Morphometrics of Xenopus laevis Kept as Laboratory Animals
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Body Condition Parameters
- Snout–vent length (L): length from the tip of the snout to the posterior margin of the cloaca (cm).
- Cranial width (CrW): width from the left to the right side, measured directly behind the forelimbs (cm).
- Caudal width (CdW): width from the left to the right side, measured directly in front of the hindlimbs (cm).
- Thigh width (TW): the thigh width was measured at the broadest site (cm).
- Triangle surface (TS): a triangle was formed from the tip of the snout to the caudal width and the surface was calculated (TS = 0.5·CdW·height of the triangle; cm2).
- Relative mass condition index WR = 100∙BW/BWs with BWs being the BW predicted by the linear correlation between BW and L in a log10 transformation.
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ullman-Culleré, M.H.; Foltz, C.J. Body condition scoring: A rapid and accurate method for assessing health status in mice. Comp. Med. 1999, 49, 319–323. [Google Scholar]
- Burkholder, T.; Foltz, C.; Karlsson, E.; Linton, C.G.; Smith, J.M. Health evaluation of experimental laboratory mice. Curr. Protoc. Mouse Biol. 2012, 2, 145–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hickman, D.L.; Swan, M. Use of a body condition score technique to assess health status in a rat model of polycystic kidney disease. J. Am. Assoc. Lab. Anim. Sci. 2010, 49, 155–159. [Google Scholar] [PubMed]
- Russell, W.M.S.; Burch, R.L. The Principles of Humane Experimental Technique; Methuen: London, UK, 1959. [Google Scholar]
- German, A.J.; Holden, S.L.; Moxham, G.L.; Holmes, K.L.; Hackett, R.M.; Rawlings, J.M. A simple, reliable tool for owners to assess the body condition of their dog or cat. J. Nutr. 2006, 136, 2031S–2033S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laflamme, D. Development and validation of a body condition score system for dogs. Canine Pract. 1997, 22, 10–15. [Google Scholar]
- Metzner, M.; Heuwieser, W.; Klee, W. Die Beurteilung der Körperkondition (body condition scoring) im Herdenmanagement. Der Prakt. Tierarzt 1993, 11, 991–998. [Google Scholar]
- Charette, R.; Bigras-Poulin, M.; Martineau, G.-P. Body condition evaluation in sows. Livest. Prod. Sci. 1996, 46, 107–115. [Google Scholar] [CrossRef]
- Fitzgerald, R.; Stalder, K.; Dixon, P.; Johnson, A.; Karriker, L.; Jones, G. The accuracy and repeatability of sow body condition scoring. Prof. Anim. Sci. 2009, 25, 415–425. [Google Scholar] [CrossRef] [Green Version]
- Kienzle, E.; Schramme, S.C. Beurteilung des ernährungszustandes mittels body condition scores und Gewichtsschätzung beim adulten warmblutpferd. Pferdeheilkunde 2004, 20, 517–524. [Google Scholar] [CrossRef] [Green Version]
- Wijeyamohan, S.; Treiber, K.; Schmitt, D.; Santiapillai, C. A visual system for scoring body condition of Asian elephants (Elephas maximus). Zoo Biol. 2015, 34, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Clavadetscher, I.; Bond, M.; Martin, L.; Schiffmann, C.; Hatt, J.-M.; Clauss, M. Development of an image-based body condition score for giraffes Giraffa camelopardalis and a comparison of zoo-housed and free-ranging individuals. J. Zoo Aquar. Res. 2021, 9, 170–185. [Google Scholar]
- Schiffmann, C.; Clauss, M.; Hoby, S.; Hatt, J.-M. Visual body condition scoring in zoo animals–composite, algorithm and overview approaches. J. Zoo Aquar. Res. 2017, 5, 1–10. [Google Scholar]
- Heidegger, E.M.; von Houwald, F.; Steck, B.; Clauss, M. Body condition scoring system for greater one-horned rhino (Rhinoceros unicornis): Development and application. Zoo Biol. 2016, 35, 432–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregory, N.; Robins, J. A body condition scoring system for layer hens. N. Z. J. Agric. Res. 1998, 41, 555–559. [Google Scholar] [CrossRef]
- Labocha, M.K.; Hayes, J.P. Morphometric indices of body condition in birds: A review. J. Ornithol. 2012, 153, 1–22. [Google Scholar] [CrossRef]
- Disi, A.M.; Amr, Z.S. Morphometrics, distribution and ecology of the amphibians in Jordan. Vertebr. Zool. 2010, 60, 147–162. [Google Scholar]
- Ta, T.; Chu, N.; Nguyen, N.; Tran, H.; Tran, T.; Ha, L.; Nguyen, N. Morphometrics and body condition of Glossogobius olivaceus in mangrove forests of northern Vietnam. J. Anim. Plant Sci 2022, 32, 845–854. [Google Scholar]
- Johnston, D.R.; Rayment, W.; Dawson, S.M. Morphometrics and body condition of southern right whales on the calving grounds at Port Ross, Auckland Islands. Mamm. Biol. 2022, 1–12. [Google Scholar] [CrossRef]
- Auttila, M.; Kurkilahti, M.; Niemi, M.; Levänen, R.; Sipilä, T.; Isomursu, M.; Koskela, J.; Kunnasranta, M. Morphometrics, body condition, and growth of the ringed seal (Pusa hispida saimensis) in Lake Saimaa: Implications for conservation. Mar. Mammal Sci. 2016, 32, 252–267. [Google Scholar] [CrossRef]
- Kershaw, J.L.; Sherrill, M.; Davison, N.J.; Brownlow, A.; Hall, A.J. Evaluating morphometric and metabolic markers of body condition in a small cetacean, the harbor porpoise (Phocoena phocoena). Ecol. Evol. 2017, 7, 3494–3506. [Google Scholar] [CrossRef] [Green Version]
- Speakman, J. Body Composition Analysis of Animals: A Handbook of Non-Destructive Methods; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Jayson, S.; Harding, L.; Michaels, C.J.; Tapley, B.; Hedley, J.; Goetz, M.; Barbon, A.; Garcia, G.; Lopez, J.; Flach, E. Development of a body condition score for the mountain chicken frog (Leptodactylus fallax). Zoo Biol. 2018, 37, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, L.C. Life history patterns of storage and utilization of lipids for energy in amphibians. Am. Zool. 1976, 16, 725–732. [Google Scholar] [CrossRef] [Green Version]
- Plăiaşu, R.; Hartel, T.; Băncilă, R.I.; Cogălniceanu, D.; Smets, J. Comparing three body condition indices in amphibians: A case study of yellow-bellied toad Bombina variegata. Amphib.-Reptil. 2010, 31, 558–562. [Google Scholar] [CrossRef]
- Narayan, E.J.; Gramapurohit, N.P. Sexual dimorphism in baseline urinary corticosterone metabolites and their association with body-condition indices in a peri-urban population of the common Asian toad (Duttaphrynus melanostictus). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2016, 191, 174–179. [Google Scholar] [CrossRef]
- Unglaub, B.; Steinfartz, S.; Kühne, D.; Haas, A.; Schmidt, B.R. The relationships between habitat suitability, population size and body condition in a pond-breeding amphibian. Basic Appl. Ecol. 2018, 27, 20–29. [Google Scholar] [CrossRef]
- Jarvis, L.E. Factors affecting body condition in a great crested newt Triturus cristatus population. Herpetol. Bull. 2015, 134, 1–5. [Google Scholar]
- Santini, L.; BENÍTEZ-LÓPEZ, A.; Ficetola, G.F.; Huijbregts, M.A. Length–mass allometries in amphibians. Integr. Zool. 2018, 13, 36–45. [Google Scholar] [CrossRef] [Green Version]
- Balletto, E. Amphibians of the Arabian peninsula. Fauna Saudi Arab. 1985, 7, 318–392. [Google Scholar]
- Blum, M.; Ott, T. Xenopus: An undervalued model organism to study and model human genetic disease. Cells Tissues Organs 2018, 205, 303–313. [Google Scholar] [CrossRef]
- Böswald, L.F.; Matzek, D.; Popper, B. Current Feeding Practice of Xenopus laevis in a Laboratory Setting. Animals 2022, 12, 1163. [Google Scholar] [CrossRef]
- Kupfer, A. Sexual size dimorphism in amphibians: An overview. Sex Size Gend. Roles Evol. Stud. Sex. Size Dimorphism 2007, 5, 50–60. [Google Scholar]
- MacCracken, J.G.; Stebbings, J.L. Test of a body condition index with amphibians. J. Herpetol. 2012, 46, 346–350. [Google Scholar] [CrossRef]
- Albornoz, R.I.; Giri, K.; Hannah, M.C.; Wales, W.J. An Improved Approach to Automated Measurement of Body Condition Score in Dairy Cows Using a Three-Dimensional Camera System. Animals 2021, 12, 72. [Google Scholar] [CrossRef] [PubMed]
- Green, S.L. The Laboratory Xenopus sp.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Shine, R. Sexual selection and sexual dimorphism in the Amphibia. Copeia 1979, 1979, 297–306. [Google Scholar] [CrossRef]
- Monnet, J.-M.; Cherry, M.I. Sexual size dimorphism in anurans. Proc. R. Soc. London. Ser. B Biol. Sci. 2002, 269, 2301–2307. [Google Scholar] [CrossRef] [Green Version]
- Ducret, V.; Videlier, M.; Moureaux, C.; Bonneaud, C.; Herrel, A. Do female frogs have higher resting metabolic rates than males? A case study with Xenopus allofraseri. J. Zool. 2020, 312, 221–226. [Google Scholar] [CrossRef]
- Kamphues, J.; Wolf, P.; Coenen, M.; Eder, K.; Iben, C.; Kienzle, E.; Liesegang, A.; Männer, K.; Zebeli, Q.; Zentek, J. Supplemente zur Tierernährung für Studium und Praxis; M & H Schaper (Verlag): Stuttgart, Germany, 2014. [Google Scholar]
Females | Males | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | Mean ± SD | Range | Median | 25% Q | 75% Q | n | Mean ± SD | Range | Median | 25% Q | 75% Q | p | |
BW (g) | 198 | 148.8 ± 37.8 | 55.00–145.00 | 146.00 | 122.50 | 174.25 | 40 | 67.0 ± 6.0 | 52.00–79.00 | 68.00 | 63.50 | 70.22 | <0.001 |
L (cm) | 198 | 12.1 ± 1.0 | 8.44–13.97 | 12.31 | 11.74 | 12.71 | 40 | 7.7 ± 0.3 | 7.13–8.26 | 7.67 | 7.41 | 7.92 | <0.001 |
CrW (cm) | 198 | 5.1 ± 0.5 | 3.6–6.50 | 5.13 | 4.81 | 5.42 | 40 | 3.4 ± 0.2 | 3.13–3.79 | 3.41 | 3.28 | 3.53 | <0.001 |
CdW (cm) | 198 | 6.2 ± 0.7 | 4.44–7.53 | 6.37 | 5.81 | 6.74 | 40 | 4.0 ± 0.2 | 3.49–4.31 | 4.02 | 3.86 | 4.10 | <0.001 |
TS (cm2) | 198 | 29.8 ± 5.4 | 14.70–42.37 | 29.83 | 26.44 | 34.11 | 40 | 11.6 ± 1.1 | 9.25–13.15 | 11.37 | 10.79 | 12.63 | <0.001 |
TW (cm) | 190 | 3.4 ± 0.3 | 2.23–4.03 | 3.37 | 3.21 | 3.55 | 38 | 2.3 ± 0.2 | 1.97–2.56 | 2.31 | 2.18 | 2.41 | <0.001 |
Group | BW/L Range [g/cm] | n | TS [cm2] | CdW [cm] |
---|---|---|---|---|
1 | <7.26 | 4 | 15.50 a ± 0.83 | 4.51 a ± 0.14 |
2 | 7.26–10.15 | 33 | 23.19 a ± 3.51 | 5.33 a ± 0.44 |
3 | 10.16–14.61 | 129 | 30.59 b ± 3.70 | 6.38 b ± 0.44 |
4 | 14.62–17.5 | 30 | 35.23 b ± 3.34 | 6.85 b ± 0.31 |
5 | >17.5 | 2 | 39.01 b ± 1.42 | 7.13 b ± 0.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Böswald, L.F.; Matzek, D.; Mohr, H.; Kienzle, E.; Popper, B. Morphometrics of Xenopus laevis Kept as Laboratory Animals. Animals 2022, 12, 2986. https://doi.org/10.3390/ani12212986
Böswald LF, Matzek D, Mohr H, Kienzle E, Popper B. Morphometrics of Xenopus laevis Kept as Laboratory Animals. Animals. 2022; 12(21):2986. https://doi.org/10.3390/ani12212986
Chicago/Turabian StyleBöswald, Linda F., Dana Matzek, Helen Mohr, Ellen Kienzle, and Bastian Popper. 2022. "Morphometrics of Xenopus laevis Kept as Laboratory Animals" Animals 12, no. 21: 2986. https://doi.org/10.3390/ani12212986
APA StyleBöswald, L. F., Matzek, D., Mohr, H., Kienzle, E., & Popper, B. (2022). Morphometrics of Xenopus laevis Kept as Laboratory Animals. Animals, 12(21), 2986. https://doi.org/10.3390/ani12212986