Longitudinal Analysis of Variability in Fecal Glucocorticoid Metabolite Concentrations in Three Orangutans (Pongo pygmaeus pygmaeus and Pongo pygmaeus abelii) before, during, and after Transition from a Regular Habitat Environment to Temporary Housing in Indoor Holding Facilities
Abstract
:Simple Summary
Abstract
1. Introduction
2. Study Animals and Methods
2.1. Animals and Facilities
2.2. Sample Collection and Steroid Extraction
2.3. Enzyme-Immunoassay (EIA)
2.4. Data Analysis
Habitat and Individual Differences
3. Results
3.1. General Descriptive Data
3.2. Habitat and Individual Differences
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fazio, J.M.; Freeman, E.W.; Bauer, E.; Rockwood, L.; Brown, J.L.; Hope, K.; Siegal-Willott, J.; Parsons, E.C.M. Longitudinal fecal hormone monitoring of adrenocortical function in zoo housed fishing cats (Prionailurus viverrinus) during institutional transfers and breeding introductions. PLoS ONE 2020, 15, e0230239. [Google Scholar] [CrossRef] [Green Version]
- Volfová, M.; Machovcová, Z.; Schwarzenberger, F.; Voslářová, E.; Bedáňová, I.; Večerek, V. The effects of transport stress on the behaviour and adrenocortical activity of the black-and-white ruffed lemur (Varecia variegata). Acta Vet. Brno 2019, 88, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Fanson, K.V.; Lynch, M.; Vogelnest, L.; Miller, G.; Keeley, T. Response to long-distance relocation in Asian elephants (Elephas maximus): Monitoring adrenocortical activity via serum, urine, and feces. Eur. J. Wildl. Res. 2013, 59, 655–664. [Google Scholar] [CrossRef]
- Mendonça, R.S.; Takeshita, R.S.C.; Kanamori, T.; Kuze, N.; Hayashi, M.; Kinoshita, K.; Bernard, H.; Matsuzawa, T. Behavioral and physiological changes in a juvenile Bornean orangutan after a wildlife rescue. Glob. Ecol. Conserv. 2016, 8, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Takeshita, R.S.C.; Mendonça, R.S.; Bercovitch, F.B.; Huffman, M.A. Developmental changes in the endocrine stress response in orangutans (Pongo pygmaeus). J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2019, 189, 659–672. [Google Scholar] [CrossRef] [PubMed]
- Weingrill, T.; Willems, E.P.; Zimmermann, N.; Steinmetz, H.; Heistermann, M. Species-specific patterns in fecal glucocorticoid and androgen levels in zoo-living orangutans (Pongo spp.). Gen. Comp. Endocrinol. 2011, 172, 446–457. [Google Scholar] [CrossRef] [Green Version]
- Cocks, L.; Collier, J. The Transportation of Orangutans: Problems and Protocols. In The Orangutans; Kaplan, G., Rogers, L.J., Eds.; Basic Books: Cambridge, MA, USA, 2000; ISBN 0738202908. [Google Scholar]
- Volfova, M.; Machovcova, Z.; Voslarova, E.; Bedanova, I.; Vecerek, V. Comparison of the glucocorticoid concentrations between three species of Lemuridae Kept in a Temporary Housing Facility. Animals 2020, 10, 1013. [Google Scholar] [CrossRef] [PubMed]
- Great Ape Taxon Advisory Group. Orang Utan EEP Best Practice Guidelines 2018; Eurpean Association of Zoos and Aquaria: Amsterdam, The Netherlands, 2018. [Google Scholar]
- AZA Ape Taxon Advisory Group. Orangutan (Pongo) Care Manual; Association of Zoos and Aquariums: Silver Spring, MD, USA, 2017. [Google Scholar]
- Amrein, M.; Heistermann, M.; Weingrill, T.; Amrein, M.; Weingrill, T.; Heistermann, M. The Effect of Fission-Fusion Zoo Housing on Hormonal and Behavioral Indicators of Stress in Bornean Orangutans (Pongo pygmaeus). Int. J. Primatol. 2014, 35, 509–528. [Google Scholar] [CrossRef]
- Jacobs, R.M.; Ross, S.R.; Wagner, K.E.; Leahy, M.; Meiers, S.T.; Santymire, R.M. Evaluating the physiological and behavioral response of a male and female gorilla (Gorilla gorilla gorilla) during an introduction. Zoo Biol. 2014, 33, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Millspaugh, J.J.; Washburn, B.E. Use of fecal glucocorticoid metabolite measures in conservation biology research: Considerations for application and interpretation. Gen. Comp. Endocrinol. 2004, 138, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Bahr, N.I.; Palme, R.; Möhle, U.; Hodges, J.K.; Heistermann, M. Comparative Aspects of the Metabolism and Excretion of Cortisol in Three Individual Nonhuman Primates. Gen. Comp. Endocrinol. 2000, 117, 427–438. [Google Scholar] [CrossRef]
- Fuller, G.; Margulis, S.W.; Santymire, R. The effectiveness of indigestible markers for identifying individual animal feces and their prevalence of use in North American zoos. Zoo Biol. 2011, 30, 379–398. [Google Scholar] [CrossRef] [PubMed]
- Bryant, J.; Wielebnowski, N.C. Environmental impact on activity level and fecal glucocorticoid metabolite concentration of African elephants and black rhinoceros at brookfield zoo. Int. J. Avian Wildl. Biol. 2018, 3, 101–107. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Fanson, B.; Fanson, K.V. hormLong: An R package for longitudinal data analysis in wildlife endocrinology studies. PeerJ Prepr. 2015, 3, e1926. [Google Scholar] [CrossRef]
- Scarlata, C.D.; Elias, B.A.; Godwin, J.R.; Powell, R.A.; Shepherdson, D.; Shipley, L.A.; Brown, J.L. General and Comparative Endocrinology Characterizing gonadal and adrenal activity by fecal steroid analyses in pygmy rabbits (Brachylagus idahoensis). Gen. Comp. Endocrinol. 2011, 171, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.L.; Citino, S.B.; Shaw, J.; Miller, C. Endocrine profiles during the estrous cycle and pregnancy in the Baird’s tapir (Tapirus bairdii). Zoo Biol. 1994, 13, 107–117. [Google Scholar] [CrossRef]
- Shingala, M.C.; Rajyaguru, A. Comparison of post hoc tests for unequal variance. Int. J. New Technol. Sci. Eng. 2015, 2, 22–33. [Google Scholar]
- Fink, L.B.; Scarlata, C.D.; VanBeek, B.; Bodner, T.E.; Wielebnowski, N.C. Applying Behavioral and Physiological Measures to Assess the Relative Impact of the Prolonged COVID-19 Pandemic Closure on Two Mammal Species at the Oregon Zoo: Cheetah (A. jubatus) and Giraffe (G. c. reticulata and G. c. tippelskirchii). Animals 2021, 11, 3526. [Google Scholar] [CrossRef]
- Cockrem, J.F. Individual variation in glucocorticoid stress responses in animals. Gen. Comp. Endocrinol. 2013, 181, 45–58. [Google Scholar] [CrossRef]
- Razal, C.; Bryant, J.; Miller, L. Monitoring the behavioral and adrenal activity of giraffe (Giraffa camelopardalis) to assess welfare during seasonal housing changes. Anim. Behav. Cogn. 2017, 4, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Tingey, L. Post-Occupancy Evaluation at the Zoo: Behavioral and Hormonal Indicators of Welfare in Orangutans (Pongo Pygmaeus Abelii); Portland State University: Portland, OR, USA, 2000. [Google Scholar]
- Touma, C.; Palme, R. Measuring fecal glucocorticoid metabolites in mammals and birds: The importance of validation. Ann. N. Y. Acad. Sci. 2005, 1046, 54–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Göttert, T.; Grothmann, P.; Zeller, U. Faecal corticosterone responses of black rhinos (Diceros bicornis) to a transfer between housing facilities within a zoo. J. Zoo Aquar. Res. 2015, 3, 25–28. [Google Scholar] [CrossRef]
- Owen, Y.; Amory, J.R. A case study employing operant conditioning to reduce stress of capture for red-bellied tamarins (Saguinus labiatus). J. Appl. Anim. Welf. Sci. 2011, 14, 124–137. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Grandin, T.; Graffam, W.; Irlbeck, N.A.; Cambre, R.C. Crate conditioning of bongo (Tragelaphus eurycerus) for veterinary and husbandry procedures at the Denver Zoological Gardens. Zoo Biol. 1998, 17, 25–32. [Google Scholar] [CrossRef]
- Grandin, T. Habituating Antelope and Bison to Cooperate With Veterinary Procedures. J. Appl. Anim. Welf. Sci. 2000, 3, 253–261. [Google Scholar] [CrossRef]
- Miller, R.; King, C.E. Husbandry training, using positive reinforcement techniques, for Marabou stork Leptoptilos crumeniferus at Edinburgh Zoo. Int. Zoo Yearb. 2013, 47, 171–180. [Google Scholar] [CrossRef]
- Behringer, V.; Stevens, J.M.G.; Hohmann, G.; Möstl, E.; Selzer, D.; Deschner, T. Testing the effect of medical positive reinforcement training on salivary cortisol levels in bonobos and orangutans. PLoS ONE 2014, 9, e108664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spiezio, C.; Vaglio, S.; Scala, C.; Regaiolli, B. Does positive reinforcement training affect the behaviour and welfare of zoo animals? The case of the ring-tailed lemur (Lemur catta). Appl. Anim. Behav. Sci. 2017, 196, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Spiezio, C.; Piva, F.; Regaiolli, B.; Vaglio, S. Positive reinforcement training: A tool for care and management of captive vervet monkeys (Chlorocebus aethiops). Anim. Welf. 2015, 24, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Hosey, G.; Melfi, V. Human-animal bonds between zoo professionals and the animals in their care. Zoo Biol. 2012, 31, 13–26. [Google Scholar] [CrossRef]
- Smith, J.J. Primates and People in the Zoo: Implications of Human–Animal Interactions and Relationships; Springer: Berlin/Heidelberg, Germany, 2016; pp. 371–398. [Google Scholar] [CrossRef]
- Smith, J.J. Human-animal relationships in zoo-housed orangutans (P. abelii) and gorillas (G. g. gorilla): The effects of familiarity. Am. J. Primatol. 2014, 76, 942–955. [Google Scholar] [CrossRef] [PubMed]
- Liehrmann, O.; Crawley, J.A.H.; Seltmann, M.W.; Feillet, S.; Nyein, U.K.; Aung, H.H.; Htut, W.; Lahdenperä, M.; Lansade, L.; Lummaa, V. Handler familiarity helps to improve working performance during novel situations in semi-captive Asian elephants. Sci. Rep. 2021, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Crawley, J.A.H.; Lierhmann, O.; Franco Dos Santos, D.J.; Brown, J.; Nyein, U.K.; Aung, H.H.; Htut, W.; Oo, Z.M.; Seltmann, M.W.; Webb, J.L.; et al. Influence of handler relationships and experience on health parameters, glucocorticoid responses and behaviour of semi-captive Asian elephants. Conserv. Physiol. 2021, 9, coaa116. [Google Scholar] [CrossRef] [PubMed]
- Marin, M.T.; Cruz, F.C.; Planeta, C.S. Chronic restraint or variable stresses differently affect the behavior, corticosterone secretion and body weight in rats. Physiol. Behav. 2007, 90, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Misslin, R.; Herzog, F.; Koch, B.; Ropartz, P. Effects of isolation, handling and novelty on the pituitary-adrenal response in the mouse. Psychoneuroendocrinology 1982, 7, 217–221. [Google Scholar] [CrossRef]
- Dickens, M.J.; Delehanty, D.J.; Michael Romero, L. Stress: An inevitable component of animal translocation. Biol. Conserv. 2010, 143, 1329–1341. [Google Scholar] [CrossRef]
- Putman, S.B.; Brown, J.L.; Franklin, A.D.; Schneider, E.C.; Boisseau, N.P.; Asa, C.S.; Pukazhenthi, B.S. Characterization of ovarian steroid patterns in female African lions (Panthera leo), and the effects of contraception on reproductive function. PLoS ONE 2015, 10, e0140373. [Google Scholar] [CrossRef]
- Thuwanut, P.; Brown, J.L.; Comizzoli, P.; Crosier, A.E. Responsiveness of the cheetah (Acinonyx jubatus) ovary to exogenous gonadotropins after preemptive oral progestin treatment. Theriogenology 2019, 138, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Glaeser, S.S.; Edwards, K.L.; Wielebnowski, N.; Brown, J.L. Effects of Physiological Changes and Social Life Events on Adrenal Glucocorticoid Activity in Female Zoo-Housed Asian Elephants (Elephas Maximus). PLoS ONE 2020, 15, e0241910. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.E.; Fox, S.A.; Berghänel, A.; Sabbi, K.H.; Phillips-Garcia, S.; Enigk, D.K.; Otali, E.; Machanda, Z.P.; Wrangham, R.W.; Muller, M.N. Wild chimpanzees exhibit humanlike aging of glucocorticoid regulation. Proc. Natl. Acad. Sci. USA 2020, 117, 8424–8430. [Google Scholar] [CrossRef]
- Van Schaik, C.P.; Marshall, A.J.; Wich, S.A. Geographic variation in orangutan behavior and biology: Its functional interpretation and its mechanistic basis. Orangutans Geogr. Var. Behav. Ecol. Conserv. 2009, 24, 351–361. [Google Scholar] [CrossRef]
- Muehlenbein, M.P.; Ancrenaz, M.; Sakong, R.; Ambu, L.; Prall, S. Ape Conservation Physiology: Fecal Glucocorticoid Responses in Wild Pongo pygmaeus morio following Human Visitation. PLoS ONE 2012, 7, 33357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wielebnowski, N.; Watters, J. Applying Fecal Endocrine Monitoring to Conservation and Behavior Studies of Wild Mammals: Important Considerations and Preliminary Tests. Isr. J. Ecol. Evol. 2007, 53, 439–460. [Google Scholar] [CrossRef]
Orangutan ID | Date of Birth | Gender | Species |
---|---|---|---|
B50023 | 23 April 2001 | Female | P. p. pygmaeus |
B40236 | 23 January 2006 | Male | P. p. pygmaeus |
1149 | Unknown, 1960 | Female | P. p. abelii |
Focal | Location | Overall n | Mean ng/g (± SD) | Baseline n | Mean ng/g (± SD) |
---|---|---|---|---|---|
B50023 | RAR1 | 29 | 34.54 (±20.05) | 25 | 28.53 (±7.92) |
VMC | 418 | 64.30 (±55.05) | 310 | 39.46 (±17.39) | |
RAR2 | 59 | 57.00 (±46.73) | 45 | 38.58 (±14.69) | |
B40236 | RAR1 | 25 | 80.38 (±67.68) | 23 | 63.12 (±29.37) |
VMC | 421 | 86.00 (±57.81) | 307 | 57.59 (±19.58) | |
RAR2 | 58 | 59.24 (±31.84) | 49 | 48.43 (±16.87) | |
1149 | RAR1 | 10 | 215.78 (±45.30) | 10 | 215.78 (±45.30) |
VMC | 402 | 277.44 (±190.49) | 311 | 199.35 (±81.28) | |
RAR2 | 12 | 146.14 (±99.57) | 11 | 125.46 (±72.57) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fink, L.B.; Mukobi, A.; Gruber, L.; Reed, C.; DeLibero, J.; Jackson, S.; Neill, S.; Walz, J.; Sines, C.; VanBeek, B.; et al. Longitudinal Analysis of Variability in Fecal Glucocorticoid Metabolite Concentrations in Three Orangutans (Pongo pygmaeus pygmaeus and Pongo pygmaeus abelii) before, during, and after Transition from a Regular Habitat Environment to Temporary Housing in Indoor Holding Facilities. Animals 2022, 12, 3303. https://doi.org/10.3390/ani12233303
Fink LB, Mukobi A, Gruber L, Reed C, DeLibero J, Jackson S, Neill S, Walz J, Sines C, VanBeek B, et al. Longitudinal Analysis of Variability in Fecal Glucocorticoid Metabolite Concentrations in Three Orangutans (Pongo pygmaeus pygmaeus and Pongo pygmaeus abelii) before, during, and after Transition from a Regular Habitat Environment to Temporary Housing in Indoor Holding Facilities. Animals. 2022; 12(23):3303. https://doi.org/10.3390/ani12233303
Chicago/Turabian StyleFink, Laurel B., Asaba Mukobi, Lindsey Gruber, Colleen Reed, Jason DeLibero, Scott Jackson, Sierra Neill, Julia Walz, Cydney Sines, Becca VanBeek, and et al. 2022. "Longitudinal Analysis of Variability in Fecal Glucocorticoid Metabolite Concentrations in Three Orangutans (Pongo pygmaeus pygmaeus and Pongo pygmaeus abelii) before, during, and after Transition from a Regular Habitat Environment to Temporary Housing in Indoor Holding Facilities" Animals 12, no. 23: 3303. https://doi.org/10.3390/ani12233303
APA StyleFink, L. B., Mukobi, A., Gruber, L., Reed, C., DeLibero, J., Jackson, S., Neill, S., Walz, J., Sines, C., VanBeek, B., Scarlata, C. D., & Wielebnowski, N. (2022). Longitudinal Analysis of Variability in Fecal Glucocorticoid Metabolite Concentrations in Three Orangutans (Pongo pygmaeus pygmaeus and Pongo pygmaeus abelii) before, during, and after Transition from a Regular Habitat Environment to Temporary Housing in Indoor Holding Facilities. Animals, 12(23), 3303. https://doi.org/10.3390/ani12233303