Human–Wildlife Conflicts: Does Origin Matter?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valéry, L.; Fritz, H.; Lefeuvre, J.C.; Simberloff, D. In search of a real definition of the biological invasion phenomenon itself. Biol. Invasions 2008, 10, 1345–1351. [Google Scholar] [CrossRef]
- IUCN. IUCN EICAT Categories and Criteria. The Environmental Impact Classification for Alien Taxa (EICAT), 1st ed.; IUCN: Gland, Switzerland; Cambridge, UK, 2020. [Google Scholar] [CrossRef]
- Buckle, A.P.; Smith, R.H. (Eds.) Rodent Pests and Their Control; CABI: Waringford, UK, 2015. [Google Scholar]
- Delibes-Mateos, M.; Smith, A.T.; Slobodchikoff, C.N.; Swenson, J.E. The paradox of keystone species persecuted as pests: A call for the conservation of abundant small mammals in their native range. Biol. Conserv. 2011, 144, 1335–1346. [Google Scholar] [CrossRef]
- Carpio, A.J.; Apollonio, M.; Acevedo, P. Wild ungulate overabundance in Europe: Contexts, causes, monitoring and management recommendations. Mammal Rev. 2021, 51, 95–108. [Google Scholar] [CrossRef]
- Woodroffe, R.; Thirgood, S.; Rabinowitz, A. (Eds.) People and Wildlife, Conflict or Co-Existence? Cambridge University Press: Cambridge, UK, 2005; Volume 9. [Google Scholar]
- Torres, D.F.; Oliveira, E.S.; Alves, R.R.N. Understanding human–wildlife conflicts and their implications. In Ethnozoology; Academic Press: Cambridge, MA, USA, 2018; pp. 421–445. [Google Scholar]
- Carey, M.P.; Sanderson, B.L.; Barnas, K.A.; Olden, J.D. Native invaders—Challenges for science, management, policy and society. Front. Ecol. Environ. 2012, 10, 373–381. [Google Scholar] [CrossRef]
- McGeoch, M.A.; Latombe, G.; Gelling, M. Characterizing common and range expanding species. J. Biogeogr. 2016, 43, 217–228. [Google Scholar] [CrossRef]
- Al Hassan, M.; Chaura, J.; López-Gresa, M.P.; Borsai, O.; Daniso, E.; Donat-Torres, M.P.; Mayoral, O.; Vicente, O.; Boscaiu, M. Native-invasive plants vs. halophytes in Mediterranean salt marshes: Stress tolerance mechanisms in two related species. Front. Plant Sci. 2016, 7, 473. [Google Scholar] [CrossRef] [Green Version]
- Wallingford, P.D.; Morelli, T.L.; Allen, J.M.; Beaury, E.M.; Blumenthal, D.M.; Bradley, B.A.; Dukes, J.S.; Early, R.; Fusco, E.J.; Goldberg, D.E.; et al. Adjusting the lens of invasion biology to focus on the impacts of climate-driven range shifts. Nat. Clim. Chang. 2020, 10, 398–405. [Google Scholar] [CrossRef]
- Muñoz-Vallés, S.; Cambrollé, J. The threat of native-invasive plant species to biodiversity conservation in coastal dunes. Ecol. Eng. 2015, 79, 32–34. [Google Scholar] [CrossRef]
- Rejmánek, M.; Simberloff, D. Origin matters. Environ. Conserv. 2017, 44, 97–99. [Google Scholar] [CrossRef]
- Buckley, Y.M.; Catford, J. Does the biogeographic origin of species matter? Ecological effects of native and non-native species and the use of origin to guide management. J. Ecol. 2015, 104, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, T.M.; Bellard, C.; Ricciardi, A. Alien versus native species as drivers of recent extinctions. Front. Ecol. Environ. 2019, 17, 203–207. [Google Scholar] [CrossRef]
- Simberloff, D.; Martin, J.L.; Genovesi, P.; Maris, V.; Wardle, D.A.; Aronson, J.; Courchamp, F.; Galil, B.; Berthou, E.G.; Pascal, M.; et al. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 2013, 28, 58–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seabloom, E.W.; Borer, E.T.; Buckley, Y.M.; Cleland, E.E.; Davies, K.F.; Firn, J.; Harpole, W.S.; Hautier, Y.; Lind, E.M.; MacDougall, A.S.; et al. Plant species’ origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nat. Commun. 2015, 6, 7710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, M.A.; Chew, M.K.; Hobbs, R.J.; Lugo, A.E.; Ewel, J.J.; Vermeij, G.J.; Brown, J.H.; Rosenzweig, M.L.; Gardener, M.R.; Carroll, S.P.; et al. Don’t judge species on their origins. Nature 2011, 474, 153–154. [Google Scholar] [CrossRef]
- Simberloff, D.; Souza, L.; Nuñez, M.A.; Barrios-Garcia, N.M.; Bunn, W. The natives are restless, but not often and mostly when disturbed. Ecology 2012, 93, 598–607. [Google Scholar] [CrossRef]
- Valéry, L.; Fritz, H.; Lefeuvre, J.C. Another call for the end of invasion biology. Oikos 2013, 122, 1143–1146. [Google Scholar] [CrossRef]
- Hassan, A.; Ricciardi, A. Are non-native species more likely to become pests? Influence of biogeographic origin on the impacts of freshwater organisms. Front. Ecol. Environ. 2014, 12, 218–223. [Google Scholar] [CrossRef] [Green Version]
- Paolucci, E.M.; MacIsaac, H.J.; Ricciardi, A. Origin matters: Alien consumers inflict greater damage on prey populations than do native consumers. Divers. Distrib. 2013, 19, 988–995. [Google Scholar] [CrossRef]
- Labuschagne, L.; Swanepoel, L.H.; Taylor, P.J.; Belmain, S.R.; Keith, M. Are avian predators effective biological control agents for rodent pest management in agricultural systems? Biol. Control 2016, 101, 94–102. [Google Scholar] [CrossRef]
- Canavan, S.; Kumschick, S.; Le Roux, J.J.; Richardson, D.M.; Wilson, J.R. Does origin determine environmental impacts? Not for bamboos. Plants People Planet 2019, 1, 119–128. [Google Scholar] [CrossRef]
- Hejda, M.; Štajerová, K.; Pyšek, P. Dominance has a biogeographical component: Do plants tend to exert stronger impacts in their invaded rather than native range? J. Biogeogr. 2017, 44, 18–27. [Google Scholar] [CrossRef]
- Tsang AH, F.; Dudgeon, D. A comparison of the ecological effects of two invasive poeciliids and two native fishes: A mesocosm approach. Biol. Invasions 2021, 23, 1517–1532. [Google Scholar] [CrossRef]
- USDA. Wildlife Services Strategic Plan: FY 2020–2024; United States Department of Agriculture, Animal and Plant Health Inspection Service: Riverdale Park, ML, USA, 2019; p. 27. [Google Scholar]
- Hawthorne, D.W.; Nunley, G.L.; Prothro, V. A history of the Wildlife Services program. Probe Newsl. Natl. Anim. Damage Control Assoc. 1999, 197, 1–7. [Google Scholar]
- Bergstrom, B.J.; Arias, L.C.; Davidson, A.D.; Ferguson, A.W.; Randa, L.A.; Sheffield, S.R. License to kill: Reforming federal wildlife control to restore biodiversity and ecosystem function. Conserv. Lett. 2014, 7, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Tobin, M.E.; Shwiff, S.A.; McConnell, J.E.; Littauer, G.A. Wildlife Services 2011 research needs assessment. In Proceedings of the Vertebrate Pest Conference, Monterey, CA, USA, 9 February 2012; Volume 25. [Google Scholar]
- Barber, C.; Lacaille, D.; Fortin, P.R. Systematic review of validation studies of the use of administrative data to identify serious infections. Arthritis Care Res. 2013, 65, 1343–1357. [Google Scholar] [CrossRef]
- Klinkowski-Clark, C.; Kutilek, M.J.; Matson, J.O.; Messina, P.; Earley, K.; Bros-Seemann, S.M. Estimating relative distribution of raccoons, opossums, skunks, and foxes using animal control data. Hum.-Wildl. Interact. 2010, 4, 32–46. [Google Scholar]
- Hui, C.; Richardson, D.M.; Landi, P.; Minoarivelo, H.O.; Garnas, J.; Roy, H.E. Defining invasiveness and invasibility in ecological networks. Biol. Invasions 2016, 18, 971–983. [Google Scholar] [CrossRef] [Green Version]
- Darwin, C.R. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life; John Murray: London, UK, 1859. [Google Scholar]
- Ludsin, S.A.; Wolfe, A.D. Biological invasion theory: Darwin’s contributions from the Origin of Species. Bioscience 2001, 51, 780–789. [Google Scholar] [CrossRef] [Green Version]
- Jeschke, J.M.; Debille, S.; Lortie, C.J. Biotic resistance and island susceptibility hypotheses. In Invasion Biology Hypothesis and Evidence; CAB International: Waringford, UK, 2018; pp. 60–70. [Google Scholar]
- Pimm, S. The Balance of Nature? University of Chicago Press: Chicago, IL, USA, 1991. [Google Scholar]
- Ehrlich, P.R. Attributes of invaders and the invading process: Vertebrates. In Biological Invasions: A Global Perspective; Drake, A., Mooney, H.A., Di CasIri, F., Groves, R.H., Kruger, F., Rejmanek, M., Williamson, M., Eds.; Wiley: New York, NY, USA, 1989; pp. 315–328. [Google Scholar]
- Lodge, D.M. Biological invasions: Lessons for ecology. Trends Ecol. Evol. 1993, 8, 133–137. [Google Scholar] [CrossRef]
- Chapple, D.G.; Simmonds, S.M.; Wong, B.B. Can behavioral and personality traits influence the success of unintentional species Forsyth, D.M.; Duncan, R.P.; Bomford, M.; Moore, G. Climatic suitability, life-history traits, introduction effort, and the establishment and spread of introduced mammals in Australia. Conserv. Biol. 2004, 18, 557–569. [Google Scholar]
- Bomford, M.; Kraus, F.; Barry, S.C.; Lawrence, E. Predicting establishment success for alien reptiles and amphibians: A role for climate matching. Biol. Invasions 2009, 11, 713. [Google Scholar] [CrossRef]
- Sol, D.; Bacher, S.; Reader, S.M.; Lefebvre, L. Brain size predicts the success of mammal species introduced into novel environments. Am. Nat. 2008, 172, S63–S71. [Google Scholar] [CrossRef] [PubMed]
- Hayes, K.R.; Barry, S.C. Are there any consistent predictors of invasion success? Biol. Invasions 2008, 10, 483–506. [Google Scholar] [CrossRef]
- Davis, M.A. Invasion Biology; Oxford University Press on Demand: Oxford, UK, 2009. [Google Scholar]
- Labaronnie, A.; Cassini, M.H. Determinants of introduction success in alien mammals. Mammal Res. 2022, 67, 231–237. [Google Scholar] [CrossRef]
- Bouchet, P.; Jaffre, T.; Veillon, J.M. Plant extinction in New Caledonia: Protection of sclerophyll forests urgently needed. Biodivers. Conserv. 1995, 4, 415–428. [Google Scholar] [CrossRef]
- Bullock, D.J.; North, S.G.; Dulloo, M.E.; Thorsen, M. The impact of rabbit and goat eradication on the ecology of Round Island, Mauritius. In Turning the Tide: The Eradication of Invasive Species; Veitch, C.R., Clout, M.N., Eds.; IUCN SSC Invasive Species Specialist Group: Gland, Switzerland; Cambridge, UK, 2002; pp. 53–63. [Google Scholar]
- Chapuis, J.-L.; Frenot, Y.; Lebouvier, M. Recovery of native plant communities after eradication of rabbits from the subantarctic Kerguelen Islands, and influence of climate change. Biol. Conserv. 2004, 117, 167–179. [Google Scholar] [CrossRef]
- Macdonald, D.W.; Fenn MG, P. The natural history of rodents: Preadaptations to pestilence. In Rodent Pests and Their Control; Buckle, A.P., Smith, R.H., Eds.; Cab International: London, UK, 2015. [Google Scholar]
- Diuk Wasser, M.A.; Cassini, M.H. A study on the diet of minor grisons and a preliminary analysis of its role in the control of rabbits in Patagonia. Stud. Neotrop. Fauna Environ. 1998, 33, 3–6. [Google Scholar] [CrossRef]
- Cerri, J.; Ferretti, M.; Bertolino, S. Rabbits killing hares: An invasive mammal modifies native predator–prey dynamics. Anim. Conserv. 2017, 20, 511–519. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cassini, M.H. Human–Wildlife Conflicts: Does Origin Matter? Animals 2022, 12, 2872. https://doi.org/10.3390/ani12202872
Cassini MH. Human–Wildlife Conflicts: Does Origin Matter? Animals. 2022; 12(20):2872. https://doi.org/10.3390/ani12202872
Chicago/Turabian StyleCassini, Marcelo Hernán. 2022. "Human–Wildlife Conflicts: Does Origin Matter?" Animals 12, no. 20: 2872. https://doi.org/10.3390/ani12202872
APA StyleCassini, M. H. (2022). Human–Wildlife Conflicts: Does Origin Matter? Animals, 12(20), 2872. https://doi.org/10.3390/ani12202872