Does Antioxidant Mitoquinone (MitoQ) Ameliorate Oxidative Stress in Frozen–Thawed Rooster Sperm?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Animals
2.3. Semen Collection and Evaluation
2.4. Semen Processing and Sperm Cryopreservation
2.5. Sperm Concentration and Morphology Assessment
2.6. Sperm Motility and Viability
2.7. Plasma Membrane and Acrosome Integrities
2.8. Acrosome Integrity
2.9. Mitochondrial Activity
2.10. Adenosine Triphosphate (ATP) Concentration
2.11. ROS Level
2.12. Superoxide Dismutase (SOD) Activity
2.13. Malondialdehiyde (MDA) Concentration
2.14. Glutathione Peroxidase (GPx) Activity
2.15. Caspase 3 (Cas-3) Activity
2.16. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Santiago-Moreno, J.; Blesbois, E. Functional aspects of seminal plasma in bird reproduction. Int. J. Mol. Sci. 2020, 21, 5664. [Google Scholar] [CrossRef] [PubMed]
- ÇİFTCİ, H.B.; AYGÜN, A. Poultry semen cryopreservation technologies. Worlds Poult. Sci. J. 2018, 74, 699–710. [Google Scholar] [CrossRef]
- Sun, L.W.; He, M.Q.; Wu, C.F.; Zhang, S.S.; Dai, J.J.; Zhang, D.F. Beneficial influence of soybean lecithin nanoparticles on rooster frozen-thawed semen quality and fertility. Animals 2021, 13, 1769. [Google Scholar] [CrossRef] [PubMed]
- Thurston, R.J.; Hess, R.A. Ultrastructure of spermatozoa from domesticated birds: Comparative study of turkey, chicken and guinea fowl. Scanning Microsc. 1987, 1, 1829–1838. [Google Scholar] [PubMed]
- Mehdipour, M.; Kia, H.D.; Martínez-Pastor, F. Poloxamer 188 exerts a cryoprotective effect on rooster sperm and allows decreasing glycerol concentration in the freezing extender. Poult. Sci. 2020, 99, 6212–6220. [Google Scholar] [CrossRef]
- Kumar, P.; Wang, M.; Isachenko, E.; Rahimi, G.; Mallmann, P.; Wang, W.; von Brandenstein, M.; Isachenko, V. Unraveling subcellular and ultrastructural changes during vitrification of human spermatozoa: Effect of a mitochondria-targeted antioxidant and a permeable cryoprotectant. Front. Cell Dev. Biol. 2021, 9, 672862. [Google Scholar] [CrossRef]
- Smith, R.A.; Murphy, M.P. Animal and human studies with the mitochondria-targeted antioxidant mitoq. Ann. N. Y. Acad. Sci. 2010, 1201, 96–103. [Google Scholar] [CrossRef]
- Piscianz, E.; Tesser, A.; Rimondi, E.; Melloni, E.; Marcuzzi, A. Mitoq is able to modulate apoptosis and inflammation. Int. J. Mol. Sci. 2021, 22, 4753. [Google Scholar] [CrossRef]
- Fang, L.; Bai, C.L.; Chen, Y.H.; Dai, J.; Xiang, Y.; Ji, X.P.; Huang, C.J.; Dong, Q.X. Inhibition of ROS production through mitochondria-targeted antioxidant and mitochondrial uncoupling increases post-thaw sperm viability in yellow catfish. Cryobiology 2014, 69, 386–393. [Google Scholar] [CrossRef]
- Cmara, D.R.; Ibanescu, I.; Siuda, M.; Bollwein, H. Mitoquinone does not improve sperm cryo-resistance in bulls. Reprod. Domest. Anim. 2022, 57, 10–18. [Google Scholar] [CrossRef]
- Burrows, W.H.; Quinn, J.P. The collection of spermatozoa from the domestic fowl and turkey. Poult. Sci. 1937, 16, 19–24. [Google Scholar] [CrossRef]
- Ye, N.; Lv, Z.; Dai, H.; Huang, Z.; Shi, F. Dietary alpha-lipoic acid supplementation improves spermatogenesis and semen quality via antioxidant and anti-apoptotic effects in aged breeder roosters. Theriogenology 2021, 1, 159. [Google Scholar] [CrossRef]
- Masoudi, R.; Sharafi, M.; Shahneh, A.Z. Effects of coq10 on the quality of ram sperm during cryopreservation in plant and animal based extenders. Anim. Reprod. Sci. 2019, 208, 106103. [Google Scholar] [CrossRef] [PubMed]
- Appiah, M.O.; Li, W.; Zhao, J.; Liu, H.; Lu, W. Quercetin supplemented casein-based extender improves the post-thaw quality of rooster semen. Cryobiology 2020, 94, 57–65. [Google Scholar] [CrossRef]
- Appiah, M.O.; He, B.B.; Lu, W.F.; Wang, J. Antioxidative effect of melatonin on cryopreserved chicken semen. Cryobiology 2019, 89, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Thananurak, P.; Chuaychu-Noo, N.; Thélie, A.; Phasuk, Y.; Vongpralub, T.; Blesbois, E. Different concentrations of cysteamine, ergothioneine, and serine modulate quality and fertilizing ability of cryopreserved chicken sperm—Sciencedirect. Poult. Sci. 2020, 99, 1185–1198. [Google Scholar] [CrossRef] [PubMed]
- Salih, S.A.; Kia, H.D.; Mehdipour, M.; Najafi, A. Does ergothioneine and thawing temperatures improve rooster semen post-thawed quality? Poult. Sci. 2021, 100, 101405. [Google Scholar] [CrossRef]
- Sowińska, M.; Paukszto, U.; Jastrzbski, J.P.; Bukowska, J.; Ciereszko, A. Transcriptome analysis of turkey (meleagris gallopavo) reproductive tract revealed key pathways regulating spermatogenesis and post-testicular sperm maturation. Poult. Sci. 2020, 99, 6094–6118. [Google Scholar] [CrossRef]
- Najafi, D.; Taheri, R.A.; Najafi, A.; Shamsollahi, M.; Alvarez-Rodriguez, M. Effect of astaxanthin nanoparticles in protecting the post-thawing quality of rooster sperm challenged by cadmium administration. Poult. Sci. 2020, 99, 1678–1686. [Google Scholar] [CrossRef]
- Holt, W.V.; O"Brien, J.; Abaigar, T. Applications and interpretation of computer-assisted sperm analyses and sperm sorting methods in assisted breeding and comparative research. Reprod. Fertil. Dev. 2007, 19, 709–718. [Google Scholar] [CrossRef]
- El-Khawagah, A.; Kandiel, M.; Samir, H. Effect of quercetin supplementation in extender on sperm kinematics, extracellular enzymes release, and oxidative stress of egyptian buffalo bulls frozen–thawed semen. Front. Vet. Sci. 2020, 7, 604460. [Google Scholar] [CrossRef] [PubMed]
- Najafi, A.; Taheri, R.A.; Mehdipour, M.; Farnoosh, G.; Martínez-Pastor, F. Lycopene-loaded nanoliposomes improve the performance of a modified beltsville extender broiler breeder roosters. Anim. Reprod. Sci. 2018, 195, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Vaithiyanathan, V.; Mirunalini, S. Assessment of antioxidant potential and acute toxicity studies of whole plant extract of pergularia daemia (forsk). Toxicol. Int. 2015, 22, 54–60. [Google Scholar]
- Winters, R.A.; Hamilton, D.N.; Bhatnagar, A.S.; Fitzgerald, R.; Bovin, N.; Miller, D.J. Porcine sperm binding to oviduct cells and glycans as supplements to traditional laboratory semen analysis. J. Anim. Sci. 2018, 96, 5265–5275. [Google Scholar] [CrossRef]
- Holt, C.; Holt, W.V.; Moore, H.; Reed, H.; Curnock, R.M. Objectively measured boar sperm motility parameters correlate with the outcomes of on-farm inseminations: Results of two fertility trials. J. Androl. 1997, 18, 312–323. [Google Scholar] [PubMed]
- Larsen, L.; Scheike, T.; Jensen, T.K.; Bonde, J.P.; Ernst, E.; Hjollund, N.H.; Zhou, Y.; Skakkebaek, N.E.; Giwercman, A. Computer-assisted semen analysis parameters as predictors for fertility of men from the general population. The danish first pregnancy planner study team. Hum. Reprod. 2000, 15, 1562–1567. [Google Scholar] [CrossRef] [Green Version]
- Noh, S.; Go, A.; Kim, D.B.; Park, M.; Jeon, H.W.; Kim, B. Role of antioxidant natural products in management of infertility: A review of their medicinal potential. Antioxidants 2020, 9, 957. [Google Scholar] [CrossRef]
- Wiland, E.; Fraczek, M.; Olszewska, M.; Kurpisz, M. Topology of chromosome centromeres in human sperm nuclei with high levels of DNA damage. Sci. Rep. 2016, 6, 31614. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.L.; Manczak, M.; Reddy, P.H. Mitochondria-targeted molecules mitoq and ss31 reduce mutant huntingtin-induced mitochondrial toxicity and synaptic damage in huntington’s disease. Hum. Mol. Genet. 2016, 25, 1739–1753. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Lone, S.A.; Prasad, J.K.; Jan, M.H.; Ghosh, S.K. Effect of egg yolk powder on freezability of murrah buffalo (bubalus bubalis) semen. Vet. World. 2016, 9, 601–604. [Google Scholar] [CrossRef] [Green Version]
- Masoudi, R.; Sharafi, M.; Shahneh, A.Z.; Kohram, H.; Nejati-Amiri, E.; Karimi, H.; Khodaei-Motlagh, M.; Shahverdi, A. Supplementation of extender with coenzyme q10 improves the function and fertility potential of rooster spermatozoa after cryopreservation. Anim. Reprod. Sci. 2018, 198, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Bouayed, J.; Bohn, T. Exogenous antioxidants--double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid. Med. Cell Longev. 2010, 3, 228–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, V.A.; Klein, S.R.; Bonar, S.J.; Zielonka, J.; Shacter, E. The antioxidant transcription factor Nrf2 negatively regulates autophagy and growth arrest induced by the anticancer redox agent mitoquinone. J. Biol. Chem. 2010, 285, 34447–34459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, C.; Hatayama, N.; Ogawa, T.; Nanizawa, E.; Otsuka, S.; Hata, K.; Seno, H.; Naito, M.; Hirai, S. Cardioprotection via metabolism for rat heart preservation using the high-pressure gaseous mixture of carbon monoxide and oxygen. Int. J. Mol. Sci. 2020, 21, 8858. [Google Scholar] [CrossRef] [PubMed]
- Li, X.C.; Chen, B.; Xie, H.; He, Y.H.; Zhong, D.W.; Chen, D.F. Antioxidant structure–activity relationship analysis of five dihydrochalcones. Molecules 2018, 23, 1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taheri Moghadam, M.; Asadi Fard, Y.; Saki, G.; Nikbakht, R. Effect of vitamin d on apoptotic marker, reactive oxygen species and human sperm parameters during the process of cryopreservation. Iran. J. Basic.Med. Sci. 2019, 22, 1036–1043. [Google Scholar] [PubMed]
- Hu, Q.Y.; Ren, J.N.; Li, G.W.; Wu, J.; Wu, X.W.; Wang, G.F.; Gu, G.S.; Ren, H.J.; Hong, Z.W.; Li, J.S. The mitochondrially targeted antioxidant MitoQ protects the intestinal barrier by ameliorating mitochondrial DNA damage via the Nrf2/ARE signaling pathway. Cell Death Dis. 2018, 14, 403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Z.; Xu, H.; Wang, X.; Liu, Z. Lactobacillus raises in vitro anticancer effect of geniposide in HSC-3 human oral squamous cell carcinoma cells. Exp. Ther. Med. 2017, 14, 4586–4594. [Google Scholar] [CrossRef] [PubMed]
Items (Unit) | Concentrations 1 | ||||
---|---|---|---|---|---|
M0 (Controls) | M50 (50 nM) | M100 (100 nM) | M150 (150 nM) | M200 (200 nM) | |
MOT (%) | 52.56 ± 1.42 b | 51.80 ± 2.77 b | 58.14 ± 1.95 b | 62.93 ± 1.26 a | 45.01 ± 3.09 c |
PMOT (%) | 45.28 ± 2.81 b | 42.18 ± 1.06 c | 50.39 ± 2.63 b | 56.71 ± 0.98 a | 38.11 ± 2.99 c |
VAP (µm/s) | 90.17 ± 1.88 | 88.47 ± 2.36 | 91.47 ± 0.85 | 90.63 ± 2.52 | 89.78 ± 2.36 |
VSL (µm/s) | 32.12 ± 2.41 | 30.16 ± 3.10 | 40.87 ± 2.35 | 44.15 ± 2.31 | 43.02 ± 2.19 |
VCL (µm/s) | 77.61 ± 6.28 | 74.75 ± 7.17 | 86.40 ± 8.70 | 85.11 ± 5.96 | 76.55 ± 7.18 |
ALH (µm) | 6.15 ± 1.28 | 6.22 ± 0.87 | 7.55 ± 1.18 | 7.92 ± 0.63 | 6.11 ± 1.16 |
BCF (Hz) | 22.16 ± 3.16 c | 25.70 ± 2.52 c | 30.83 ± 1.09 b | 34.95 ± 1.18 a | 28.57 ± 4.06 c |
STR (%) | 34.47 ± 2.63 b | 35.34 ± 1.98 b | 44.28 ± 2.16 a | 48.46 ± 3.69 a | 46.13 ± 1.17 a |
ALIN (%) | 43.67 ± 1.82 c | 41.66 ± 1.89 c | 46.32 ± 1.05 b | 54.49 ± 2.15 a | 50.56 ± 2.06 b |
Items (Unit) | Concentrations 1 | ||||
---|---|---|---|---|---|
M0 | M50 | M100 | M150 | M200 | |
Viability (%) | 44.26 ± 4.15 b | 50.57 ± 3.66 b | 54.14 ± 2.47 ab | 59.21 ± 2.78 a | 51.58 ± 1.82 b |
Membrane integrity (%) | 39.94 ± 3.70 c | 47.17 ± 2.08 b | 52.02 ± 3.95 a | 56.11 ± 2.18 a | 46.23 ± 3.06 b |
Acrosome integrity (%) | 39.49 ± 1.57 c | 47.19 ± 1.99 b | 49.46 ± 1.83 b | 54.10 ± 1.84 a | 45.86 ± 2.67 b |
Mitochondrial activity (%) | 44.14 ± 1.20 c | 45.38 ± 2.31 b | 52.56 ± 1.46 b | 57.97 ± 1.26 a | 47.11 ± 2.50 c |
ATP (nM/107 spermatozoa) | 2.55 ± 0.24 c | 2.68 ± 0.15 c | 3.50 ± 0.44 a | 3.38 ± 0.32 a | 3.11 ± 0.2 ab |
Items (Unit) | Concentrations 1 | ||||
---|---|---|---|---|---|
M0 (Controls) | M50 (50 nM) | M100 (100 nM) | M150 (150 nM) | M200 (200 nM) | |
ROS | 0.75 ± 0.05 b | 0.70 ± 0.10 b | 0.69 ± 0.04 b | 0.64 ± 0.06 c | 0.78 ± 0.07 a |
SOD (U/mL) | 133.74 ± 16.40 d | 178.96 ± 5.13 c | 190.33 ± 4.39 b | 216.25 ± 10.33 a | 146.89 ± 10.78 d |
MDA (mM) | 8.89 ± 0.59 a | 8.10 ± 0.25 a | 7.46 ± 0.13 b | 6.86 ± 0.28 c | 7.90 ± 0.41 a |
GPx (U/L) | 98.28 ± 10.25 b | 106.74 ± 8.40 b | 115.94 ± 5.30 b | 128.62 ± 6.44 a | 110.33 ± 7.63 b |
Cas-3 (OD. 450 nm) | 0.16 ± 0.02 a | 0.12 ± 0.02 b | 0.09 ± 0.01 b | 0.06 ± 0.01 c | 0.08 ± 0.01 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; He, M.; Xu, J.; Wu, C.; Zhang, S.; Zhang, D.; Dai, J.; Gao, J. Does Antioxidant Mitoquinone (MitoQ) Ameliorate Oxidative Stress in Frozen–Thawed Rooster Sperm? Animals 2022, 12, 3181. https://doi.org/10.3390/ani12223181
Sun L, He M, Xu J, Wu C, Zhang S, Zhang D, Dai J, Gao J. Does Antioxidant Mitoquinone (MitoQ) Ameliorate Oxidative Stress in Frozen–Thawed Rooster Sperm? Animals. 2022; 12(22):3181. https://doi.org/10.3390/ani12223181
Chicago/Turabian StyleSun, Lingwei, Mengqian He, Jiehuan Xu, Caifeng Wu, Shushan Zhang, Defu Zhang, Jianjun Dai, and Jun Gao. 2022. "Does Antioxidant Mitoquinone (MitoQ) Ameliorate Oxidative Stress in Frozen–Thawed Rooster Sperm?" Animals 12, no. 22: 3181. https://doi.org/10.3390/ani12223181
APA StyleSun, L., He, M., Xu, J., Wu, C., Zhang, S., Zhang, D., Dai, J., & Gao, J. (2022). Does Antioxidant Mitoquinone (MitoQ) Ameliorate Oxidative Stress in Frozen–Thawed Rooster Sperm? Animals, 12(22), 3181. https://doi.org/10.3390/ani12223181