The Supplementation of FloraMax-B11 Did Not Affect the Bile Acid Neosynthesis and the Enterohepatic Circulation in Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Protocol
2.2. RNA Extraction and Reverse Transcription-Quantitative PCR
2.3. Ileal Deoxycholic and Plasma Cholic Acid Analysis
2.4. Statistical Analysis
3. Results
3.1. Gene Expression
3.1.1. Ileal Gene Expression
3.1.2. Liver Gene Expression
3.2. Cholic and Deoxycholic Acids
3.2.1. Plasma Cholic Acid
3.2.2. Ileal Deoxycholic Acid
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azad, M.A.K.; Gao, J.; Ma, J.; Li, T.; Tan, B.; Huang, X.; Yin, J. Opportunities of prebiotics for the intestinal health of monogastric animals. Anim. Nutr. 2020, 6, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, R.R.; Gaghan, C.; Gorrell, K.; Sharif, S.; Taha-Abdelaziz, K. Probiotics as alternatives to antibiotics for the prevention and control of necrotic enteritis in chickens. Pathogens 2022, 11, 692. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Patlan, D.; Solis-Cruz, B.; Pontin, K.P.; Hernandez-Velasco, X.; Merino-Guzman, R.; Adhikari, B.; López-Arellano, R.; Kwon, Y.M.; Hargis, B.M.; Arreguin-Nava, M.A. Impact of a Bacillus direct-fed microbial on growth performance, intestinal barrier integrity, necrotic enteritis lesions, and ileal microbiota in broiler chickens using a laboratory challenge model. Front. Vet. Med. 2019, 6, 108. [Google Scholar] [CrossRef]
- Sassone-Corsi, M.; Raffatellu, M. No vacancy: How beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J. Immunol. 2015, 194, 4081–4087. [Google Scholar] [CrossRef] [Green Version]
- Adak, A.; Khan, M.R. An insight into gut microbiota and its functionalities. Cell. Mol. Life Sci. 2019, 76, 473–493. [Google Scholar] [CrossRef] [PubMed]
- Mertens, K.L.; Kalsbeek, A.; Soeters, M.R.; Eggink, H.M. Bile acid signaling pathways from the enterohepatic circulation to the central nervous system. Front. Neurosci. 2017, 11, 617. [Google Scholar] [CrossRef] [Green Version]
- Chiang, J.Y.J. Bile acid metabolism and signaling in liver disease and therapy. Liver Res. 2017, 1, 3–9. [Google Scholar] [CrossRef]
- Guban, J.; Korver, D.R.; Allison, G.E.; Tannock, G.W. Relationship of dietary antimicrobial drug administration with broiler performance, decreased population levels of Lactobacillus salivarius, and reduced bile salt deconjugation in the ileum of broiler chickens. Poult. Sci. 2006, 85, 2186–2194. [Google Scholar] [CrossRef]
- Lin, J.; Hunkapiller, A.A.; Layton, A.C.; Chang, Y.J.; Robbins, K.R. Response of intestinal microbiota to antibiotic growth promoters in chickens. Foodborne Pathog. Dis. 2013, 10, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Danzeisen, J.L.; Kim, H.B.; Isaacson, R.E.; Tu, Z.J.; Johnson, T.J. Modulations of the chicken cecal microbiome and metagenome in response to anticoccidial and growth promoter treatment. PLoS ONE 2011, 6, e27949. [Google Scholar] [CrossRef]
- Robinson, K.; Becker, S.; Xiao, Y.; Lyu, W.; Yang, Q.; Zhu, H.; Yang, H.; Zhao, J.; Zhang, G. Differential impact of subtherapeutic antibiotics and ionophores on intestinal microbiota of broilers. Microorganisms 2019, 7, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J. Antibiotic growth promoters enhance animal production by targeting intestinal bile salt hydrolase and its producers. Front. Microbiol. 2014, 5, 33. [Google Scholar] [CrossRef] [PubMed]
- Cole, C.B.; Fuller, R. Bile acid deconjugation and attachment of chicken gut bacteria: Their possible role in growth depression. Br. Poult. Sci. 1984, 25, 227–231. [Google Scholar] [CrossRef]
- Gutierrez-Fuentes, C.; Zuñiga-Orozco, L.; Vicente, J.; Hernandez-Velasco, X.; Menconi, A.; Kuttappan, V.; Kallapura, G.; Latorre, J.; Layton, S.; Hargis, B.; et al. Effect of a lactic acid bacteria based probiotic, Floramax-B11®, on performance, bone qualities, and morphometric analysis of broiler chickens: An economic analysis. Biol. Syst. 2013, 2, 2. [Google Scholar] [CrossRef]
- Teague, K.D.; Graham, L.E.; Dunn, J.R.; Cheng, H.H.; Anthony, N.; Latorre, J.D.; Menconi, A.; Wolfenden, R.E.; Wolfenden, A.D.; Mahaffey, B.D.; et al. In ovo evaluation of FloraMax®-B11 on Marek’s disease HVT vaccine protective efficacy, hatchability, microbiota composition, morphometric analysis, and Salmonella enteritidis infection in broiler chickens. Poult. Sci. 2017, 96, 2074–2082. [Google Scholar] [CrossRef]
- Delgado, R.; Latorre, J.; Vicuña, E.; Hernandez-Velasco, X.; Vicente, J.; Menconi, A.; Kallapura, G.; Layton, S.; Hargis, B.; Tellez, G. Glycerol supplementation enhances the protective effect of dietary FloraMax-B11 against Salmonella enteritidis colonization in neonate broiler chickens. Poult. Sci. 2014, 93, 2363–2369. [Google Scholar] [CrossRef] [PubMed]
- Biloni, A.; Quintana, C.; Menconi, A.; Kallapura, G.; Latorre, J.; Pixley, C.; Layton, S.; Dalmagro, M.; Hernandez-Velasco, X.; Wolfenden, A. Evaluation of effects of EarlyBird associated with FloraMax-B11 on Salmonella enteritidis, intestinal morphology, and performance of broiler chickens. Poult. Sci. 2013, 92, 2337–2346. [Google Scholar] [CrossRef] [PubMed]
- Immerstrand, T.; Paul, C.J.; Rosenquist, A.; Deraz, S.; Mårtensson, O.B.; Ljungh, A.; Blücher, A.; Oste, R.; Holst, O.; Karlsson, E.N. Characterization of the properties of Pediococcus parvulus for probiotic or protective culture use. J. Food Prot. 2010, 73, 960–966. [Google Scholar] [CrossRef]
- Proszkowiec-Weglarz, M.; Schreier, L.L.; Miska, K.B.; Angel, R.; Kahl, S.; Russell, B. Effect of early neonatal development and delayed feeding post-hatch on jejunal and ileal calcium and phosphorus transporter genes expression in broiler chickens. Poult. Sci. 2019, 98, 1861–1871. [Google Scholar] [CrossRef] [PubMed]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Knarreborg, A.; Lauridsen, C.; Engberg, R.M.; Jensen, S.K. Dietary antibiotic growth promoters enhance the bioavailability of alpha-tocopheryl acetate in broilers by altering lipid absorption. J. Nutr. 2004, 134, 1487–1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shokryazdan, P.; Jahromi, F.M.; Liang, J.B.; Ramasamy, K.; Sieo, C.C.; Ho, Y.W. Effects of a Lactobacillus salivarius mixture on performance, intestinal health and serum lipids of broiler chickens. PLoS ONE 2017, 12, e0175959. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.W.; Wang, J.; Zhang, H.J.; Wu, S.G.; Qi, G.H. Supplemental Clostridium butyricum modulates lipid metabolism through shaping gut microbiota and bile acid profile of aged laying hens. Front. Microbiol. 2020, 11, 600. [Google Scholar] [CrossRef]
- Degirolamo, C.; Rainaldi, S.; Bovenga, F.; Murzilli, S.; Moschetta, A. Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice. Cell Rep. 2014, 7, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Wang, X.J.; Wang, J.F.; Wu, F.; Sui, Y.J.; Yang, L.; Wang, Z.G. Lactobacillus plantarum strains as potential probiotic cultures with cholesterol-lowering activity. J. Dairy Sci. 2013, 96, 2746–2753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, G.; Peng, W.; Wei, L.; Li, R.; Yuan, Y.; Huang, X.; Yin, Y. Lactobacillus delbrueckii interfere with bile acid enterohepatic circulation to regulate cholesterol metabolism of growing-finishing pigs via Its bile salt hydrolase activity. Front. Nutr. 2020, 7, 617676. [Google Scholar] [CrossRef] [PubMed]
- Gadaleta, R.M.; Moschetta, A. Metabolic messengers: Fibroblast growth factor 15/19. Nat. Metab. 2019, 1, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zeng, X.; Mo, Y.; Smith, K.; Guo, Y.; Lin, J. Identification and characterization of a bile salt hydrolase from Lactobacillus salivarius for development of novel alternatives to antibiotic growth promoters. Appl. Environ. Microbiol. 2012, 78, 8795–8802. [Google Scholar] [CrossRef]
- Pellicoro, A.; Faber, K.N. Review article: The function and regulation of proteins involved in bile salt biosynthesis and transport. Aliment. Pharmacol. Ther. 2007, 26 (Suppl 2), 149–160. [Google Scholar] [CrossRef]
- Guariento, M.; Raimondo, D.; Assfalg, M.; Zanzoni, S.; Pesente, P.; Ragona, L.; Tramontano, A.; Molinari, H. Identification and functional characterization of the bile acid transport proteins in non-mammalian ileum and mammalian liver. Proteins 2008, 70, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Iñarrea, P.; Simon, M.; Manzano, M.; Palacios, J. Changes in the concentration and composition of biliary and serum bile acids in the young domestic fowl. Br. Poult. Sci. 1989, 30, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Svanberg, O.; Svedjelund, A. The metabolism of liver cholesterol in the young chick. Acta Physiol. Scand. 1972, 85, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Nakao, N.; Kaneda, H.; Tsushima, N.; Ohta, Y.; Tanaka, M. Characterization of primary structure and tissue expression profile of the chicken apical sodium-dependent bile acid transporter mRNA. Poult. Sci. 2015, 94, 722–727. [Google Scholar] [CrossRef] [PubMed]
Gene | GenBank Accession No. | Forward Primer (5’→3’) | Reverse Primer (5’→3’) | Amplicon Size (bp) |
---|---|---|---|---|
ASBT | NM_001319027.1 | AAGGCTCGTGGGTTATCA | ACGACATCTGCTCCAAGA | 119 |
BSEP | XM_025152623.1 | GTTCCCACTCATTCATCCTC | TCCTCTCCCTCAGTTCATAC | 97 |
CYP7A1 | AY700578.1 | TCCTCAACTGCTGCATTTTGA | GCTATTCCTGCCCCAAATGG | 156 |
CYP8B1 | NM_001005571.1 | CAGGAGAGGAGAAGCAACCA | TGTTCCCTGTCCCTTGGTAC | 120 |
FGF19 | NM_204674.2 | CCGCCAGCAATTCTTCTA | GCAGCGTTTGAGTCACTA | 86 |
FGFR4 | XM_015293863.2 | TCATCATCGTGGTGCTGT | GTCGGATGAGTGGGAATTTG | 99 |
FXR | AF492497.1 | GAAAGGACCACACAGCAT | CTCCGTGCCAAGTTTCTA | 97 |
I-BABP | NM_001277701.1 | GTGGGATGTTTGAGTCAGTG | TCTGCTGTTCCTCTGTGA | 120 |
SHP | AY700583.1 | AGCATGCTCGAGAAGATCCT | GCTCAAATCCAGGCTCCAGA | 129 |
OSTα | NM_001277697.1 | GAAACCAAGGCAGTCAGT | ATCATCTGCCAGCTCCAT | 88 |
OSTβ | XM_025153901.1 | GAGGAGAAAGCAGCACAA | CCAGCACAAGGACATCAT | 94 |
βKlotho | XM_003641245.5 | GGCCTCTCACACTCTTCACT | CTCATACTGGCTCCCGTTCT | 138 |
GAPDH | NM_204305 | AGCCATTCCTCCACCTTTGAT | AGTCCACAACACGGTTGCTGTAT | 112 |
β-actin | X0082 | TTCTTTTGGCGCTTGACTCA | GCGTTCGCTCCAACATGTT | 88 |
β2-m | Z48921 | TGGAGCACGAGACCCTGAAG | TTTGCCGTCATACCCAGAAGT | 161 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kpodo, K.R.; Chaudhari, A.; Schreier, L.L.; Miska, K.B.; Proszkowiec-Weglarz, M. The Supplementation of FloraMax-B11 Did Not Affect the Bile Acid Neosynthesis and the Enterohepatic Circulation in Broiler Chickens. Animals 2022, 12, 2901. https://doi.org/10.3390/ani12212901
Kpodo KR, Chaudhari A, Schreier LL, Miska KB, Proszkowiec-Weglarz M. The Supplementation of FloraMax-B11 Did Not Affect the Bile Acid Neosynthesis and the Enterohepatic Circulation in Broiler Chickens. Animals. 2022; 12(21):2901. https://doi.org/10.3390/ani12212901
Chicago/Turabian StyleKpodo, Kouassi R., Atul Chaudhari, Lori L. Schreier, Katarzyna B. Miska, and Monika Proszkowiec-Weglarz. 2022. "The Supplementation of FloraMax-B11 Did Not Affect the Bile Acid Neosynthesis and the Enterohepatic Circulation in Broiler Chickens" Animals 12, no. 21: 2901. https://doi.org/10.3390/ani12212901
APA StyleKpodo, K. R., Chaudhari, A., Schreier, L. L., Miska, K. B., & Proszkowiec-Weglarz, M. (2022). The Supplementation of FloraMax-B11 Did Not Affect the Bile Acid Neosynthesis and the Enterohepatic Circulation in Broiler Chickens. Animals, 12(21), 2901. https://doi.org/10.3390/ani12212901