroglou, M.; Ivan, M.; Bryan, M.K.; Ribble, C.S.; Janzen, E.D.; Proulx, J.G.; Elliot, J.I. Assessment of the role of manganese in congenital joint laxity and dwarfism in calves. Ann. Rech. Vet. 1990, 21, 281–284. [Google Scholar]
- Karatzias, H.; Roubies, N.; Polizopoulou, Z.; Papasteriades, A. Tongue play and manganese deficiency in dairy cattle. Dtsch. Tierarztl. Wochenschr. 1995, 102, 352–353. [Google Scholar]
- Burton, J.L. Supplemental chromium: Its benefits to the bovine immune system. Anim. Feed Sci. Tech. 1995, 53, 117–133. [Google Scholar] [CrossRef]
- Borella, P.; Manni, S.; Giardino, A. Cadmium, nickel, chromium and lead accumulate in human lymphocytes and interfere with PHA-induced proliferation. J. Trace Elem. Electrolytes Health Dis. 1990, 4, 87–95. [Google Scholar]
- Burton, J.L.; Nonnecke, B.J.; Dubeski, P.L.; Elsasser, T.H.; Mallard, B.A. Effects of supplemental chromium on production of cytokines by mitogen-stimulated bovine peripheral blood mononuclear cells. J. Dairy Sci. 1996, 79, 2237–2246. [Google Scholar] [CrossRef]
- Burton, J.L.; Mallard, B.A.; Mowat, D.N. Effects of supplemental chromium on immune responses of periparturient and early lactation dairy cows. J. Anim. Sci. 1993, 71, 1532–1539. [Google Scholar] [CrossRef]
- Kegley, E.B.; Spears, J.W.; Brown, T.T. Immune response and disease resistance of calves fed chromium nicotinic acid complex or chromium chloride. J Dairy Sci. 1996, 79, 1278–1283. [Google Scholar] [CrossRef]
- Faldyna, M.; Pechova, A.; Krejci, J. Chromium supplementation enhances antibody response to vaccination with tetanus toxoid in cattle. J. Vet. Med. B Infect Dis. Vet. Public Health 2003, 50, 326–331. [Google Scholar] [CrossRef]
- Corah, L.R.; Dargatz, D.; USDA; APHIS; VS; National Animal Health Monitoring System. Forage Analyses from Cow/Calf Herds in 18 States: Beef. Chapa, Cow Calf Health and Productivity Audit; USDA; APHIS; VS; National Animal Health Monitoring System: Fort Collins, CO, USA, 1996; p. 21. [Google Scholar]
- Herdt, T.H.; Hoff, B. The use of blood analysis to evaluate trace mineral status in ruminant livestock. Vet. Clin. Food Anim. 2011, 27, 255–283. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle, 8th ed.; Subcommittee on Beef Cattle Nutrition, Committee on Animal Nutrition, Board on Agriculture; National Academy Press: Washington, DC, USA, 2016. [Google Scholar]
- Arthington, J.D.; Ranches, J. Trace mineral nutrition of grazing beef cattle. Animals. 2021, 11, 2767. [Google Scholar] [CrossRef]
- Swecker, W.S., Jr. Trace mineral feeding and assessment. Vet. Clin. N. Am. Food Anim. Pract. 2014, 30, 671–688. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, R.G.; Dargatz, D.A.; Corah, L.R. Forage Analyses from Cow/Calf Herds in 23 States. Report: NAHMS Beef 1997. USDA. 1999. Available online: https://www.aphis.usda.gov/animal_health/nahms/beefcowcalf/downloads/beef97/Beef97_dr_ForageAnal.pdf (accessed on 4 April 2022).
- Galyean, M.L.; Hubbert, M.E. Effects of season, health, and management on feed intake by beef cattle. In Symposium: Intake by Feedlot Cattle; Owens, F.N., Ed.; Oklahoma Agric. Exp. Stn; FAO: Rome, Italy, 1995; pp. 226–234. [Google Scholar]
- Suttle, N.F. Differential diagnosis of micronutrient-responsive disorders in beef suckler herds. Cattle Pract. 2003, 11, 161–166. [Google Scholar]
- Rabiee, A.R.; Lean, I.J.; Stevenson, M.A.; Socha, M.T. Effects of feeding organic trace minerals on milk production and reproductive performance in lactating dairy cows: A meta-analysis. J. Dairy Sci. 2010, 93, 4239–4251. [Google Scholar] [CrossRef] [Green Version]
- Kegley, E.B.; Pass, M.R.; Moore, J.C.; Larson, C.K. Supplemental trace minerals (zinc, copper, manganese, and cobalt) as Availa-4 or inorganic sources for shipping-stressed beef cattle 1. Prof. Anim. Sci. 2012, 28, 313–318. [Google Scholar] [CrossRef]
- Droke, E.A.; Loerch, S.C. Effect of parenteral selenium and vitamin E on performance, health, and humoral immune response of steers new to the feedlot environment. J. Anim. Sci. 1989, 67, 1350–1359. [Google Scholar] [CrossRef]
- Nemec, M.; Hidiroglou, M.; Nielsen, K.; Proulx, J. Effect of vitamin E and selenium supplementation on some immune parameters following vaccination against brucellosis in cattle. J. Anim. Sci. 1990, 68, 4303–4309. [Google Scholar] [CrossRef] [Green Version]
- Galyean, M.L.; Malcolm-Callis, K.J.; Gunter, S.A.; Berrie, R.A. Effects of zinc source and level and added copper lysine in the receiving diet on performance by growing and finishing steers. Prof. Anim. Sci. 1995, 11, 139–148. [Google Scholar] [CrossRef]
- Kincaid, R.L.; Chew, B.P.; Cronrath, J.D. Zinc oxide and amino acids as sources of dietary zinc for calves: Effects on uptake and immunity. J. Dairy Sci. 1997, 80, 1381–1388. [Google Scholar] [CrossRef]
- Wright, C.L.; Corah, L.R.; Stokka, G.L.; Blecha, F. The effects of pre-weaning vitamin E and selenium supplementation on the performance, serum metabolite concentration, and antibody titers of stressed beef calves. J. Anim. Sci. 1997, 75, 266. [Google Scholar]
- Malcolm-Callis, K.J.; Duff, G.C.; Gunter, S.A.; Kegley, E.B.; Vermeire, D.A. Effects of supplemental zinc concentration and source on performance, carcass characteristics, and serum values in finishing beef steers. J Anim Sci. 2000, 78, 2801–2808. [Google Scholar] [CrossRef]
- Muehlenbein, E.L.; Brink, D.R.; Deutscher, D.H.; Carlson, M.P.; Johnson, A.B. Effects of inorganic and organic copper supplemented to first-calf cows on cow reproduction and calf health and performance. J. Anim. Sci. 2001, 79, 1650–1659. [Google Scholar] [CrossRef]
- Beck, P.A.; Gunter, S.A.; Duff, G.C.; Malcolm-Callis, K.J.; Walker, D.A.; Kegley, E.B. Performance of steers supplemented with copper before and during receiving at the feedlot. Can. J. Anim. Sci. 2002, 82, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Enjalbert, F.; Lebreton, P.; Salat, O.; Meschy, F.; Schelcher, F. Effects of copper supplementation on the copper status of peripartum beef cows and their calves. Vet. Rec. 2002, 151, 50–53. [Google Scholar] [CrossRef]
- Rowntree, J.E.; Hill, G.M.; Hawkins, D.R.; Link, J.E.; Rincker, M.J.; Bednar, G.W.; Kreft, R.A. Effect of Se on selenoprotein activity and thyroid hormone metabolism in beef and dairy cows and calves. J. Anim. Sci. 2004, 82, 2995–3005. [Google Scholar] [CrossRef]
- Salyer, G.B.; Galyean, M.L.; Defoor, P.J.; Nunnery, G.A.; Parsons, C.H.; Rivera, J.D. Effects of copper and zinc source on performance and humoral immune response of newly received, lightweight beef heifers. J. Anim Sci. 2004, 82, 2467–2473. [Google Scholar] [CrossRef]
- Hansen, S.L.; Spears, J.W.; Lloyd, K.E.; Whisnant, C.S. Growth, reproductive performance, and manganese status of heifers fed varying concentrations of manganese. J. Anim Sci. 2006, 84, 3375–3380. [Google Scholar] [CrossRef]
- Nunnery, G.A.; Vasconcelos, J.T.; Parsons, C.H.; Salyer, G.B.; Defoor, P.J.; Valdez, F.R.; Galyean, M.L. Effects of source of supplemental zinc on performance and humoral immunity in beef heifers. J. Anim. Sci. 2007, 85, 2304–2313. [Google Scholar] [CrossRef]
- Swecker, W.S., Jr.; Hunter, K.H.; Shanklin, R.K.; Scaglia, G.; Fiske, D.A.; Fontenot, J.P. Parenteral selenium and vitamin E supplementation of weaned beef calves. J. Vet. Intern. Med. 2008, 22, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Castillo, C.; Hernández, J.; García-Vaquero, M.; López-Alonso, M.; Pereira, V.; Miranda, M.; Blanco, I.; Benedito, J.L. Effect of moderate Cu supplementation on serum metabolites, enzymes and redox state in feedlot calves. Res. Vet. Sci. 2012, 93, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Ryan, A.W.; Kegley, E.B.; Hawley, J.; Powell, J.G.; Hornsby, J.A.; Reynolds, J.L.; Laudert, S.B. Supplemental trace minerals (zinc, copper, and manganese) as sulfates, organic amino acid complexes, or hydroxy trace-mineral sources for shipping-stressed calves. Prof. Anim. Sci. 2015, 31, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Muegge, C.R.; Brennan, K.M.; Schoonmaker, J.P. Supplementation of organic and inorganic selenium to late gestation and early lactation beef cows effect on cow and preweaning calf performance. J. Anim. Sci. 2016, 94, 3399–3408. [Google Scholar] [CrossRef]
- Lippolis, K.D.; Cooke, R.F.; Silva, L.G.T.; Schubach, K.M.; Brandao, A.P.; Marques, R.S.; Larson, C.K.; Russell, J.R.; Arispe, S.A.; DelCurto, T.; et al. Effects of organic complexed or inorganic Co, Cu, Mn and Zn supplementation during a 45-day preconditioning period on productive and health responses of feeder cattle. Animal 2017, 11, 1949–1956. [Google Scholar] [CrossRef] [Green Version]
- Wallace, L.G.; Bobe, G.; Vorachek, W.R.; Dolan, B.P.; Estill, C.T.; Pirelli, G.J.; Hall, J.A. Effects of feeding pregnant beef cows selenium-enriched alfalfa hay on selenium status and antibody titers in their newborn calves. J. Anim. Sci. 2017, 95, 2408–2420. [Google Scholar] [CrossRef]
- Chirase, N.K.; Hutcheson, D.P.; Thompson, G.B. Feed intake, rectal temperature, and serum mineral concentrations of feedlot cattle fed zinc oxide or zinc methionine and challenged with infectious bovine rhinotracheitis virus. J. Anim. Sci. 1991, 69, 4137–4145. [Google Scholar] [CrossRef]
- Blezinger, S.B.; Hutcheson, D.P.; Chirase, N.K.; Mies, W.L. Effect of supplemental trace mineral complexes on rectal temperature, feed intake and body weight change with infectious bovine rhinotracheitis virus challenged feedlot cattle. J. Anim. Sci. 1992, 70, 301. [Google Scholar]
- Engle, T.E.; Nockels, C.F.; Kimberling, C.V.; Toombs, R.E.; Yemm, R.S.; Weaber, D.L.; Johnson, A.B. The effect of feeding organic and inorganic zinc on biochemical parameters in zinc-deficient calves. Proc. West. Sect. Am. Soc. Anim. Sci. 1995, 46, 471–474. [Google Scholar]
- Engle, T.E.; Spears, J.W.; Brown, T.T., Jr. Effects of breed, dietary phosphorus, and trace mineral source on immune function, mineral status, and performance in steer calves. J. Anim. Sci. 1997, 75, 264. [Google Scholar]
- Kessler, J.; Morel, I.; Dufey, F.A.; Gutzwiller, A.; Stern, A.; Geyes, H. Effect of organic zinc sources on performance, zinc status, and carcass, meat, and claw quality in fattening bulls. Livest. Prod. Sci. 2003, 81, 171. [Google Scholar] [CrossRef]
- Corbellini, C.N.; Mangoni, A.R.; De Mattos, A.C.; Auzmendi, J. Effects of supplementation of slightly deficient dairy cows with zinc oxide or methionine zinc. Rev. Med. Vet. 1997, 78, 439–447. [Google Scholar]
- Naylor, J.M.; Kasari, T.R.; Blakley, B.R.; Townsend, H.G. Diagnosis of copper deficiency and effects of supplementation in beef cows. Can. J. Vet. Res. 1989, 53, 343–348. [Google Scholar] [PubMed]
- Gengelbach, G.P.; Ward, J.D.; Spears, J.W.; Brown, T.T. Effects of copper deficiency and copper deficiency coupled with high dietary iron or molybdenum on phagocytic cell function and response of calves to a respiratory disease challenge. J. Anim. Sci. 1997, 75, 1112–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saker, K.E.; Swecker, W.S.; Eversole, D.E. Effect of copper supplementation and vaccination on cellular immune response in growing beef calves. J. Anim. Sci. 1994, 72, 131. [Google Scholar]
- Dorton, K.L.; Engle, T.E.; Hamar, D.W.; Siciliano, P.D.; Yemm, R.S. Effects of copper source and concentration on copper status and immune function in growing and finishing steers. Anim. Feed Sci. Technol. 2003, 110, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Boyne, R.; Arthur, J.R. Effects of molybdenum or iron induced copper deficiency on the viability and function of neutrophils from cattle. Res. Vet. Sci. 1986, 41, 417–419. [Google Scholar] [CrossRef]
- Ward, J.D.; Spears, J.W. The effects of low-copper diets with or without supplemental molybdenum on specific immune responses of stressed cattle. J. Anim. Sci. 1999, 77, 230–237. [Google Scholar] [CrossRef]
- Ward, J.D.; Spears, J.W.; Kegley, E.B. Effect of copper level and source (copper lysine vs. copper sulfate) on copper status, performance, and immune response in growing steers fed diets with or without supplemental molybdenum and sulfur. J. Anim. Sci. 1993, 71, 2748–2755. [Google Scholar] [CrossRef]
- Reffett-Stabel, J.; Spears, J.W.; Brown, T.T.; Brake, J. Selenium effects on glutathione peroxidase and the immune response of stressed calves challenged with Pasteurella hemolytica. J. Anim. Sci. 1989, 67, 557–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olson, K.C. Management of mineral supplementation programs for cow-calf operations. Vet. Clin. Food Anim. 2007, 23, 69–90. [Google Scholar] [CrossRef] [PubMed]
- Moonsie-Shageer, S.; Mowat, D.N. Effect of level of supplemental chromium on performance, serum constituents, and immune status of stressed feeder calves. J. Anim. Sci. 1993, 71, 232–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mowat, D.N.; Chang, X.; Yang, W.Z. Chelated chromium for stressed feeder calves. Can. J. Anim. Sci. 1993, 73, 49. [Google Scholar] [CrossRef]
- Kegley, E.B.; Spears, J.W. Immune response, glucose metabolism, and performance of stressed feeder calves fed inorganic or organic chromium. J. Anim. Sci. 1995, 73, 2721–2726. [Google Scholar] [CrossRef]
- Jackson, T.D.; Carmichael, R.N.; Deters, E.L.; Messersmith, E.M.; VanValin, K.R.; Loy, D.L.; Hansen, S.L. Comparison of multiple single-use, pulse-dose trace mineral products provided as injectable, oral drench, oral paste, or bolus on circulating and liver trace mineral concentrations of beef steers. Appl. Anim. Sci. 2019, 36, 26–35. [Google Scholar] [CrossRef]
- Pogge, D.J.; Richter, E.L.; Drewnoski, M.E.; Hansen, S.L. Mineral concentrations of plasma and liver after injection with a trace mineral complex differ among Angus and Simmental cattle. J. Anim. Sci. 2012, 90, 2692–2698. [Google Scholar] [CrossRef]
- Arthington, J.D.; Swenson, C.K. Effects of trace mineral source and feeding method on the productivity of grazing Braford cows. Prof. Anim. Sci. 2004, 20, 155–161. [Google Scholar] [CrossRef]
- Genther, O.N.; Hansen, S.L. A multielement trace mineral injection improves liver copper and selenium concentrations and manganese superoxide dismutase activity in beef steers. J. Anim. Sci. 2014, 92, 695–704. [Google Scholar] [CrossRef]
- Machado, V.S.; Oikonomou, G.; Lima, S.F.; Bicalho, M.L.; Kacar, C.; Foditsch, C.; Felippe, M.J.; Gilbert, R.O.; Bicalho, R.C. The effect of injectable trace minerals (selenium, copper, zinc, and manganese) on peripheral blood leukocyte activity and serum superoxide dismutase activity of lactating Holstein cows. Vet. J. 2014, 200, 299–304. [Google Scholar] [CrossRef]
- Palomares, R.A.; Hurley, D.J.; Bittar, J.H.; Saliki, J.T.; Woolums, A.R.; Moliere, F.; Havenga, L.J.; Norton, N.A.; Clifton, S.J.; Sigmund, A.B.; et al. Effects of injectable trace minerals on humoral and cell-mediated immune responses to Bovine viral diarrhea virus, Bovine herpes virus 1 and Bovine respiratory syncytial virus following administration of a modified-live virus vaccine in dairy calves. Vet. Immunol. Immunopathol. 2016, 178, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Bittar, J.H.J.; Hoyos-Jaramillo, A.; Hurley, D.J.; Woolums, A.R.; Havenga, L.J.; Lourenço, J.M.; Barnett, G.; Gomes, V.; Saliki, J.T.; Harmon, D.D.; et al. Effects of injectable trace minerals administered concurrently with a modified live virus vaccine on long-term protection against bovine viral diarrhea virus acute infection in dairy calves. Res. Vet. Sci. 2018, 119, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Bittar, J.H.J.; Hurley, D.J.; Woolums, A.R.; Norton, N.A.; Barber, C.E.; Moliere, F.; Havenga, L.J.; Palomares, R.A. Effects of injectable trace minerals on the immune response to Mannheimia haemolytica and Pasteurella multocida following vaccination of dairy calves with a commercial attenuated-live bacterin vaccine. Prof. Anim. Sci. 2018, 34, 59–66. [Google Scholar] [CrossRef]
- Bittar, J.H.J.; Palomares, R.A.; Hurley, D.J.; Hoyos-Jaramillo, A.; Rodriguez, A.; Stoskute, A.; Hamrick, B.; Norton, N.; Adkins, M.; Saliki, J.T.; et al. Immune response and onset of protection from Bovine viral diarrhea virus 2 infection induced by modified-live virus vaccination concurrent with injectable trace minerals administration in newly received beef calves. Vet. Immunol. Immunopathol. 2020, 225, 110055. [Google Scholar] [CrossRef] [PubMed]
- Hoyos-Jaramillo, A.; Bittar, J.H.; Rodríguez, A.; González, E.; Kirks, S.; Stanley, S.I.; Urdaneta, J.; Gutierrez, A.; Wall, S.; Miller, K.; et al. T cell populations in calves infected with BVDV + IBR after intranasal vaccination and trace minerals injection. In Proceedings of the 99th Conference of Research Workers in Animal Diseases, Chicago, IL, USA, 30 November–5 December 2018. Abst. 296. [Google Scholar]
- Hoyos-Jaramillo, A.; Bittar, J.H.; Rodríguez, A.; González, E.; Kirks, S.; Stanley, S.I.; Urdaneta, J.; Gutierrez, A.; Palomares, R.A. Health Status and Endoscopic Evaluation of the Upper Respiratory Tract of Dairy Bull Calves Inoculated with BVDV2 and BHV1 after Vaccination and Trace Minerals Injection; BRD Symposium; Academy of Veterinary Consultants: Denver, CO, USA, 2019. [Google Scholar]
- Arthington, J.D.; Havenga, L.J. Effect of injectable trace minerals on the humoral immune response to multivalent vaccine administration in beef calves. J. Anim. Sci. 2012, 90, 1966–1971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richeson, J.T.; Kegley, E.B. Effect of supplemental trace minerals from injection on health and performance of highly stressed, newly received beef heifers. Prof. Anim. Sci. 2011, 27, 461–466. [Google Scholar] [CrossRef]
- Roberts, S.L.; May, N.D.; Brauer, C.L.; Gentry, W.W.; Weiss, C.P.; Jennings, J.S.; Richeson, J.T. Effect of injectable trace mineral administration on health, performance, and vaccine response of newly received feedlot cattle. Prof. Anim. Sci. 2016, 32, 842–848. [Google Scholar] [CrossRef]
- Mattioli, G.A.; Rosa, D.E.; Turic, E.; Testa, J.A.; Lizarraga, R.M.; Fazzio, L.E. Effect of Injectable Copper and Zinc Supplementation on Weight, Hematological Parameters, and Immune Response in Pre-weaning Beef Calves. Biol. Trace Elem. Res. 2019, 189, 456–462. [Google Scholar] [CrossRef]
- Arthington, J.D.; Moriel, P.; Martins, P.G.M.A.; Lamb, G.C.; Havenga, L.J. Effects of trace mineral injections on measures of performance and trace mineral status of pre- and postweaned beef calves. J. Anim. Sci. 2014, 92, 2630–2640. [Google Scholar] [CrossRef]
- Galarza, E.M.; Lizarraga, R.M.; Mattioli, G.A.; Parker, A.J.; Relling, A.E. Effect of preshipment preconditioning and injectable antioxidant trace elements (Cu, Mn, Se, Zn) and vitamins (A, E) on plasma metabolite and hormone concentrations and growth in weaned beef cattle. Transl. Anim. Sci. 2021, 4, txaa233. [Google Scholar] [CrossRef]
- Vedovatto, M.; da Silva-Pereira, C.; Cortada-Neto, I.M.; Moriel, P.; Morais, M.D.G.; Franco, G.L. Effect of a trace mineral injection at weaning on growth, antioxidant enzymes activity, and immune system in Nellore calves. Trop. Anim. Health Prod. 2020, 52, 881–886. [Google Scholar] [CrossRef] [PubMed]
† Requirements Range mg/kg DM | †
Maximum Tolerable Concentration mg/kg DM |
Hepatic Concentrations Mean (Range *) μg/g or Ppm | |
---|---|---|---|
Selenium | 0.10 | 5.0 | 0.8–1.0 (0.7–2.5) |
Copper | 10 | 40 | 25–50 (50–600) |
Zinc | 30 | 500 | 80–100 (90–400) |
Manganese | 40 | 1000 | 9 (5–15) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palomares, R.A. Trace Minerals Supplementation with Great Impact on Beef Cattle Immunity and Health. Animals 2022, 12, 2839. https://doi.org/10.3390/ani12202839
Palomares RA. Trace Minerals Supplementation with Great Impact on Beef Cattle Immunity and Health. Animals. 2022; 12(20):2839. https://doi.org/10.3390/ani12202839
Chicago/Turabian StylePalomares, Roberto A. 2022. "Trace Minerals Supplementation with Great Impact on Beef Cattle Immunity and Health" Animals 12, no. 20: 2839. https://doi.org/10.3390/ani12202839
APA StylePalomares, R. A. (2022). Trace Minerals Supplementation with Great Impact on Beef Cattle Immunity and Health. Animals, 12(20), 2839. https://doi.org/10.3390/ani12202839