Integrative Analysis of miRNA-mRNA in Ovarian Granulosa Cells Treated with Kisspeptin in Tan Sheep
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of Ovarian Samples
2.2. Culture and Treatment of Primary Ovarian Granulosa Cells of Tan Sheep
2.3. Extraction and Detection of Total RNA from Granulosa Cells
2.4. Library Building and Sequencing
2.5. Processing and Validation of Sequencing Data
2.6. Kisspeptin-Mediated Analysis of Granulosa Cell Differential mRNA, miRNA Function, and Pathway Enrichment
2.7. Kisspeptin-Mediated Integration Analysis of Granulosa Cells mRNA and miRNA
3. Results
3.1. Cell Culture and Statistical Analysis of Transcriptome Data of Kisspeptin-Treated Granulosa Cells
3.2. Identification and Classification Annotation of miRNA
3.3. Differentially Expressed mRNA and miRNA Analysis
3.4. GO Enrichment Annotation of Differentially Expressed mRNA and miRNA
3.5. KEGG Pathway Analysis of Differential Genes and miRNA Target Genes
3.6. Kisspeptin-Mediated Key miRNAs for Granulosa Cell Steroid Production and the Corresponding Target Genes
3.7. Validation of Differentially Expressed miRNA and mRNA by qPCR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muir, A.I.; Chamberlain, L.; Elshourbagy, N.A.; Michalovich, D.; Moore, D.J.; Calamari, A.; Szekeres, P.G.; Sarau, H.M.; Chambers, J.K.; Murdock, P.; et al. AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J. Biol. Chem. 2001, 276, 28969–28975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohtaki, T.; Shintani, Y.; Honda, S.; Matsumoto, H.; Hori, A.; Kanehashi, K.; Terao, Y.; Kumano, S.; Takatsu, Y.; Masuda, Y.; et al. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 2001, 411, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Mei, H.; Doran, J.; Kyle, V.; Yeo, S.H.; Colledge, W.H. Does kisspeptin signaling have a role in the testes? Front. Endocrinol. 2013, 4, 198. [Google Scholar] [CrossRef] [PubMed]
- Chianese, R.; Ciaramella, V.; Fasano, S.; Pierantoni, R.; Meccariello, R. Kisspeptin regulates steroidogenesis and spermiation in anuran amphibian. Reproduction 2017, 154, 403–414. [Google Scholar] [CrossRef] [Green Version]
- Pinto, F.M.; Román, A.C.; Ravina, C.G.; Sánchez, M.F.; Lozano, D.M.; Illanes, M.; Sempere, M.T.; Candenas, M.L. Characterization of the kisspeptin system in human spermatozoa. Int. J. Androl. 2012, 35, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Roman, A.C.; Pinto, F.M.; Dorta, I.; Almeida, T.A.; Hernández, M.; Illanes, M.; Sempere, M.T.; Candenas, L. Analysis of the expression of neurokinin B, kisspeptin, and their cognate receptors NK3R and KISS1R in the human female genital tract. Fertil. Steril. 2012, 95, 1213–1219. [Google Scholar] [CrossRef]
- Cao, Y.B.; Li, Z.P.; Jiang, W.Y.; Ling, Y.; Kuang, H.B. Reproductive functions of Kisspeptin/KISS1R systems in the periphery. Reprod. Biol. Endocrinol. 2019, 17, 65. [Google Scholar] [CrossRef]
- Andrei, D.; Nagy, R.A.; Montfoort, A.V.; Tietge, U.; Terpstra, M.; Kok, K.; Berg, A.V.D.; Hoek, A.; Kluiver, J.; Donker, R. Differential miRNA expression profiles in cumulus and mural granulosa cells from human pre-ovulatory follicles. Microrna 2019, 8, 61–67. [Google Scholar] [CrossRef]
- Xu, Y.F.; Niu, J.Q.; Xi, G.Y.; Niu, X.Z.; Wang, Y.H.; Guo, M.; Yangzong, Q.B.; Yao, Y.L.; Sizhu, S.L.; Tian, J.H. TGF-beta1 resulting in differential microRNA expression in bovine granulosa cells. Gene 2018, 663, 88–100. [Google Scholar] [CrossRef]
- Yuan, D.Z.; Yu, L.L.; Qu, T.; Zhang, S.M.; Zhao, Y.B.; Pan, J.L.; Xu, Q.; He, Y.P.; Zhang, J.H.; Yue, L.M. Identification and characterization of progesterone- and estrogen-regulated microRNAs in mouse endometrial epithelial cells. Reprod. Sci. 2015, 22, 223–234. [Google Scholar] [CrossRef]
- Robinson, C.L.; Zhang, L.N.; Schutz, L.F.; Totty, M.L.; Spicer, L.J. MicroRNA 221 expression in theca and granulosa cells: Hormonal regulation and function. J. Anim. Sci. 2018, 96, 641–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, N.; Yang, B.Q.; Liu, Y.; Tan, X.Y.; Lu, C.L.; Yuan, X.H.; Ma, X. Follicle-stimulating hormone regulation of microRNA expression on progesterone production in cultured rat granulosa cells. Endocrine 2010, 38, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.Q.; Wang, L.J.; Sun, X.W.; Zhang, J.J.; Zhao, Y.J.; Na, R.S.; Zhang, J.H. Transcriptome analysis of the capra hircus ovary. PLoS ONE 2015, 10, e121586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, P.Y.; Yue, Q.X.; Fu, Q.; Li, X.Y.; Li, X.J.; Zhou, R.Y.; Chen, X.Y.; Tao, C.Y. Integrated analysis of miRNA–mRNA interaction in ovaries of Turpan Black Sheep during follicular and luteal phases. Reprod. Domest. Anim. 2021, 56, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Wen, M.; Shen, Y.; Shi, S.H.; Tang, T. miREvo: An integrative microRNA evolutionary analysis platform for next-generation sequencing experiments. BMC Bioinform. 2012, 13, 140. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, R.; Bernhart, S.H.; Siederdissen, C.H.Z.; Tafer, H.; Flamm, C.; Stadler, P.F.; Hofacker, I.L. ViennaRNA Package 2.0. Algorithms Mol. Biol. 2011, 6, 26. [Google Scholar] [CrossRef]
- Friedländer, M.R.; Mackowiak, S.D.; Li, N.; Chen, W.; Rajewsky, N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012, 40, 37–52. [Google Scholar] [CrossRef] [Green Version]
- Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol. 2010, 11, R14. [Google Scholar] [CrossRef] [Green Version]
- Xie, C.; Mao, X.Z.; Huang, J.J.; Ding, Y.; Wu, J.M.; Dong, S.; Kong, L.; Gao, G.; Li, C.Y.; Wei, L. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011, 39, W316–W322. [Google Scholar] [CrossRef]
- John, B.; Enright, A.J.; Aravin, A.; Tuschl, T.; Sander, C.; Marks, D.S. Human MicroRNA Targets. PLoS Biol. 2004, 2, e363. [Google Scholar] [CrossRef] [Green Version]
- Krüger, J.; Rehmsmeier, M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 2006, 34, W451–W454. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.W.; Xu, H.R.; Li, Y.J.; Liu, H.Y.; Zhao, J.; Lu, W.F.; Wang, J. Kisspeptin-10 promotes progesterone synthesis in bovine ovarian granulosa cells via downregulation of microRNA-1246. Genes 2022, 13, 298. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.P.; Li, Z.H.; Zhong, Y.Y.; Li, Q.Q.; Wang, J.Y.; Zhang, H.; Yuan, X.L.; Li, J.Q.; Zhang, Z. KISS1 suppresses apoptosis and stimulates the synthesis of E2 in porcine ovarian granulosa cells. Animals 2019, 9, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, C.C.V.; Fatsini, E.; Fernández, I.; Anjos, C.; Chauvigné, F.; Cerdà, J.; Mjelle, R.; Fernandes, J.M.O.; Cabrita, E. Kisspeptin influences the reproductive axis and circulating levels of microRNAs in senegalese sole. Int. J. Mol. Sci. 2020, 21, 9051. [Google Scholar] [CrossRef]
- Kim, H.R.; Kim, Y.S.; Yoon, J.A.; Yang, S.C.; Park, M.; Seol, D.W.; Lyu, S.W.; Jun, J.H.; Lim, H.J.; Lee, D.R.; et al. Estrogen induces EGR1 to fine-tune its actions on uterine epithelium by controlling PR signaling for successful embryo implantation. FASEB J. 2018, 32, 1184–1195. [Google Scholar] [CrossRef] [Green Version]
- Yoshino, M.; Mizutani, T.; Yamada, K.; Tsuchiya, M.; Minegishi, T.; Yazawa, T.; Kawata, H.; Sekiguchi, T.; Kajitani, T.; Miyamoto, K. Early growth response Gene-1 regulates the expression of the rat luteinizing hormone receptor gene. Biol. Reprod. 2002, 66, 1813–1819. [Google Scholar] [CrossRef] [Green Version]
- Kemilainen, H.; Adam, M.; Jouppila, J.M.; Damdimopoulou, P.; Damdimopoulos, A.E.; Kere, J.; Hovatta, O.; Laajala, T.D.; Aittokallio, T.; Adamski, J.; et al. The hydroxysteroid (17β) dehydrogenase family gene HSD17B12 is involved in the prostaglandin synthesis pathway, the ovarian function, and regulation of fertility. Endocrinology 2016, 157, 3719–3730. [Google Scholar] [CrossRef] [Green Version]
- Samardzija, D.; Majkic, K.P.; Fa, S.; Glisic, B.; Stanic, B.; Andric, N. Atrazine blocks ovulation via suppression of Lhr and Cyp19a1 mRNA and estradiol secretion in immature gonadotropin-treated rats. Reprod. Toxicol. 2016, 61, 10–18. [Google Scholar] [CrossRef]
- Christou, M.; Savas, U.; Schroeder, S.; Shen, X.; Thompson, T.; Gould, M.N.; Jefcoate, C.R. Cytochromes CYP1A1 and CYP1B1 in the rat mammary gland: Cell-specific expression and regulation by polycyclic aromatic hydrocarbons and hormones. Mol. Cell Endocrinol. 1995, 115, 41–50. [Google Scholar] [CrossRef]
- Bailey, L.R.; Roodi, N.; Dupont, W.D.; Parl, F.F. Association of cytochrome P450 1B1 (CYP1B1) polymorphism with steroid receptor status in breast cancer. Cancer Res. 1998, 58, 5038–5041. [Google Scholar] [PubMed]
- Gebert, L.F.R.; MacRae, I.J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 2019, 20, 21–37. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Q.; Hu, Y.L.; Xu, L.; Jiang, Y.; Zhang, C.X.; Ding, L.J.; Jiang, R.W.; Sun, J.X.; Sun, H.X.; et al. miR-181a increases FoxO1 acetylation and promotes granulosa cell apoptosis via SIRT1 downregulation. Cell Death Dis. 2017, 8, e3088. [Google Scholar] [CrossRef] [Green Version]
- Yao, L.H.; Li, M.Y.; Hu, J.W.; Wang, W.S.; Gao, M.Z. MiRNA-335-5p negatively regulates granulosa cell proliferation via SGK3 in PCOS. Reproduction 2018, 156, 439–449. [Google Scholar] [CrossRef] [Green Version]
- Shukla, A.; Dahiya, S.; Onteru, S.K.; Singh, D. Differentially expressed miRNA-210 during follicular-luteal transition regulates pre-ovulatory granulosa cell function targeting HRas and EFNA3. J. Cell. Biochem. 2018, 119, 7934–7943. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.D.; Zhang, Y.H.; Ling, Y.H.; Liu, Y.; Cao, H.G.; Yin, Z.J.; Ding, J.P.; Zhang, X.R. Characterization and differential expression of microRNAs in the ovaries of pregnant and non-pregnant goats (Capra hircus). BMC Genomics 2013, 14, 157. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Liu, W.M.; Chiu, P.C.N.; Yeung, W.S.B. Mir-let-7a/g enhances uterine receptivity via suppressing Wnt/beta-Catenin under the modulation of ovarian hormones. Reprod. Sci. 2020, 27, 1164–1174. [Google Scholar] [CrossRef]
- Sirotkin, A.V.; Ovcharenko, D.; Grossmann, R.; Laukova, M.; Mlyncek, M. Identification of microRNAs controlling human ovarian cell steroidogenesis via a genome-scale screen. J. Cell. Physiol. 2009, 219, 415–420. [Google Scholar] [CrossRef]
- Lu, N.H.; Wei, C.Y.; Qi, F.Z.; Gu, J.Y. Hsa-let-7b suppresses cell proliferation by targeting UHRF1 in melanoma. Cancer Invest. 2020, 38, 52–60. [Google Scholar] [CrossRef]
- Li, H.; Fang, Z.; Yuan, B.; Ma, S.L.; Li, A.J.; Zhou, W.P.; Zhang, Y.J.; Yin, L. MicroRNA let-7b inhibits cell proliferation via upregulation of p21 in hepatocellular carcinoma. Cell Biosci. 2020, 10, 83. [Google Scholar]
- Tu, J.J.; Yang, Y.Z.; Hung, A.C.H.; Chen, Z.J.; Chan, W.Y. Conserved miR-10 family represses proliferation and induces apoptosis in ovarian granulosa cells. Sci. Rep. 2017, 7, 41304. [Google Scholar]
- Gao, H.H.; Wen, H.; Cao, C.C.; Dong, D.Q.; Yang, C.H.; Xie, S.S.; Zhang, J.; Huang, X.B.; Huang, X.X.; Yuan, S.Q.; et al. Overexpression of microRNA-10a in germ cells causes male infertility by targeting Rad51 in mouse and human. Front. Physiol. 2019, 10, 765. [Google Scholar] [CrossRef]
- Guo, T.Y.; Zhang, J.B.; Yao, W.; Du, X.; Li, Q.Q.; Huang, L.; Ma, M.L.; Li, Q.F.; Liu, H.L.; Pan, Z.X. CircINHA resists granulosa cell apoptosis by upregulating CTGF as a ceRNA of miR-10a-5p in pig ovarian follicles. Biochim. Biophys. Acta. Gene. Regul. Mech. 2019, 1862, 194420. [Google Scholar] [CrossRef] [PubMed]
- Sirotkin, A.V.; Lauková, M.; Ovcharenko, D.; Brenaut, P.; Mlyncek, M. Identification of MicroRNAs controlling human ovarian cell proliferation and apoptosis. J. Cell. Physiol. 2010, 223, 49–56. [Google Scholar] [CrossRef]
- Yuan, H.; Lu, J.; Xiao, S.Y.; Han, X.Y.; Song, X.T.; Qi, M.Y.; Liu, G.S.; Yang, C.X.; Yao, Y.C. miRNA expression analysis of the sheep follicle during the prerecruitment, dominant, and mature stages of development under FSH stimulation. Theriogenology 2022, 181, 161–169. [Google Scholar] [CrossRef]
- Liu, J.; Singh, A. Induction of LDL receptor mRNA degradation factor HNRNPD contributes to the cholesterol-mediated suppression of liver LDL receptor expression. Atherosclerosis 2014, 235, e11–e26. [Google Scholar] [CrossRef]
- Oriá, R.B.; Almeida, J.Z.D.; Moreira, C.N.; Guerrant, R.L.; Figueiredo, J.R. Apolipoprotein E effects on mammalian ovarian steroidogenesis and human fertility. Trends Endocrinol. Metab. 2020, 31, 872–883. [Google Scholar] [CrossRef]
- Yang, S.L.; Guan, H.Q.; Yang, H.B.; Chen, Y.; Huang, X.Y.; Chen, L.; Shen, Z.F.; Wang, L.X. The expression and biological effect of NR2F6 in non-small cell lung cancer. Front. Oncol. 2022, 12, 940234. [Google Scholar] [CrossRef]
- Yu, S.F.; Ruan, X.L.; Liu, X.B.; Zhang, F.F.; Wang, D.; Liu, Y.H.; Yang, C.Q.; Shao, L.Q.; Liu, Q.S.; Zhu, L.; et al. HNRNPD interacts with ZHX2 regulating the vasculogenic mimicry formation of glioma cells via linc00707/miR-651-3p/SP2 axis. Cell Death Dis. 2021, 12, 153. [Google Scholar] [CrossRef]
- Lee, S.L.; Sadovsky, Y.; Swirnoff, A.H.; Polish, J.A.; Goda, P.; Gavrilina, G.; Milbrandt, J. Luteinizing hormone deficiency and female infertility in mice lacking the transcription factor NGFI-A (Egr-1). Science 1996, 273, 1219–1221. [Google Scholar] [CrossRef]
- Li, L.C.; Ameri, A.H.; Wang, S.; Jansson, K.H.; Casey, O.M.; Yang, Q.; Beshiri, M.L.; Fang, L.; Lake, R.G.; Agarwal, S.; et al. EGR1 regulates angiogenic and osteoclastogenic factors in prostate cancer and promotes metastasis. Oncogene 2019, 38, 6241–6255. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.G.; Zheng, J.F.; Li, Q.; Bao, S.Y.; Yu, X.F.; Xu, P.; Liao, C.X. MicroRNA-181a-5p suppresses cell proliferation by targeting Egr1 and inhibiting Egr1/TGF-β/Smad pathway in hepatocellular carcinoma. Int. J. Biochem. Cell Biol. 2019, 106, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Jepsen, M.R.; Kløverpris, S.; Bøtkjar, J.A.; Wissing, M.L.; Andersen, C.Y.; Oxvig, C. The proteolytic activity of pregnancy-associated plasma protein-A is potentially regulated by stanniocalcin-1 and -2 during human ovarian follicle development. Hum. Reprod. 2016, 31, 866–874. [Google Scholar] [CrossRef] [PubMed]
Name | GenBank | Sequence (5′→3′) | Tm/°C | Length/bp |
---|---|---|---|---|
β-actin | KU365062.1 | F: GGCATTCACGAAACTACCTTC R: ATCTCTTTCTGCATCCTGTCTG | 60 °C | 134 |
RPL37 | XM_004017021.1 | F: GGGAACGTCATCGTTTGG R: TGCCTGAATCTGCGGTAT | 60 °C | 219 |
ATP6V0C | NM_001009195.1 | F: CCTACGGGACAGCCAAGAG R: TGAGGACTGCCACCACCAG | 60 °C | 135 |
ERH | XM_004010751.4 | F: CGCTGACTATGAATCTGT R: GCTGGTATGTCTGGGTAT | 60 °C | 185 |
SEC61G | XR_006056971.1 | F: GGGCGTCTGTCGGCTCTTGT R: GCGGCTCTGAGTCAGCTTTCC | 60 °C | 181 |
NPM1 | XM_027979982.2 | F: CTGGAGCAAAGGATGAGT R: TCAAAGTCGCCAGTGTTA | 60 °C | 87 |
RPS24 | XM_004021510.4 | F: TGGCTTCGGCATGATTTA R: GTTCTTGCGTTCCTTTCG | 60 °C | 127 |
U6 | NR_138085.1 | F: CTCGCTTCGGCAGCACA R: AACGCTTCACGAATTTGCGT | 60 °C | 94 |
oar-miR-16b | NR_107949.1 | F: CGGGCTAGCAGCACGTAA R: CAGCCACAAAAGAGCACAAT | 60 °C | 65 |
oar-let-7c | HE600003.1 | F: CGGGCTGAGGTAGTAGGTTG R: CAGCCACAAAAGAGCACAAT | 60 °C | 65 |
oar-let-7a | HE599994.1 | F: CGGGCTGAGGTAGTAGGTTG R: CAGCCACAAAAGAGCACAAT | 60 °C | 65 |
oar-miR-148a | HE599922.1 | F: CGGGCTCAGTGCACTACAGA R: CAGCCACAAAAGAGCACAAT | 60 °C | 65 |
oar-let-7d | HE599918.1 | F: CGGGCAGAGGTAGTAGGT R: CAGCCACAAAAGAGCACAAT | 60 °C | 65 |
oar-miR-10a | HE599840.1 | F: CGGGCTACCCTGTAGATCC R: CAGCCACAAAAGAGCACAAT | 60 °C | 65 |
novel_621 | -- | F: CGGGCCAGGATTAACCAGAGG R: CAGCCACAAAAGAGCACAAT | 60 °C | 65 |
Sample | Total Mapped | Multiple Mapped | Uniquely Mapped |
---|---|---|---|
MC1 | 49,047,802 (84.32%) | 3,107,292 (5.34%) | 45,940,510 (78.98%) |
MC2 | 57,264,742 (89.5%) | 3,741,509 (5.85%) | 53,523,233 (83.66%) |
MC3 | 65,128,932 (89.63%) | 4,434,166 (6.1%) | 60,694,766 (83.52%) |
MC4 | 55,498,882 (90.15%) | 3,800,007 (6.17%) | 51,698,875 (83.98%) |
MT1 | 56,304,168 (90.55%) | 3,989,488 (6.42%) | 52,314,680 (84.13%) |
MT2 | 55,612,293 (89.91%) | 3,790,133 (6.13%) | 51,822,160 (83.78%) |
MT3 | 53,071,271 (89.53%) | 3,392,251 (5.72%) | 49,679,020 (83.81%) |
MT4 | 54,125,070 (88.98%) | 3,394,546 (5.58%) | 50,730,524 (83.4%) |
Sample | Total | rRNA | snRNA | snoRNA | tRNA |
---|---|---|---|---|---|
MC | 1,763,919 | 1315 (0.75%) | 94 (0.00%) | 298 (0.02%) | 1801 (0.10%) |
MT | 1,234,441 | 1379 (0.11%) | 102 (0.00%) | 450 (0.04%) | 2207 (0.12%) |
GO Accession | Term Type | GO Entries | p-Value | Type |
---|---|---|---|---|
GO:0043603 | Biological process | Cellular amide metabolic process | 6.11 × 10−8 | DEGs |
GO:0043604 | Amide biosynthetic process | 7.36 × 10−8 | ||
GO:0006518 | Peptide metabolic process | 2.02 × 10−7 | ||
GO:0043043 | Peptide biosynthetic process | 3.63 × 10−7 | ||
GO:0006412 | Translation | 7.89 × 10−7 | ||
GO:1901566 | Organo nitrogen compound biosynthetic process | 6.00 × 10−6 | ||
GO:0005840 | Cellular component | Ribosome | 5.10 × 10−7 | |
GO:1990904 | Ribonucleoprotein complex | 2.09 × 10−6 | ||
GO:0043228 | Non-membrane-bounded organelle | 1.01 × 10−5 | ||
GO:0043232 | Intracellular Non-membrane-bounded organelle | 1.01 × 10−5 | ||
GO:0036510 | Biological process | Trimming of terminal mannose on C branch | 8.28 × 10−4 | DEmiRNAs |
GO:0098758 | Response to interleukin-8 | 8.47 × 10−4 | ||
GO:0098759 | Cellular response to interleukin-8 | 8.47 × 10−4 | ||
GO:2000182 | Regulation of progesterone biosynthetic process | 8.47 × 10−4 | ||
GO:0097167 | Circadian regulation of translation | 1.69 × 10−3 | ||
GO:0006701 | Progesterone biosynthetic process | 1.69 × 10−3 | ||
GO:0060086 | Circadian temperature homeostasis | 1.69 × 10−3 | ||
GO:0097494 | Regulation of vesicle size | 2.30 × 10−3 | ||
GO:0003924 | Molecular function | GTPase activity | 1.30 × 10−3 | |
GO:0008270 | Zinc ion binding | 1.65 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, T.; Kang, X.; Yang, C.; Mei, S.; Wei, S.; Guo, X.; Ma, Z.; Shi, Y.; Chu, Y.; Dan, X. Integrative Analysis of miRNA-mRNA in Ovarian Granulosa Cells Treated with Kisspeptin in Tan Sheep. Animals 2022, 12, 2989. https://doi.org/10.3390/ani12212989
Dai T, Kang X, Yang C, Mei S, Wei S, Guo X, Ma Z, Shi Y, Chu Y, Dan X. Integrative Analysis of miRNA-mRNA in Ovarian Granulosa Cells Treated with Kisspeptin in Tan Sheep. Animals. 2022; 12(21):2989. https://doi.org/10.3390/ani12212989
Chicago/Turabian StyleDai, Tianshu, Xiaolong Kang, Chaoyun Yang, Shan Mei, Shihao Wei, Xingru Guo, Ziming Ma, Yuangang Shi, Yuankui Chu, and Xingang Dan. 2022. "Integrative Analysis of miRNA-mRNA in Ovarian Granulosa Cells Treated with Kisspeptin in Tan Sheep" Animals 12, no. 21: 2989. https://doi.org/10.3390/ani12212989
APA StyleDai, T., Kang, X., Yang, C., Mei, S., Wei, S., Guo, X., Ma, Z., Shi, Y., Chu, Y., & Dan, X. (2022). Integrative Analysis of miRNA-mRNA in Ovarian Granulosa Cells Treated with Kisspeptin in Tan Sheep. Animals, 12(21), 2989. https://doi.org/10.3390/ani12212989