Heat Stress during Summer Attenuates Expression of the Hypothalamic Kisspeptin, an Upstream Regulator of the Hypothalamic–Pituitary–Gonadal Axis, in Domestic Sows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Chemicals and Media
2.3. Acquisition of Samples from Domestic Sows in Different Seasons
2.4. Classification of Estrus Cycle in Sows
2.5. ELISA for Reproductive and Stress-Related Hormones of Sows in Different Seasons
2.6. Western Blotting for Reproductive and Stress-Related Hormones of Sows in Different Seasons
2.7. Immunofluorescence Assay to Determine c-Fos Co-Expressing Kisspeptin Neurons of Sows in Different Seasons
2.8. Classification of Ovarian Follicles of Sows in Different Seasons
2.9. Statistical Analysis
3. Results
3.1. Reproductive Performance during Summer Infertility in Domestic Sows
3.2. Assessment of Stress during Summer Infertility of Domestic Sows
3.3. Expression of the Hypothalamic Kisspeptin and Its Downstream Hormone (GnRH) in Domestic Sows in Different Seasons
3.4. Activity of Kisspeptin Neurons in the Follicular Phase in Different Seasons
3.5. Effects of Reduced Kisspeptin Expression on HPG Axis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fernandez-Novo, A.; Pérez-Garnelo, S.S.; Villagrá, A.; Pérez-Villalobos, N.; Astiz, S. The Effect of Stress on Reproduction and Reproductive Technologies in Beef Cattle-A Review. Animals 2020, 10, 2096. [Google Scholar] [CrossRef]
- Lopes, T.P.; Padilla, L.; Bolarin, A.; Rodriguez-Martinez, H.; Roca, J. Ovarian Follicle Growth during Lactation Determines the Reproductive Performance of Weaned Sows. Animals 2020, 10, 1012. [Google Scholar] [CrossRef] [PubMed]
- Tummaruk, P.; Kesdangsakonwut, S.; Kunavongkrit, A. Relationships among specific reasons for culling, reproductive data, and gross morphology of the genital tracts in gilts culled due to reproductive failure in Thailand. Theriogenology 2009, 71, 369–375. [Google Scholar] [CrossRef]
- Kim, S.J. The Chronic and Unpredictable Stress Suppressed Kisspeptin Expression during Ovarian Cycle in Mice. J. Anim. Reprod. Biotechnol. 2019, 34, 40–49. [Google Scholar] [CrossRef]
- Lents, C.A.; Heidorn, N.L.; Barb, C.R.; Ford, J.J. Central and peripheral administration of kisspeptin activates gonadotropin but not somatotropin secretion in prepubertal gilts. Reproduction 2008, 135, 879–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soede, N.M.; Langendijk, P.; Kemp, B. Reproductive cycles in pigs. Anim. Reprod. Sci. 2011, 124, 251–258. [Google Scholar] [CrossRef]
- Lents, C.A. Review: Kisspeptin and reproduction in the pig. Animal 2019, 13, 2986–2999. [Google Scholar] [CrossRef] [Green Version]
- Scott, C.J.; Rose, J.L.; Gunn, A.J.; McGrath, B.M. Kisspeptin and the regulation of the reproductive axis in domestic animals. J. Endocrinol. 2018, 240, R1–R16. [Google Scholar] [CrossRef] [Green Version]
- Tomikawa, J.; Homma, T.; Tajima, S.; Shibata, T.; Inamoto, Y.; Takase, K.; Inoue, N.; Ohkura, S.; Uenoyama, Y.; Maeda, K.; et al. Molecular characterization and estrogen regulation of hypothalamic KISS1 gene in the pig. Biol. Reprod. 2010, 82, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.C.; Kim, H.D.; Park, B.J.; Jeon, R.H.; Baek, S.M.; Lee, S.W.; Jang, M.; Bae, S.G.; Yun, S.H.; Park, J.K.; et al. Immobilization stress increased cytochrome P450 1A2 (CYP1A2) expression in the ovary of rat. J. Anim. Reprod. Biotechnol. 2021, 36, 9–16. [Google Scholar] [CrossRef]
- Narayan, E.; Parisella, S. Influences of the stress endocrine system on the reproductive endocrine axis in sheep (Ovis aries). Ital. J. Anim. Sci. 2017, 16, 640–651. [Google Scholar] [CrossRef] [Green Version]
- Geers, R.; Dellaert, B.; Goedseels, V.; Hoogerbrugge, A.; Vranken, E.; Maes, F.; Berckmans, D. An assessment of optimal air temperatures in pig houses by the quantification of behavioural and health-related Problems. Anim. Sci. 1989, 48, 571–578. [Google Scholar] [CrossRef]
- Holling, C.; Grosse Beilage, E.; Vidondo, B.; Nathues, C. Provision of straw by a foraging tower-effect on tail biting in weaners and fattening pigs. Porc. Health Manag. 2017, 16, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Love, R.J. Seasonal infertility in pigs. Vet. Rec. 1981, 109, 407–409. [Google Scholar] [CrossRef] [PubMed]
- St-Pierre, N.R.; Cobanov, B.; Schnitkey, G. Economic Losses from Heat Stress by US Livestock Industries. J. Dairy Sci. 2008, 86, E52–E77. [Google Scholar] [CrossRef] [Green Version]
- Knox, R.V. Physiology and endocrinology symposium: Factors influencing follicle development in gilts and sows and management strategies used to regulate growth for control of estrus and ovulation. J. Anim. Sci. 2019, 97, 1433–1445. [Google Scholar] [CrossRef]
- Bullitt, E. Expression of c-fos-like protein as a marker for neuronal activity following noxious stimulation in the rat. J. Comp. Neurol. 1990, 296, 517–530. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, J.; d’Anglemont de Tassigny, X.; Moreno, A.S.; Colledge, W.H.; Herbison, A.E. Kisspeptin-GPR54 signaling is essential for preovulatory gonadotropin-releasing hormone neuron activation and the luteinizing hormone surge. J. Neurosci. 2008, 28, 8691–8697. [Google Scholar] [CrossRef] [Green Version]
- Fergani, C.; Routly, J.E.; Jones, D.N.; Pickavance, L.C.; Smith, R.F.; Dobson, H. Kisspeptin, c-Fos and CRFR type 2 expression in the preoptic area and mediobasal hypothalamus during the follicular phase of intact ewes, and alteration after LPS. Physiol. Behav. 2013, 110–111, 158–168. [Google Scholar] [CrossRef]
- Caraty, A.; Lomet, D.; Sébert, M.E.; Guillaume, D.; Beltramo, M.; Evans, N.P. Gonadotrophin-releasing hormone release into the hypophyseal portal blood of the ewe mirrors both pulsatile and continuous intravenous infusion of kisspeptin: An insight into kisspeptin’s mechanism of action. J. Neuroendocrinol. 2013, 25, 537–546. [Google Scholar] [CrossRef]
- Tanaka, T.; Ohkura, S.; Wakabayashi, Y.; Okamura, H. Effect of peripherally administered kisspeptin-10 on GnRH neurosecretion into the hypophyseal portal circulation in ovariectomized goat does. Small Rumin. Res. 2012, 105, 273–276. [Google Scholar] [CrossRef]
- Thompson, E.L.; Patterson, M.; Murphy, K.G.; Smith, K.L.; Dhillo, W.S.; Todd, J.F.; Ghatei, M.A.; Bloom, S.R. Central and peripheral administration of kisspeptin-10 stimulates the hypothalamic-pituitary-gonadal axis. J. Neuroendocrinol. 2004, 16, 850–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caraty, A.; Smith, J.T.; Lomet, D.; Ben Saïd, S.; Morrissey, A.; Cognie, J.; Doughton, B.; Baril, G.; Briant, C.; Clarke, I.J. Kisspeptin synchronizes preovulatory surges in cyclical ewes and causes ovulation in seasonally acyclic ewes. Endocrinology 2007, 148, 5258–5267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arreguin-Arevalo, J.A.; Lents, C.A.; Farmerie, T.A.; Nett, T.M.; Clay, C.M. KiSS-1 peptide induces release of LH by a direct effect on the hypothalamus of ovariectomized ewes. Anim. Reprod. Sci. 2007, 101, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.T.; Rao, A.; Pereira, A.; Caraty, A.; Millar, R.P.; Clarke, I.J. Kisspeptin is present in ovine hypophysial portal blood but does not increase during the preovulatory luteinizing hormone surge: Evidence that gonadotropes are not direct targets of kisspeptin in vivo. Endocrinology 2008, 149, 1951–1959. [Google Scholar] [CrossRef]
- Ralph, C.R.; Kirkwood, R.N.; Tilbrook, A.J. A single intravenous injection of Kisspeptin evokes an increase in luteinising hormone in 15- and 18-week-old gilts. Anim. Prod. Sci. 2017, 57, 2469. [Google Scholar] [CrossRef]
- Suzuki, S.; Kadokawa, H.; Hashizume, T. Direct kisspeptin-10 stimulation on luteinizing hormone secretion from bovine and porcine anterior pituitary cells. Anim. Reprod. Sci. 2008, 103, 360–365. [Google Scholar] [CrossRef]
- Smith, J.T.; Dungan, H.M.; Stoll, E.A.; Gottsch, M.L.; Braun, R.E.; Eacker, S.M.; Clifton, D.K.; Steiner, R.A. Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology 2005, 146, 2976–2984. [Google Scholar] [CrossRef]
- Ieda, N.; Uenoyama, Y.; Tajima, Y.; Nakata, T.; Kano, M.; Naniwa, Y.; Watanabe, Y.; Minabe, S.; Tomikawa, J.; Inoue, N.; et al. KISS1 gene expression in the developing brain of female pigs in pre- and peripubertal periods. J. Reprod. Dev. 2014, 60, 312–316. [Google Scholar] [CrossRef] [Green Version]
- Aich, P.; Jalal, S.; Czuba, C.; Schatte, G.; Herzog, K.; Olson, D.J.; Ross, A.R.; Potter, A.A.; Babiuk, L.A.; Griebel, P. Comparative approaches to the investigation of responses to stress and viral infection in cattle. OMICS 2007, 11, 413–434. [Google Scholar] [CrossRef]
- Ciechanowska, M.; Lapot, M.; Mateusiak, K.; Przekop, F. Neuroendocrine regulation of GnRH release and expression of GnRH and GnRH receptor genes in the hypothalamus-pituitary unit in different physiological states. Reprod. Biol. 2010, 10, 85–124. [Google Scholar] [CrossRef]
- Iwasa, T.; Matsuzaki, T.; Yano, K.; Mayila, Y.; Irahara, M. The roles of kisspeptin and gonadotropin inhibitory hormone in stress-induced reproductive disorders. Endocr. J. 2018, 65, 133–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kageyama, K. Regulation of gonadotropins by corticotropin-releasing factor and urocortin. Front. Endocrinol. 2013, 4, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, I.J. Interface between metabolic balance and reproduction in ruminants: Focus on the hypothalamus and pituitary. Horm. Behav. 2014, 66, 15–40. [Google Scholar] [CrossRef] [PubMed]
- Breen, K.M.; Karsch, F.J. Does cortisol inhibit pulsatile luteinizing hormone secretion at the hypothalamic or pituitary level? Endocrinology 2004, 145, 692–698. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.F.; Dobson, H. Hormonal interactions within the hypothalamus and pituitary with respect to stress and reproduction in sheep. Domest. Anim. Endocrinol. 2002, 23, 75–85. [Google Scholar] [CrossRef]
- Dobson, H.; Fergani, C.; Routly, J.E.; Smith, R.F. Effects of stress on reproduction in ewes. Anim. Reprod. Sci. 2012, 130, 135–140. [Google Scholar] [CrossRef]
- Takumi, K.; Iijima, N.; Higo, S.; Ozawa, H. Immunohistochemical analysis of the colocalization of corticotropin-releasing hormone receptor and glucocorticoid receptor in kisspeptin neurons in the hypothalamus of female rats. Neurosci. Lett. 2012, 531, 40–45. [Google Scholar] [CrossRef]
- Kinsey-Jones, J.S.; Li, X.F.; Knox, A.M.; Wilkinson, E.S.; Zhu, X.L.; Chaudhary, A.A.; Milligan, S.R.; Lightman, S.L.; O’Byrne, K.T. Down-regulation of hypothalamic kisspeptin and its receptor, Kiss1r, mRNA expression is associated with stress-induced suppression of luteinising hormone secretion in the female rat. J. Neuroendocrinol. 2009, 21, 20–29. [Google Scholar] [CrossRef]
- Luo, E.; Stephens, S.B.; Chaing, S.; Munaganuru, N.; Kauffman, A.S.; Breen, K.M. Corticosterone Blocks Ovarian Cyclicity and the LH Surge via Decreased Kisspeptin Neuron Activation in Female Mice. Endocrinology 2016, 157, 1187–1199. [Google Scholar] [CrossRef]
- Iwasa, T.; Matsuzaki, T.; Tungalagsuvd, A.; Munkhzaya, M.; Kawami, T.; Niki, H.; Kato, T.; Kuwahara, A.; Uemura, H.; Yasui, T.; et al. Hypothalamic Kiss1 and RFRP gene expressions are changed by a high dose of lipopolysaccharide in female rats. Horm. Behav. 2014, 66, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, M.S.; Breen, K.M.; Sakurai, H.; Adams, B.M.; Adams, T.E. Effect of duration of infusion of stress-like concentrations of cortisol on follicular development and the preovulatory surge of LH in sheep. Anim. Reprod. Sci. 2000, 63, 167–175. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-D.; Kim, Y.-J.; Jang, M.; Bae, S.-G.; Yun, S.-H.; Lee, M.-R.; Seo, Y.-R.; Cho, J.-K.; Kim, S.-J.; Lee, W.-J. Heat Stress during Summer Attenuates Expression of the Hypothalamic Kisspeptin, an Upstream Regulator of the Hypothalamic–Pituitary–Gonadal Axis, in Domestic Sows. Animals 2022, 12, 2967. https://doi.org/10.3390/ani12212967
Kim H-D, Kim Y-J, Jang M, Bae S-G, Yun S-H, Lee M-R, Seo Y-R, Cho J-K, Kim S-J, Lee W-J. Heat Stress during Summer Attenuates Expression of the Hypothalamic Kisspeptin, an Upstream Regulator of the Hypothalamic–Pituitary–Gonadal Axis, in Domestic Sows. Animals. 2022; 12(21):2967. https://doi.org/10.3390/ani12212967
Chicago/Turabian StyleKim, Hwan-Deuk, Young-Jong Kim, Min Jang, Seul-Gi Bae, Sung-Ho Yun, Mi-Ree Lee, Yong-Ryul Seo, Jae-Keun Cho, Seung-Joon Kim, and Won-Jae Lee. 2022. "Heat Stress during Summer Attenuates Expression of the Hypothalamic Kisspeptin, an Upstream Regulator of the Hypothalamic–Pituitary–Gonadal Axis, in Domestic Sows" Animals 12, no. 21: 2967. https://doi.org/10.3390/ani12212967
APA StyleKim, H. -D., Kim, Y. -J., Jang, M., Bae, S. -G., Yun, S. -H., Lee, M. -R., Seo, Y. -R., Cho, J. -K., Kim, S. -J., & Lee, W. -J. (2022). Heat Stress during Summer Attenuates Expression of the Hypothalamic Kisspeptin, an Upstream Regulator of the Hypothalamic–Pituitary–Gonadal Axis, in Domestic Sows. Animals, 12(21), 2967. https://doi.org/10.3390/ani12212967